
Pegasus Personified - Simulation of an Historic

Computer

Christopher P. Burton, The Computer Conservation Society

Wern Ddu Fach, Llansilin, Oswestry, Shropshire SY10 9BN, UK.

Tel: +44 (0)1691 791 274 Email: cpb@envex.plus.com

Web and email addresses updated – 6 Jan 2020

Author’s biography

Christopher P. Burton has a BSc in Electrical Engineering from the University of

Birmingham and an Honorary MSc from the University of Manchester. He is a Chartered

Engineer, being a Fellow of the Institution of Electrical Engineers (IEE) and of the British

Computer Society (BCS). He worked on computer hardware, software and systems

developments in Ferranti Ltd and then ICT and ICL from 1957 until 1989, nearly all

based in the Manchester area. He is a founder member of the Computer Conservation

Society and led the team responsible for building a replica of the Manchester Small-Scale

Experimental Machine. Other roles in the CCS include chairmanship of the Elliott 401

Working Party and past chairman of the Pegasus Working Party. For replicating the

Manchester SSEM he was awarded an honorary degree by the University of Manchester,

the first Lovelace Gold Medal by the BCS and a Chairman’s Gold Award for Excellence

by ICL. He lives in Shropshire, and spends a lot of time indulging in practical computer

history matters.

Abstract

The vintage British computer Pegasus is briefly described, together with the work done to

preserve examples in Science Museums. The development and use of a simulator

program named PegEm which runs on a personal computer is then described. PegEm is

considered to capture the “persona” of Pegasus.

The Ferranti Pegasus

Readers of the Annals will by now be familiar with the fact that the Ferranti company

based in the Manchester area in England was one of the pioneering firms in the world to

get involved with the design and manufacture of computers
1
. Indeed the first computer in

the world to be delivered commercially, in February 1951, was a Ferranti Mark 1. By

1950 the Ferranti company had sixty years of experience in innovative electrical and then

electronic engineering, and its one-time slogan “First into the Future” was well-chosen. It

had an early and continuing relationship with computer development in the University of

Manchester. However it soon needed to set up a development and sales operation in the

London area - many intellectual people attracted to the new business did not want to work

in faraway Manchester. In Ferranti’s London Computer Laboratory, in elegant Portland

Place in London, a team led by Bill Elliott designed from scratch what became the

Ferranti Pegasus computer
2
. Not quite from scratch - the concepts, technology and many

of the team in fact emerged from Elliott Brothers Ltd. and its pioneering 401 computer

exhibited in April 1953.

The engineering of Pegasus was outstanding
3
. It used a plug-in package technology, with

each package containing two or three valves (vacuum tubes) and associated circuitry.

Immediate access storage used acoustic delay lines mounted on the same type of package.

Main storage was a magnetic drum, and input and output was via 5-track punched paper

tape. Later, punched cards, magnetic tape and other peripheral devices could be added to

Pegasus.

The objectives of the design team included that the machine should be highly reliable,

easy to use and economical to manufacture. The plug-in technology contributed to the

first and last. The functional design - the architecture - contributed to the second. The

instruction set was particularly clean and consistent, with no unexpected exceptions. It

was cited by Bell and Newell
4
as having, “….the nicest ISP processor structure…”.

In many ways, Pegasus was the first “user friendly” computer. Unanimously, the

hundreds of programmers and users of the machine have commented on the ease of

programming and operation. The reader must remember that in the mid-1950s, a

programmer wrote his program in machine code, or at best in the most primitive form of

assembler. He typically took his program to the computer and debugged it personally,

hands-on. So he needed an intimate knowledge of how the machine worked and how to

operate the numerous control switches and display lamps. A fundamental part of Pegasus

was what we might now call a primitive Operating System, a set of routines called Initial

Orders which was stored permanently in a write-protected area of the drum. Pressing the

“Start” key caused the Initial Orders to be executed, and they gave the programmer

facilities for inputting programs and data, for debugging, for assembling large program

systems from sub-sections and libraries, and so on. For routine maintenance of the

machine, a large collection of Engineer’s Test programs was also held in a protected part

of the drum and these could be easily run at any time to systematically exercise all parts

of the machine so that no gate was left untested.

Unfortunately, only about forty Pegasus systems were sold, between 1956 and 1962.

Manufacturing costs turned out to be greater than planned, possibly because the excellent

engineering such as the “Rolls Royce” quality of the cabinet work was out of tune with

mass production methods. In the same period, where Pegasus was delivered to 40

customers, IBM had delivered 1800 of the technically inferior 650 system. Figure 1

shows an early Pegasus computer in use at Vickers-Armstrong Aircraft Ltd.

Pegasus and the Science Museums

Pegasus is quite rightly regarded as a very important type example of early British

computers. Originals are held by both the National Science Museum in London and by

the Museum of Science and Industry in Manchester.

The London Science Museum Pegasus is serial number 25, and had a chequered career

having been re-located at least eight times in its life, including a period in Stockholm,

Sweden. It was acquired by the museum from University College London in 1983 and

due to shortage of space at the museum was initially displayed at ICL’s works in

Manchester. The author had his first contact with the machine there when he was allowed

to maintain it in working order in his own time. After a couple of years, pressure of space

in ICL forced a move of the machine back to storage in London. Subsequently, with the

formation of the Computer Conservation Society (CCS), a Pegasus Working Party was

established to re-commission and demonstrate the machine at the museum. After a

number of years of movement but continued maintenance, it was put on prominent

display in the Computer Gallery in 2000 where it continues to be maintained and

demonstrated. It is a tribute to the original engineering that it has survived this constant

stripping down, moving, and re-erecting, albeit with some scratches on the highly

polished paint-work!

The Pegasus held in the museum in Manchester is earlier, possibly serial number 6. It is

on display and has been conserved, i.e. treated by the CCS to reduce deterioration. The

museum policy is to preserve it in this original form and to not interfere with it further by

restoring to working order, because the London Pegasus has that capability.

The early months of the Pegasus Working Party were very exciting because this was

effectively the trial project of co-operation between the museum and external volunteer

enthusiastic experts. The latter in particular had a lot to learn about curatorial practices.

One issue raised early was the dilemma that the machine was being re-commissioned to

working order, yet from a curatorial point of view one did not want all-comers to lay

hands on it and use it. At about this time the question of offering a software model of the

machine was discussed and the author felt that this was a suitable private project to tackle.

Emulation vs simulation

There is nothing new about emulating a target computer in software or hardware on some

other host computer. There are numerous examples especially of early and obsolete

microprocessor systems emulated on more modern platforms. Many emulators are

focussed on a particular processing mechanism and work by sending and receiving data

streams to and from the target model. Others embed the target’s processing model within

the host’s environment so that the user is living with features of the host environment, for

example the modern file system. That may not have existed on the original target. I will

refer to such modelling systems as emulators of the target machine.

Simulation by contrast will be taken to mean that the user is not aware of the host

platform, and the whole of the target environment is represented on the host. Of course,

the degree to which this can be approached in practice is limited - it is rather hard to

simulate a seven-foot tall mainframe on a fifteen-inch tall personal computer screen. Real

aircraft and other vehicle simulators get closer, but in the context of simulation of old

computers such physical realism is not justified.

For our modelling of Pegasus, a simulator was desirable, so that a user could feel he was

operating a Pegasus rather than just getting a Pegasus program executed.

A prior example is the simulator of the Cambridge EDSAC by Martin Campbell-Kelly
5
.

This impressive program presents a view of a monitor cathode ray tube of EDSAC

together with various control switches and dials, but no attempt is made to represent an

actual view of the panels of EDSAC. Indeed part of the host screen also shows controls

and abstractions relevant to execution of an EDSAC program but not representing

anything physical in the original EDSAC. The simulator is aimed at the EDSAC program

writer and Campbell-Kelly gives good reasons why his simulator has evolved the way it

has. At the time the Pegasus work was started, there were separate discussions in the CCS

about issues of simulating old computers but the present author was not a participant and

had not seen the EDSAC simulator. So any vestigial similarity is purely coincidental!

The simulator program PegEm

The Pegasus simulator, PegEm
6
, was written before multimedia personal computers were

commonplace, and Windows 3.1 was state of the art. The author aimed at potential host

platforms with MSDOS running on a ‘386, and with a 16-colour 640x480 (i.e. VGA)

screen. This gave the best chance of widespread availability of the simulator and

corresponded with the capability of his own PC at the time. Little did he realise how

rapidly host capabilities would progress, and how modest a capability he accepted!

Nevertheless what was achievable was very satisfactory and welcomed by colleagues in

the Pegasus Working Party and outside.

A simple strategy for writing PegEm was adopted. There would be a synthesised

representation on the screen of the control panels of Pegasus, together with images of the

punched-tape equipment. There would be an image of a metal filing cabinet with drawers

containing rolls of paper tape, and a metal waste bin. The only other thing on the screen

would be a realistic image of the user’s hand (well, the author’s hand actually) analogous

to the hand cursor in a Windows system. The real user could move the hand about to

manipulate the objects on the screen. All this represents the Man-Machine Interface

(MMI) of Pegasus. Figure 2 is a bird’s eye view of the “cockpit” of a real Pegasus, and

Figure 3 shows the representation used by the simulator, which is realistically coloured.

Behind the MMI of the simulator is a module which models the logic of Pegasus. This is

quite detailed and is close to gate-level in some areas and high-level in others. The aim

was to roughly model the gross timing behaviour of the original machine. For example,

shifting a number in an accumulator in Pegasus is done by a setting-up phase, a multi-beat

phase where the number is shifted one place at a time per machine beat, and a finish

phase. Each of those steps is modelled in the logic module.

A third module permits off-line interaction with the simulator program to set up the

assumed environment for running the simulator. About twenty things can be set to suit the

taste of the current user. An example is the choice that output from the simulated tape

punch is sent to the simulated teleprinter (realistic, as in Pegasus) or else is sent to the

printer of the PC (unrealistic, but useful). A more trivial example is selection of the

colour of the shirt cuff of the “user’s hand”.

All control of the simulated Pegasus is done by operating the simulated controls by using

the hand cursor. Control of the hand in the first version of PegEm was done using the PC

keyboard, though the current version uses the mouse. The arrow keys moved the hand

about in such a way that it was constrained to always land on something sensible such as

a switch. For example the left and right arrow keys would move the index finger on the

hand from switch to switch in a row of switches, and the up and down arrows would press

the switch up or down. Larger scale movements used the Page Up and Page Down keys.

It sounds clumsy, but it rapidly became extremely natural and easy to manipulate the

screen objects.

It took a few weeks to develop the MMI part of the simulator, writing in Turbo Pascal and

making good use of its graphics library. The simulator was then shown to colleagues with

just one Pegasus instruction modelled, an “ADD to accumulator” instruction . The

instruction was set up on the simulated control switches, the “Manual” operation switch

set, and at “Single Shot”, or on “Run”, the number counting up could be seen, in realistic

binary, on the simulated cathode ray tube monitor. The demonstration was greeted with

enthusiasm and encouragement to get on and model the rest of the logic. This took place

over about nine months, using the very good documentation which exists for Pegasus.

The accuracy of the logic model was due to the careful testing of the simulator by the late

Derek Milledge, one of the pioneers who helped to develop the Initial Orders and routine

libraries for Pegasus. His detailed knowledge of the exact way each instruction should

work with all combinations of weird operands was a key to getting the logic model right.

Groups of instructions would be modelled using Pascal code, then Derek would take a

copy of the simulator program as developed so far and check it for correctness. Note that

his only view of the logic was as it behaved as seen through the MMI. He had no

knowledge of the underlying Pascal coding.

Once most of the Pegasus instructions were coded, it was opportune to load the Initial

Orders and the Engineer’s Test Programs on to the simulated drum. There is a standard

Pegasus bootstrapping procedure for this, copying the programs from binary paper tapes

into the protected area of the drum. The procedure only needs to be performed once

because the drum is non-volatile. The author owned a paper tape reader which he had

interfaced to a serial port on his PC, and this enabled the program tapes to be read into the

PC file system. From there they were bootstrapped into the simulated drum. In the

simulator, operation of the appropriate switches would now run the Initial Orders, and

more importantly, the Engineer’s Test Programs. It was with great satisfaction that

eventually the test programs gave the modelled Pegasus a clean bill of health! In the same

manner, all the library paper tapes and numerous utility and application program tapes

were copied into the file store for access from a simulated paper tape storage cabinet.

As paper tapes move through the input/output devices, they are animated realistically. A

small image of a section of tape in a reader is shown adjacent to the reader. This is an

authentic situation because it was often necessary for an operator to examine the

punching on a tape during a debugging session for example. To increase realism the I/O

devices were each made to click the PC speaker every time one of them dealt with a

character, so that there is a suitable sound as tapes are read, punched and printed.

Furthermore, the real Pegasus has a loudspeaker in the console which can be patched to

any waveform in the computer. It is typically left connected to a particular waveform in

the normalise instruction, and the analogous place in the logic module of the simulator

was provided with code to click the PC speaker. Consequently, when the Pegasus music

program is run on the simulator it produces the expected tunes.

Although no particular attempt was made to simulate correct timing, the similarity of the

logic module to the actual hardware means that the various instruction times bear a

reasonably correct ratio to each other. It turned out that on my moderately fast 386 PC the

simulator ran at near-correct real time. There is a simple slow-down facility for faster

PCs.

Tape editing

For a user to do useful work with Pegasus he needs a facility to prepare and to interpret

paper tapes - a tape editing set. Such equipment was provided by Ferranti, and typically

comprised a desk with a keyboard teleprinter, a tape punch and a tape reader. These were

all standard electro-mechanical telex devices, and have not been simulated in PegEm. The

then leader of the Pegasus Working Party, the late John Cooper, wrote some suitable

routines to translate standard personal computer text files into the form used by the

simulator. These routines are used “offline” independently of PegEm. A program writing

session may thus consist of coding up the program on coding sheets, typing the code

using a text editor such as Notepad, converting the text file to the simulator format,

testing the program using PegEm, and then either printing results on the local printer, or

else translating the output tape file back to text for subsequent editing. This is a tedious

process and a better integration of the activities is scheduled.

Using the simulator

The side panel illustrates a sequence of activities when running a program on the Pegasus

simulator. The many former users of Pegasus who have tried using the simulator have

commented that it does respond much like the real thing. It has been aptly said that it

“captures the persona” of the original machine.

Although there is a certain amount of documentary material supplied with the simulator,

including a tutorial on writing and running a Pegasus program, serious use of the system

requires The Pegasus Programming Manual
7
. This 320 page hardback book written by

George Felton was widely regarded in the UK as a model of how a user’s handbook

should be written, taking the reader through the principles of programming, the

instruction set of Pegasus and how to exploit its power, to details of the Initial Orders and

subroutine libraries. Regrettably, the book has not yet been transcribed to machine-

readable form, and the very large page format (UK foolscap size) makes even

photocopying rather troublesome.

Future enhancements

In a private project such as this, one is always tempted to go on improving and enhancing

what exists. The main and urgent requirement is to improve the documentation as

mentioned earlier. There are a few cosmetic improvements to the simulator envisaged,

and a total re-write so that the simulator runs smoothly under Windows instead of in an

MSDOS environment would make the system more easily accessible.

Longer term, the author would like to take the model further by embedding more

hardware in it. He has inherited a real Pegasus control panel, and believes that the correct

type of paper tape equipment is available. It would be a lot of fun to build a Pegasus using

authentic I/O and control panels, and leaving all the functionality in software behind the

scenes.

Conclusions

The original aim of PegEm has been achieved - a system is available for users to write

and run Pegasus programs and study how the machine behaves at the user’s level. It has

been useful within the Pegasus Working Party on the one hand to carry out investigations

and enhancements to the Engineer’s Test Programs and also in developing or resurrecting

various application and demonstration programs. It is envisaged that it will also be used

to provide visitors to the Computer Gallery with an animated visualisation of the running

machine, when the Pegasus is otherwise unattended.

It is striking that since PegEm was written there have been remarkable advances in

developing Virtual Reality (VR) systems. The author would claim that PegEm is an

approach to VR, to immerse the user in an environment where he really feels he is

operating the target system. It raises the question whether, if the simulation is good

enough, it is necessary to preserve original artefacts at all. But that is a discussion for

another place
8
.

Acknowledgements

The author is very much indebted to all those colleagues in the CCS who have

encouraged this development. In particular, the late Derek Milledge greatly facilitated

progress by patiently and meticulously checking the accuracy of the simulated machine

logic and by proposing many valuable enhancements to make operation more realistic.

References

1. Geoffrey Tweedale, “A Manchester Computer Pioneer: Ferranti in Retrospect”,

IEEE Annals of the History of Computing, Vol 15, No. 3, 1993, pp 37-43.

2. Simon H. Lavington, “The Pegasus Story - A history of a vintage British computer”,

The Science Museum, London, 2000.

3. William S. Elliott, Charles E. Owen, C.Hugh Devonald and BrianG. Maudsley, “The

Design Philosophy of Pegasus, A Quantity Production Computer”, Proc.IEE., Vol.

103, Part B, Supp. 1-3. 1956, pp. 188-196.

4. Gordon C. Bell and Alan Newell, Computer Structures: Readings and Examples,

McGraw-Hill, New York, 1971, pp170.

5. Martin Campbell-Kelly, “Past into Present: The EDSAC Simulator”, in R. Rojas and

U. Hashagen, eds., The First Computers - History and Architecture, MIT Press,

Cambridge, Mass. and London, 2000.

6. The simulator PegEm version 1 can be downloaded from the Computer Conservation

Society’s web site at

www.computerconservationsociety.org and following the “Software” menu item

Version 2 which uses the mouse is easier to use but contains some minor bugs.

7. George E. Felton, “The Pegasus Programming Manual”, Ferranti Ltd., London, 1962.

8. Doron Swade, “Virtual Objects - Threat or Salvation?”, in S. Lindquist, M. Hedin and

U. Larsson, eds., Museums of Modern Science, Nobel Symposium 112, Science

History Publications, USA, 2000, pp. 139-147.

Side Panel showing a sequence of operation of the Pegasus Simulator.

PegEm in action

Starting situation, with the hand hovering

over the Start and Run switches. A paper

tape storage cabinet and two tape readers on

the left, waste bin and output tape punch on

the right, and the offline teleprinter nearest

to the reader.

Tape cabinet drawer opened to extract a

program tape. A program to generate

prime numbers has been chosen.

Hand carries the tape down to the tape reader

and is ready to set it in the reader.

Start and Run switches operated, Initial

Orders copies header from tape to punch.

Tape from punch then moves to

teleprinter for printing.

Computer running and calculating prime

numbers. The numbers are punched as

they are calculated, and the output tape is

then printed.

Program has finished calculating, the

“Stop” lamp is lit. Last few numbers on

output tape are printed by pressing the

runout button on the punch, thus providing

enough slack in the tape for it to reach the

teleprinter. This behaviour is authentic.

Output tape no longer needed so it is torn off

and deposited in the waste bin.

Figure 1.

A Pegasus in use for aircraft design in 1957.

Courtesy of ICL and Judith Milledge

Figure 2.

The control desk of Pegasus. On the left are two photo-electric tape readers operating at

200 cps, and an automatic tape spooler for winding up long paper tapes. On the right is

the output paper tape punch operating at 30 cps. Tape from the punch is led across to an

electro-mechanical tape reader directly connected to the teleprinter, which operates at 7

cps. The tape loop between punch and reader acted as an output buffer. In the centre are

the monitoring cathode ray tubes, numerous indicator neon lights and the operating

switches.

Courtesy of ICL

Figure 3.

The screen view of Pegem. In this view, a manual instruction to add 1 to accumulator 5

has been set up on the hand-switches, and the machine set to “Run” at “Manual”. The

instruction repeats continually, and the incrementing binary pattern can be seen on the

left-hand monitor, which has been selected to show accumulator 5.

