ANSA Phase III

TINA Workshop 1993 Keynote Talk: Distributed Objects and Intelligent Network Services

Andrew Herbert

Abstract

A 30 minute keynote presentation for the 1993 TINA Workshop, L Aquila, Italy, September 1993.

The presentation discusses issues arising in the development of intelligent network services and the way in which distributed object technology can support such developments.

THE ISO Basic Reference Model for Distributed Processing is used as a framework for analysing and example service.

The OMG CORBA and object services are identified as good foundations for service implementation.

The ANSA work on dependability and performance is identified as technology that fits into the OMG architecture, and takes a step towards meeting the needs of the telecommunications sector.

The ANSA work on tools and federation is used to indicate area of service modelling, service design and service deployment where object orientation has a role, but where technology is lacking.
The sponsors of the ANSA Work programme have agreed to allow access by companies which have signed an agreement with Bellcore in respect of the Work programme of telecommunications research currently known as TINA-C to permit said companies access to and use of certain documents, software, information and deliverables arising from the results of the ANSA Work programme. This information will made available by the ANSA sponsors either as paper copies or through the medium of electronic file transfer from the information storage system operated by Architecture Projects Management Limited on behalf of the ANSA sponsors.

This is one such document and access is allowed in strict confidence on the understanding that the user accepts these conditions and on the sole basis that it will be restricted to those persons involved in the DPE work package of the TINA-C Work programme and that it will not be disclosed to any other person, firm or corporation.

The use of this information is restricted to its use only for the purposes of the carrying out of the DPE work package of the TINA-C Work programme and only at the site provided by Bellcore for that Work programme. No licence or permission for its use in any other part of the TINA-C Work programme or for its subsequent exploitation is granted and the ownership and copyright of all such documents, software, information and deliverables is expressly retained by Architecture Projects Management Limited for and on behalf of the sponsors for the time being of the ANSA Work programme. In the event of a company leaving the TINA-C Work programme or resigning from its bilateral agreement with Bellcore, then that company shall promptly and without demand return to Architecture Projects Management Limited all copies of any information, documents, software or other IPRs obtained under these provisions.

The access granted by these provision is on the understanding that the TINA-C consortium and the sponsors for the time being of the ANSA Work programme intend to and shall promptly enter into a suitable formal agreement for access to information and interavailability of IPRs (including software) for the purposes of the carrying out of the ANSA and TINA-C Work programmes.

With regard to any company which is participating in the TINA-C Work programme and which is also a sponsor of the ANSA Work programme, the obligation of confidentiality and the use restrictions contained in these provisions shall be subject and without prejudice to the obligations undertaken by, and the rights granted to, such company under the ANSA sponsorship agreement.
Object-based Distributed Processing

Andrew Herbert

ANSA Chief Architect

Technical Director

Architecture Projects Management Limited
Object-based Distributed Processing

• Previous TINA workshops have addressed TELECOMMUNICATIONS and NETWORKING

• The goal of TINA is to enable INFORMATION SERVICES

• What is an INFORMATION SERVICE?

• How are information services ENGINEERED?

• What role do DISTRIBUTED OBJECTS have in service engineering?

• What DISTRIBUTED OBJECT TECHNOLOGY is available and usable?
The Business of Information Services

- Networked information SERVICES will succeed ONLY IF:

 - they can be developed rapidly, to meet market windows

 - existing services can be interwork into new services

 - services are easy to deploy

 - services are easy to manage
Distributed Object Technology

- This business model is driving the COMPUTER industry
 - application integration
 - right-sizing
- DISTRIBUTED OBJECTS are the foundation
- The STANDARDS for Distributed Objects are in alignment
- The TECHNOLOGY for Distributed Objects is coming on stream
- The TELECOMMUNICATIONS industry can BUILD UPON and ENRICH the technology
- The SERVICE concept is the key to ALIGNMENT of the two industries
Basic Principles of Distributed Objects

• Service SPECIFICATIONS must be visible in the network
 - enables integration and evolution
 - basis for CONTRACTS between service providers, service users and service bearers

• Service IMPLEMENTATIONS must be available from the network
 - enables re-use and reduction of complexity
 - requires STANDARDS for PORTABILITY, INTERCONNECTION and MIGRATION
A Scenario - to explore SERVICE ENGINEERING

• The local authority for Tinaville wants to encourage new housing and high-tech industry to move in

• The authority decides to provide electronic access to its Planning and Land Registry Functions

• The leading architects in the town (ANSA Inc) develop interactive design conferencing services with their clients

• the local authority out sources management of its telecommunications services to the local teleco (TINYBELL)
Service Design

• How can we analyze the scenario to IDENTIFY potential services?

• How can we structure the service DESIGN to be sure that
 - all design options are considered?
 - all constraints are satisfied?
 - designs can EVOLVE to accommodate NEW REQUIREMENTS and adapt to NEW TECHNOLOGY

• Use ARCHITECTURAL PRINCIPLES to separate concerns
ANSA Projections

- called VIEWPOINTS in ISO / ITU-TS Basic Reference Model for Open Distributed Processing (DIS 1994?)

- take consistent alternative views focussing on different concerns
 - enterprise: policy issues
 - information: the domain(s) of discourse
 - computational: functional view
 - engineering: software and communication structures
 - technology: packaging, standards conformance

- Let’s walk through the scenario, using viewpoints to see where objects can help
Policy Issues

• WHO uses WHICH information and for WHAT purpose?

• What OBLIGATIONS and LIABILITIES have to be respected?
 - e.g. sensitivity of information
 - e.g. charging model
 - e.g. ease of installation, access, user training, maintenance
 - e.g. regulatory requirements

• IN systems will have to NEGOTIATE end-to-end CONTRACTS from sets of SERVICE SPECIFICATIONS

• Concepts of VALUE, POLICY, NEGOTIATION and SANCTION required to model BUSINESS PROCESSES behind services

• OBJECTS help in this kind of analysis because of strong concept of BOUNDARY
Information Issues

- Schema for information used by the services as OBJECTS and RELATIONS
- View the service as an ACTIVITY changing CLASS MEMBERSHIP of INFORMATION OBJECTS
- Information model must be tied to enterprise model so that services assist rather than inhibit the business process
Functional Distribution

- **OBJECTS** as units of management and replacement
- **INTERFACES** as points of provision and use of **SERVICE**
- **INTERFACES** are TYPED, **BINDING** is dynamic and **TYPE CHECKED**
- **OBJECTS** can have several **INTERFACES**
Engineering issues

- Engineering is about making trade-offs
- ABSTRACTION versus SPECIALIZATION
 - The more you hide, the less control you have
- CONSISTENCY versus AVAILABILITY
 - Availability means copies, increases risk of inconsistency
- AUTONOMY versus UNIFORMITY
 - Autonomy gives more freedom, but leads to differences which increases complexity
- SECURITY versus CONVENIENCE
- There is no one answer, and therefore there cannot be one ubiquitous DISTRIBUTED PROCESSING ENVIRONMENT
- This concept, SELECTIVE TRANSPARENCY, is beginning to spread in the computer industry
SELECTIVE TRANSPARENCY

Distributed services

SERVICE QUALITY

Service distribution

Communication

Networking

Distributed services

Replication

Transactions

Migration

Authentication

Location

Binding

Service distribution
Choosing an OO Analysis and Design Tool

• Range of issues to analyze is large - there isn’t a magic methodology

• Computer aided design housekeeping is of more benefit that methodology and formal methods
 - select tools where object meta model is configurable
 - select tools where you can manipulate object specifications
 - implies tools based on a OO database
 - select OO database where you can program consistency rules
 - If the tool generates code templates, make sure you can add your own heuristics
Federated Design

- Service designers are separated in location and time

- Select tools where repository is open and can cross link to other repositories

- Select tools where TYPE [WHAT] is distinct from CLASS [HOW]

- Some (but only) a few tools meet these goals - start using them now
Distributed Objects - A Snapshot

• OMG, ODP, ANSA - all converging on a common view

• GENERIC service CONFIGURATION, MANAGEMENT and INVOCATION
 - if it works for one object it works for all
 - Object Request Broker [OMG] as portability target - everything else is a service
 - Trader [ODP/ANSA] - a place to discover available services - a type-safe directory
 - Lifecycle services [OMG/ODP/ANSA] - resource management for services
 - Interface Repository [OMG/ODP] - a place to discover & negotiate contracts
 - Implementation Repository [OMG] - a place to discover service templates
 - Event Management [OMG]

• MEDIA INDEPENDENT CONFIGURATION and MANAGEMENT functions
 - interface can include data and telecommunications flows
 - interface binding = connection management

• Single-address space features of C++ are a stumbling block
 - dialects of C++ versus distributed object languages?
 - wrapping / proxy techniques for “remoteable” objects
CONCLUSIONS

• You need a framework within which to address SEPARATE concerns CONSISTENTLY

• The computer industry is laying the foundations of usable distributed object technology
 - but more work is needed on SELECTIVE TRANSPARENCY

• SERVICE ENGINEERING is highly skilled
 - Service engineers will use DISTRIBUTED OBJECTS to increase PRODUCTIVITY and reduce COMPLEXITY
 - Object Orientation is a TOOL to enhance skill not a MACHINE to replace it.

• Get a handle on the BUSINESS aspects of SERVICE DESIGN
 - What are the sensible charging structures?
 - How are the services policed?
 - Who resolves complaints?
Do Objects Really Work?

• Yes - look at effect of OO techniques on productivity in GUI, CAD, DTP

• Yes - look at ANSA applications
 - NASA Astrophysics Data System - a distributed multi-database
 - GESI Distributed Healthcare Patient Management System
 - CTI Distributed Newspaper “Hypertext” Composition System
 - AEG OSI resilient network product
 - audio workstation conferencing product

• Yes - look at success of HP Distributed Smalltalk as tool for building short-lived high-value applications
The SERVICE MANAGEMENT ENGINE

Client PCs → Man'mnt Functions → Real-Time Dependable Data → Control Functions → Corporate Data

- OLE
- GDMO, SNMP
- CMIP, CMIS
- Queues, streams, events [ODP, OMG]
- Signalling
- SQL, XA

Service Logic

Administrative Boundary