
Copyright  1994 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1314.01 Approved 13th October 1994

Standards Contribution

The ANSA Binding Model

Dave Otway

Abstract

The ANSA Computational Model implicitly binds clients to servers. This is simple to use and
enables the use of a simple default resource allocation policy that optimises the use of resources,
but it doesn’t cater for the requirements of (multi-media) streams and predictable (time-critical)
applications.

These applications require application program control over the timing and qualities of bindings.

The paper documents the implicit binding model plus its default resource allocation policy and
develops an explicit binding model that:
             provides precise control over the timing and duration of bindings,
             generates domain specific Quality of Service specifications,
             caters for multi-channel and multi-party bindings,
             handles all binding management in applications,
             preserves type safety,
             and places no requirements on the communications technology.

This document is derived from ANSA Phase III work in progress [APM.1239].
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1 Introduction

1.1 Purpose

This document proposes some extensions to the ANSA programming model
[APM.1015], and engineering model [RC.273] to provide explicit binding for
both operational interfaces [APM.1001] and stream interfaces [APM.1108].

The explicit binding model provides type checked application control over
Quality of Service (QoS) and the precise duration of bindings. It also caters for
the construction of more complex bindings such as multi-channel and multi-
party bindings; and enables applications to monitor and control bindings while
they are in use.

For completeness, the implicit binding model and associated default resource
allocation policies are also described.

1.2 Audience

This document is aimed at a specialized technical audience. Readers should be
familiar with the ANSA Computational Model (ACM) [APM.1001] or part 3 of
the ODP Reference Model [ODP-3].

The explicit binding model discussed in this document provides the framework
for specifying, monitoring and controlling Quality of Service and configuration
in large scale distributed systems.

1.3 Relevance

The explicit binding mechanisms are needed to cater for:

• time-critical applications

• multi-media applications

in large scale distributed systems.

1.4 Background

This work is an extension of the ACM and the design of the run-time
engineering [RC.273].

1.5 Related work

The stream interface extensions to the ACM described in “Streams and
Signals” [APM.1108] have no implicit binding semantics and rely exclusively
on the explicit bindings mechanisms developed in this document.
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The explicit binding model also provides a type safe framework for dealing
with the domain specific Qualities of Service described in “A Model of Real-
Time QoS” [APM.1151].

The ANSA explicit binding model has been developed in conjunction with the
binding model of the ODP Reference Model [ODP-3] and the formalisation of
the ANSA/ODP Computational Model being done by ENST & CNET [NAJM &
STEFANI].

1.6 Scope

Chapter 2 defines the requirements for implicit and explicit bindings along
with the resource allocation policies, qualities of service and management
policies that can be associated with them. Chapter 3 discusses the
architectural principles that guided the design of the binding model.

Before delving into explicit binding, a full description is given of the semantics
of implicit binding and of its default engineering. Chapter 4 gives a static view
of the components of a binding in both the computational and engineering
viewpoints, while chapter 5 describes how and when an implicit binding is
established.

Chapters 6 and 7 define the programming language extensions for generating
explicit binding endpoints for operational and stream interfaces respectively.

Chapter 8 discusses the many ways that these endpoints can be used to
manage the establishment of explicit bindings. It then goes on to describe how
to extend the basic mechanisms to provide domain specific QoS specification,
monitoring and control, multi-channel and multi-party bindings while
preserving type safety.

Although the explicit binding model provides the basic framework for
providing domain specific QoS, it does not consider what these domains should
be, what their semantics should be or what parameters they should have.

1.7 Notation

The examples are coded in DPL [APM.1014 & APM.1015] which is a language
tailored to the semantics of the ACM. This enables the semantics of
distributed computations to be expressed succinctly without the clutter of non
distribution features found in most programming languages.

The explicit binding functionality described in this document can be added to
other programming languages in a variety of ways, such as:

• a set of templates and coding rules

• an Application Programming Interface (API) implemented by a
subroutine library

• a class library using inheritance mechanisms

• a preprocessor

• language extensions

• a combination of any of the above
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Each implementor is free to choose how to map the explicit binding
functionality onto a particular programming language independently of other
implementors.

The new DPL constructs are defined in Backus Naur Form (BNF) with the
extension that {} enclose zero or more occurrences of part of a production rule
[APM.1015].

1.8 Previous definitions

This section brings together relevant binding related definitions from previous
documents and indicates how they relate to this document.

Names and bindings are defined in the naming model [APM.1003] as:

a name is a linguistic entity, that singles out a particular entity from
among a group of entities

a binding is the association of a name with a particular entity

an invocation name can be used to invoke some reaction from the entity
with which it is associated

This document is concerned with the binding of invocation names.

Bindings are created in the ANSA Computational Model (ACM) [APM.1001]
by:

a binder expression associating an invocation name with an interface
instance

The ACM requires that an invocation name can be used to invoke operations
on its associated interface instance anywhere in its scope. This document
distinguishes between creating a binding (making the association) and
establishing a binding (engineering the allocation of all the resources needed
to make an invocation).

In the engineering model1:

an (engineering) binding is a local memory address pointing to the local
invocation engineering for a particular interface instance

an interface reference contains all the engineering information necessary
to establish a binding to a remote interface instance

To avoid confusion with the terminology developed in this document, these
terms are renamed invocation reference [§4.3] and remote interface reference
[§4.3.2].

1. In the absence of a full engineering model description, [RC.273] is the best reference
to engineering bindings. The terminology is outdated and both the data structures and
code templates are C specific, but the design and principles are still valid.
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2 Requirements

This chapter discusses the requirements for binding models, resource
allocation policies, quality of service and binding management in open
distributed systems.

2.1 Implicit binding of operational interfaces

The original ANSA Computational Model (ACM) [APM.1001] only contains
operational interfaces and the bindings to them are regarded as fully
established as soon as they are created. A fully established binding is one on
which operations can be invoked. The ACM has no notion of partially or non
established bindings and makes no distinction between bindings to local and
remote interfaces. Because the application programs play no part in
establishing bindings, the bindings are regarded as being implicitly
established.

2.1.1 Resource allocation policies

2.1.1.1 Point of establishment

Establishing a local binding uses no more resources than recording its
creation, so there is no point in not establishing them when they are created.
There is also no point in disestablishing them before they are garbage
collected. This resource allocation policy is known as aggressive allocation and
lazy release.

On the other hand, a remote binding can tie up significant resources, so there
are savings to be made if it is never used or while it is not being used. The
need to conform to the (ACM) view that bindings always work, restricts the
points at which the engineering can intervene to establish (or disestablish)
bindings to:

1. when the binding is created (or garbage collected)

2. the first time an operation is invoked (or the last time one is terminated)

3. the first operation in a burst is invoked (or the last one in a burst is
terminated)

4. every time an operation is invoked (or terminated)

Option 1 is the same as for local bindings and clearly conforms to the ACM,
but offers no resource savings. Option 4 is a bit too aggressive in that the
savings made are unlikely to be worth the extra time and delays of constantly
establishing and disestablishing the binding.

Option 2 offers no advantages over option 3 and reliably detecting the last
operation can only be done with application knowledge or hindsight.
Therefore, option 3 offers the best compromise for general purpose use.
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A binding is established on first use. A timeout is used to detect a dormant
binding and trigger its disestablishment. The binding is re-established next
time an operation is invoked on it. If a binding is never used, it is never
established. This policy can be regarded as lazy allocation and moderately
aggressive release.

2.1.1.2 Sharing

A sensible general purpose resource allocation policy is to optimise the use of
resources. Therefore, all bindings between the same pair of capsules should be
multiplexed on one communication channel.

2.1.2 Quality of service

The standard Remote Procedure Call (RPC) guarantees described below are
required.

2.1.2.1 Execution guarantees

If the client receives an application termination then it is guaranteed that the
operation has been executed exactly once. If the client receives an engineering
termination then it is guaranteed that the operation has been executed at
most once. The exactly once guarantee conforms to the expectations of the
ACM, while the at most once guarantee caters for the problems of network and
partial failures.

2.1.2.2 Performance optimisations

If possible, the protocols should be tuned to optimise for low latency on short
messages and high throughput on long ones.

2.1.3 Binding management

For implicit bindings, neither the client or server applications are involved in
managing the bindings.

But, even with implicit bindings on operational interfaces, the client could be
given limited control over some aspects of the binding without requiring
cooperation from the server; provided that it was aware of the server’s binding
policies and did not conflict with them.

Clients of implicitly bound servers could enjoy the benefits of increased
predictability if they could exercise control over the timing of binding
establishment.

Given a suitable monitoring and control interface to a binding, a client could
use application knowledge to optimise the resource allocation policies
described in [§2.1.1].

2.2 Explicit binding of operational and stream interfaces

Implicit binding successfully hides all those fiddly details concerning TCP,
DCE, OSI, Berkeley sockets, binding handles, UUIDs, IP addresses, port
numbers, TSAPs, connections, datagrams, ATM adaption layers, etc. from the
application programmers. Although it is very easy to use and is adequate for
the majority of cases, it is inadequate for two specialised but very important
application areas, namely:
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• predictable applications

• multi-media applications

These terms are used very generally: the term predictable is intended to cover
all applications (especially time-critical ones) that provide non-functional
guarantees; and the term multi-media is intended to cover all applications
that use the stream extensions to the ACM as defined in [APM.1108].

Fortunately, these application areas have much in common, in that they
require resources to be allocated and scheduled to deliver application defined
guarantees. In general, guarantees are required for processing, memory and
communications resources; but this document primarily considers the issue of
communication resources.

The required guarantees could be installed by default, specified declaratively
or the relevant resources can be controlled imperatively by operation
invocations or extra arguments. This document takes the default approach for
implicit bindings and the imperative approach for explicit bindings, but tries
not to preclude a more declarative approach in the future. The imperative
approach is taken because the imperative mechanisms will need to be in place
before a more transparent set of tools can drive them.

Explicit binding of operational interfaces is needed to enable the application
programs to exercise control over communication resources, while for stream
interfaces there are no generally applicable resource allocation or quality of
service policies so the application must take control.

2.2.1 Resource allocation policies

2.2.1.1 Point of establishment

An application that demands predictability needs to calculate its resource
requirements and make its resource reservations in advance of its dependence
on them. It may also need to avoid jitter caused by resource allocation delays.
These require application control over the timing and duration of bindings.

A distributed predictable application also needs to know that all its
components are present and correctly configured before it makes any
commitment to deliver a specific level of service. This also requires application
control over the timing and duration of bindings.

2.2.1.2 Separation

A predictable application needs to protect the resources it depends on from
competing demands by requesting strict resource separation. For example it
may wish to preclude transport channel multiplexing. But this requirement
can be considered to be part of the more general QoS requirement [§2.2.2].

2.2.1.3 Sharing

Strict resource separation wastes resources, so many applications with less
stringent requirements may be forced into resource sharing for economic
reasons. This requires a policy for resolving contention. Again, this can be
considered to be part of the more general QoS requirement.

2.2.2 Quality of service

If the correct functioning of an application depends on the behaviour of the
communication mechanisms then the application needs to be able to specify
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what type and level of service it requires; and to be assured that this will be
provided. This requires a mechanism for communicating QoS requirements to
binders and resource managers.

The QoS parameters are specific to a QoS resource domain [APM.1151] and
will therefore differ in their types and numbers between different bindings.
This precludes a generic QoS specification and requires a very flexible QoS
mechanism.

2.2.3 Binding management

2.2.3.1 Explicit endpoints

With implicit bindings, the client receives a purely local binding which is the
invocation reference [§4.3]. The client application has no direct access to a
binding endpoint for the server and the server application has no access to a
binding endpoint for the client. So, for instance, a server cannot identify a
specific client.

A binding endpoint is defined as the argument given to a binder that enables it
to construct a binding to the entity represent by the endpoint. In engineering
terms, a remote interface reference is a server’s binding endpoint; while in
technology terms an endpoint is usually a form of address such as an IP
address and a UDP port number, but feeding remote interface references or
technology addresses to an application program would destroy most
distribution transparencies. A computationally visible binding endpoint can be
constructed by hiding an engineering endpoint behind an interface which
contains a bind operation.

Such endpoint binder interfaces are required for explicit binding so that
applications can identify a specific binding between them.

2.2.3.2 Multi-channel bindings

It is sometimes necessary to batch together a number of bindings because they
require a coordinated Quality of Service such as mutual synchronisation.

It would also be convenient to pass around a single endpoint reference for a set
of related bindings so as to minimise their management.

2.2.3.3 Multi-party bindings

Implicit bindings only have two1 endpoints. But there are interesting
communication scenarios that involve multiple parties, such a distance
learning and video conferencing.

These multi-party applications could be constructed at the application level
out of two party bindings, but these are difficult to program and will not
provide the optimum solution [VAN JACOBSON]. A better job could be done in
the communications engineering and some optimisations require the active
cooperation of the network.

Although it would be desirable if the multi-party binding mechanisms could
also cope with groups [APM.1002], this is not regarded as a constraint.

1. Bindings to and from groups [APM.1002] may be regarded as having multiple
endpoints. But the replicated group members are really an engineering mechanism to
provide failure transparency and are computationally identical.
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2.2.3.4 Coordination and negotiation

Any binding policy that abandons the defaults in favour of increased flexibility
will require the parties involved to coordinate their resources and possibly
negotiate the most optimal configuration.

2.2.3.5 Monitoring and control

Applications can take advantage of the ability to monitor and control bindings
in a number of ways:

• they can perform end-to-end application specific optimisations

• they can employ application specific knowledge to recover from failures

• they can degrade gracefully during resource shortages

• they can exploit resource gluts

This requires that applications can acquire control interfaces to particular
bindings and provide their own monitoring interfaces to bindings.



Requirements ANSA Phase III

12 The ANSA Binding Model APM.1314.01



APM.1314.01 The ANSA Binding Model 13

3 Architectural principles

This chapter discusses the architectural principles that guided the extension
of the binding model to include explicit bindings.

3.1 Objectives

The specific requirements for explicit binding were given in the previous
chapter, but these have to be delivered in the much wider context of an
existing architecture for distributed computing. Therefore the explicit binding
model has to meet the following more general objectives

3.1.1 Preserve the semantics of the ACM

The ANSA/ODP computational model successfully enables the construction of
a large class of distributed applications. It is essential that any additional
features do not alter its semantics. Those existing features which might be
considered vulnerable include:

• implicit binding

• fixed and variable assignment

• scope rules

• invocation semantics

• argument passing by sharing

• location and access transparency

3.1.2 Preserve type safety

Constructing large scale, heterogeneous, federated systems is inherently
complex and error prone. One of the most common kind of errors in such
systems are configuration errors. Type checking catches a large proportion of
configuration errors at very little cost. Relaxing type checking in the area least
well understood by most application programmers would be a major folly. Note
that where a compiler can infer the type of something it doesn’t necessarily
have to declared by the programmer; what matters is that the type is known to
the compiler.

3.1.3 Don’t invalidate the security architecture

The ANSA security architecture [APM.1007] is dependent on the integrity of
the encapsulation mechanisms. A binding model which weakened
encapsulation would also compromise security.

3.1.4 Avoid placing requirements on the technology

A binding model that required specific features to be present in the
communications technology that it could bind (such as protocols, management
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interfaces or address formats), would be too restrictive for use in
heterogeneous federated systems.

3.1.5 Follow general architectural principles

The binding model is an integral part of the architecture and should follow the
general principles described in [APM.1000] if at all possible.

The general principles relevant to explicit binding are:

• assume separation (no common environment or implied context)

• encapsulate state

• access state via Abstract Data Types (operational interfaces)

• leave in the indirection

• be prepared for (partial) failures

• separate policy from mechanism (declare what is required rather than
how it is provided)

• check early

• use tools to optimize

• allow federation (cater for decentralised control)

• design for large scale systems

• use context relative names (no universal IDs)

3.2 Problems

The main problems stem directly from three of the general objectives
described above, namely type safety, security and avoidance of technology
requirements.

3.2.1 Type safety

A generic explicit binding service which could be invoked from an application
program to explicitly bind to any type of interface could not be type specific to
the interfaces being bound without a run-time type check. The absence of a
run-time type check would weaken the type safety at the very point where it is
most useful and the presence of a check would slow down binding.

3.2.2 Security

A binding service that could establish bindings in other capsules would break
those capsules’ encapsulation and invalidate their security.

3.2.3 Avoidance of technology requirements

This objective makes it impossible to negotiate, monitor and control bindings
via special facilities in the communications technology.

Note that this objective does not ban the exploitation of relevant facilities that
exist, but it requires alternative mechanisms if they don’t.

What it is really saying is that if you are waiting for a universal binding (or
network management) protocol to emerge, don’t hold your breath. Everybody
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that has gone down this path has ended up being restricted by an
inappropriate technology; and they are all different.

3.3 Observations

Before considering the possible design choices, there area couple of relevant
observations that may make things clearer.

3.3.1 All binding operations are local

The statement that “all binding operations are local” may be counter intuitive
when considering the requirement to bind together distributed objects, but if
you think about it a little it soon seems obvious.

The encapsulation principle of the architecture bans one object from changing
the state of another and if the objects are on physically separate nodes it is
impossible for one object to change the state of another. Therefore, the process
of establishing a binding between two physically separate parties always
involves a locally applied state change at each end and some form of
communication between the parties to coordinate the state changes.

The communication may be by any means, including human coordination of
both ends, via a third party or on an existing binding between the two parties.
Each party generates a binding reference to itself which is specific to the
binding being established and exchanges this for the other party’s binding
reference.

The state changes may be software (allocating a port number) or hardware
(plugging a cable into a socket) and may be done at widely different times, but
there is always one at each end.

Binding is characterised by matching pairs of operations performed by each
party (after they have generated and exchanged binding references) of the
form:

this_party.bind(other_party)

Both bind operations only involve local state changes; which is why a
distributed binding (noun) can be established using only local binding (verb)
operations.

Thus an (ANSA) binder is defined as a local engineering object which
establishes a mapping between a co-located application object and a
communications channel and its takes the coordinated actions of (at least) two
such binders to establish a binding.

After a binding has been established, the binders are no longer in the
communication path.

3.3.2 A switch is not a binder

A switch (such as a telephone exchange) makes an internal connection
between two of its ports (or line cards) to which the end parties have already
been bound. Any party, including one of the two parties being connected, can
instruct a switch to make a connection.

In ANSA terms, setting up a call between two telephones bound to the same
exchange involves no extra binding operations beyond those that were done
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when the telephones were installed. For long distance calls, the exchanges
need to have bindings established between them for the duration of the call.

A switch is characterised by a single operation performed by any object
(including one of the parties) of the form:

switch.connect(first_port,second_port)

where both parties are already bound to their respective switch ports.

After a switch has established a connection, it forms an integral part of the
communications path.

The raw switch interface may not be presented to the end parties, but
packaged up in an interface (line card) that contains the identity of the calling
party and has access to a name server which can resolve the name of the called
party into a port number (on some switch). This functionality is migrating out
of the switches into supporting computers and may eventually end up in the
end systems.

3.4 Choices

The type safety problem can be solved at compile-time by generating type
specific binders [§6.2] on demand; or at least creating the computational
illusion that this is being done.

The “all binding operations are local” observation simplifies security and
technology problems. Each object can take its own decisions1 and instruct its
communication engineering to do the appropriate things to the
communications technology.

This design has the added benefit of doing all the negotiation, coordination,
monitoring and control of bindings as applications with the full range of
distribution transparencies, functionality and application services available to
them.

3.5 Summary of key principles

• preserve the semantics of the ACM

• preserve type safety

• don’t invalidate the security architecture

• avoid placing requirements on the technology

• follow general architectural principles

• all binding operations are local

• a binder is not a switch

• generate type specific binders

• all binding management is done by applications

1. Or choose to delegate them to another object.
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4 Binding components

This chapter defines what constitutes a binding and how bindings to
(operational) interfaces are viewed and used in the current (asynchronous)
computational and engineering models. The establishment of such a binding is
discussed in the next chapter.

4.1 Computational bindings

In the computational model, an invocation name is bound to an instance of an
interface as shown in figure 4.1.

No distinction between local and remote interface instances can be made
because the computational model requires access and location transparency.

The invocation name is not in scope until it is first bound, so an unbound
invocation name can never exist and therefore cannot be invoked or copied.

Re-assignment is done by re-binding the invocation name to another interface
instance. Copying is done by binding or re-binding another invocation name to
the same interface instance.

The arguments (and results) of operations refer to interface instances. Since
both the invoking (client) and invoked (server) object must share access to the
same interface instance used as an argument or result, then the instance itself
cannot be copied. Therefore, an argument (or result) must be passed by
copying its binding.

4.2 Transparency and indirection

The computational model assumes location transparency and has nothing to
say about where objects are located. To enable this assumption to be made, the
semantics have been carefully constrained to prevent the direct manipulation

Figure 4.1: Computational Binding

Invocation
Name Interface

Instance

Invocation
Name

data + code
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of data. All state is recorded by bindings to interface instances. An object
records its own state as a set of bindings to interface instances. It manipulates
its own state by rearranging its set of bindings and request other objects to
change their state by invoking operations on the bindings it has to their
interface instances.

When one object quotes one of its bindings as an argument (or result) of an
operation, both client and server objects end up with a binding to the same
interface instance referred to by the quoted binding. These bindings provide
them with shared access to the argument (or result) interface instance.

Both location transparency and argument sharing force the engineering model
to represent most bindings indirectly because the state representing an
interface instance can’t be in many places at once, so all but one of the
bindings to it must be indirect.

Rather than make one binding first among equals, making all engineering
bindings indirect will:

• hide the difference between local and remote bindings from the invocation
mechanism; i.e. provide engineering access transparency

• make local copying bindings very efficient

It is this indirection at the engineering level that is the key to engineering
many other transparencies. This is because, once one level of indirection is
placed between every client and server, neither of them can detect if multiple
levels of indirection have been used. Therefore the compiler and binders are
free to insert multiple levels of specialised stubs to implement particular
transparencies, even for local bindings.

4.3 Engineering bindings

In the engineering model, bindings need to be access transparent at least to
the client. All of the binding engineering can’t be access transparent because it
has to implement distribution. But the binding engineering should be as
access transparent as possible so as to minimise the differences between local
and remote bindings; thus enabling as much of the invocation mechanism as
possible to be shared.

In the engineering model, the invocation name is bound at compile time to a
(logical) memory cell1 which can hold an invocation reference. The invocation
reference is written into this cell at run time to complete the binding.

There is a mapping between each instance of an invocation name and the
memory cell used to hold its invocation reference. Re-assignment of a binding
is done by overwriting the old invocation reference with a new one. Copying of
a binding is done by copying the invocation reference.

The engineering model relies on compilers not to generate code that attempts
to invoke an incomplete binding (i.e. an invocation name bound to a cell which
does not yet contain a valid invocation reference).

1. The actual address of the cell is not known at compile time, but its relative position
in the program data structures is known, so that code can be generated to access it.
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4.3.1 Local engineering bindings

For a local interface instance, the invocation reference addresses an interface
frame, as shown in figure 4.2.

An interface frame represents an interface instance and contains (or refers to)
all the instance specific data. It is associated with (language specific) data
structures1 which reference the operation bodies and which represent the
“class” of the interface. When an operation is invoked on an invocation
reference, the (language specific) invocation mechanism executes the
corresponding operation body within the context of the interface frame.

When an interface instance is used as an argument (or result) of an operation
in an interface instance located within the same capsule (address space) as the
invoker, then the argument (or result) invocation reference can be copied.

4.3.2 Remote engineering bindings

For a remote interface instance, the invocation reference addresses a client
stub frame, as shown in figure 4.3.

1. These data structures are not shown in the diagrams, because they are dependent
on the invocation mechanisms of the target language. For instance the C++ invocation
data structures are either absent (at run-time) or hidden, but the C ones explicitly link
the frame to the operation bodies via a dispatch table [RC.273].

Figure 4.2: Local Engineering Program Binding

Figure 4.3: Remote Engineering Program Binding
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The client stub frame acts as a local proxy for the remote interface instance
and is constructed in such a way that the local invocation mechanism can use
it in the same way as an interface frame.

The distinction between local and remote interface instances is transparent to
both the invocation mechanism and the client code. This local access
transparency is achieved by placing the body and stub pointers in the same
place in the (language specific) class data structures associated with the
interface or client stub frame.

4.3.2.1 Stubs

The client code always invokes what it views as the server’s operation body
and passes arguments (and results) by copying invocation references to (and
from) what it views as the body of a local operation.

The operation body is also transparent as to whether it has been invoked by a
local or remote client; and therefore always views its arguments (and results)
as copies of invocation references.

End-to-end access transparency is achieved by inserting a client stub,
communication channel [§4.3.2.3] and server stub in the invocation path
between client and server, as shown in figure 4.4. Both stubs are fully aware
that they are dealing with a remote invocation.

For remote invocations, the invocation reference points to a client stub frame
which causes the invocation mechanism to invoke the client stub instead of
the operation body. The client stub marshals [§4.3.2.2] the request, consisting
of operation name and arguments, into a buffer and transmits this to the
server stub using a suitable Remote Procedure Call (RPC) protocol. It then
waits for the reply, unmarshals the termination name and results, and returns
them to the invoker.

When the server’s RPC protocol receives an incoming message, it calls the
server stub corresponding to the operation being invoked on the (now local)
interface instance. The server stub unmarshals the request, invokes the
operation body, marshals the termination and results, then returns the reply
to the client stub.

The server stubs are associated with an interface frame alongside the
operation bodies and are only invoked for incoming remote requests. To avoid

Figure 4.4: Remote invocation path via client and server stubs
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confusion between the bodies and server stubs, the stubs must either be
invoked by a different invocation mechanism or must have their names
mapped (e.g. by adding a standard prefix to the corresponding operation
name).

4.3.2.2 Marshalling

An invocation reference is a local memory address and has no meaning in
another capsule, so if an interface instance is used as an argument (or result)
of a remote invocation then a remote interface reference1 must be constructed
and passed instead.

A remote interface reference must contain the information needed for a remote
capsule to establish a communications channel [§4.3.2.3] to the capsule in
which the interface instance is located and to identify the particular interface
instance within the capsule.

When an invocation reference is first used as an argument or result in a
remote operation, a remote interface reference must be constructed. It can
then be stored with the interface frame for future use, as shown in figure 4.5.

Whenever an invocation reference is subsequently used as an argument (or
result) in a remote operation, its remote interface reference is marshalled into
the buffer by the sending client (or server) stub.

Subsequently the receiving client (or server) stub will unmarshal the remote
interface reference and create a new client stub frame to hold it. The address
of this client stub frame is the invocation reference that is passed as the local
argument or result.

A possible optimization would be to check, whenever a remote interface
reference is unmarshalled2, if there is an existing client stub or local interface
frame for the interface instance it refers to. [Such an optimization would have
to be carefully coordinated with garbage collection, migration, replication,
passivation and relocation mechanisms.]

1. Unfortunately the ANSAware manuals and many other documents refer to both an
invocation reference and a remote interface reference as an interface reference. This is
a hangover from the time before the computational and engineering models had been
fully prised apart. It has been the cause of such confusion that it is no longer safe to
use the term interface reference on its own. The term invocation reference is preferred
to the term local interface reference in order to avoid any confusion being caused by
interpreting the latter as being restricted to only a reference to a local interface.

Figure 4.5: Remote Interface Reference
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An end-to-end communications channel is not established when a remote
interface reference is unmarshalled; see [§5.2.3] for when this is done.

The remote interface reference must be kept with the client stub frame [figure
4.5] in case:

• the invocation reference is ever used as the argument or result of a remote
invocation

[ Because it is not for a local interface, the remote interface reference
cannot be reconstructed. ]

• a communications channel needs to be established.

When a remote interface reference is marshalled into a buffer, it must have a
linearised (i.e. flat) structure. It must also be encoded according to the syntax
of the presentation protocol being used on the communications channel.

A remote interface reference stored in its marshalled form will optimize the
marshalling for bindings using the same presentation syntax. Alternatively, a
remote interface reference stored as a tree which mimics its internal structure
will provide fast access for establishing communication channels and faster
marshalling for multiple presentation protocols. This is a trade-off which must
be made for each system design.

Marshalling can be done either in-line (encoded as part of the stub code), or
out-of-line (coded as functions called from the stubs). In-line marshalling may
be slightly faster, but takes up considerably more space than out-of-line
marshalling. If multiple presentation protocols are used, then the space
penalty for in-line marshalling is increased.

4.3.2.3 Communication channels

For binding to a remote interface instance, an engineering program binding
only represents the potential to communicate and must be augmented by a
communication binding before an invocation can be made.

In order for a remote invocation to take place, a logical communication
channel must be established between the client and interface stub frames, as
shown in figure 4.6. [The interface frame doubles as a server stub frame.]

The client end of a channel is known as a plug and the server end is known as
a socket. There is a many to one concurrent mapping between plugs and a
socket which reflects the multiple clients each interface instance may have.

Each socket represents a particular interface instance and references the
interface frame (i.e. contains a copy of the invocation reference). The socket is
created before the corresponding remote interface reference because the
remote interface reference contains the socket address within the capsule as
well as the capsule’s transport address.

Each client stub frame which is used for invoking operations (as well as
storing a remote interface reference) must be associated with a plug. The plug
cannot be created until the remote interface reference has been received and
unmarshalled.

2. Another optimization for large scale databases (e.g. traders) which store bindings
that they never intended to invoke themselves, is to discard or avoid creating the
client stub frame. But this would break access transparency and allow the application
program to manipulate the engineering data structures in a way that can’t be type
checked.
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The job of the binding engineering is complete when the logical channel
between a plug and a socket has been established. It is the job of the
underlying communications engineering (i.e the RPC, session and transport
protocols) to record the transient state of an invocation and to make and break
connections when and if required.

4.3.2.4 Remote interface references

In figure 4.6, the pair of remote interface references associated with a client
stub frame and an interface frame are logically identical; that is they refer to
the same1 interface instance but may be formatted differently [§4.3.2.2]. Both
the client and server object can use their copy of the binding as an argument
or result, so both ends need to keep a copy of the remote interface reference in
order to be able to marshal their copy of the binding. In addition, the client
stub frame needs the information in the remote interface reference to create a
plug [§5.2.3].

A remote interface reference is completely unidirectional. The information it
contains is specific to the server providing the service. It contains no
information about any actual or potential clients.

A remote interface reference must contain enough addressing information to
identify a particular socket in a particular capsule over a common protocol
stack. These addresses are represented as a sequence of optional protocol
stacks with each stack consisting of a sequence of layers and each layer
consisting of a protocol name and a protocol specific address. Each protocol
specific address is represented as a sequence of bytes with no internal
structure.

A remote interface reference may also contain other information relating to
Quality of Service, groups, relocation etc. See [RC.268] for the definition of
(remote) interface references in ANSAware 4 and [APM.1021] for a full
discussion of their functionality.

1. The remote interface reference in the client stub frame may be out of date, but the
relocation mechanisms [§5.4] will fix this when an invocation is attempted.

Figure 4.6: Communication binding
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Remote interface references can get rather large, but if a record is kept of
which references have been transmitted and received on each channel, then
subsequent transmissions can be optimized by marshalling the reference as a
short integer indexing the order of its first transmission.

4.3.2.5 Nonces

Large distributed systems are created and maintained by a constantly
evolving, heterogeneous, federated design and implementation process. It may
still be possible to test a modified application before it goes live. But after its
initial deployment, the underlying system can never again be tested off-line.
There is an ever present danger that the engineering components of large
system may fail or diverge as they constantly and independently evolve.

This danger is countered by constantly performing end-to-end checks using a
nonce. This is a random number generated by a server whenever it creates a
remote interface reference, inserted into the remote interface reference and
checked whenever a client establishes a session connection [§5.2.4] to the
service.

A random number is used because it is not possible to generate large numbers
of unique identifiers efficiently in a large scale federated system.

There is a very small probability that an invalid remote interface reference
could contain a valid nonce but this is not detected directly. It is the absence of
nonce failures that provides a high degree of confidence that the binding and
relocation mechanisms are working correctly.

Because of their randomness, nonces can’t function as unique interface
identifiers; anything that needs a unique identifier will have to pay the price
of generating them without burdening every object in the system. Also if a
nonce is used as a key to lookup remote interface references, then provision
must be made for duplicate entries, as with hash tables.

4.3.3 Technology addresses

It is the function of the engineering binding and communication mechanisms
to adapt to the locally available technology while preserving the portability
and interoperability of the applications. Enabling the engineering to do this,
requires a consistent approach to all technology addresses such as IP
addresses, TCP port numbers, TSAPs etc. Therefore, the majority of the
engineering software adheres to the principles that:

1. all technology addresses are represented as a variable length strings of
bytes

2. all technology addresses are generated locally on demand and under the
control of the engineering software

3. a technology address is just a hint to where the service probably is, based
on where it once was

The first principle enables all technology addresses to be stored, compared,
copied and marshalled by general purpose routines. The principle is only
broken by the routines that directly drive a particular communications
technology.

The second principle keeps technology addresses away from application
programs and users. It also avoids the requirement for “well-known”
addresses and drastically reduces the problem of stale addresses. For client/



ANSA Phase III Binding components

APM.1314.01 The ANSA Binding Model 25

server applications this principle requires the services of a trader [APM.1140],
which begs the question: how does an application find the address of the
trader?

Bootstrapping the address of a local trader is the only place where the second
principle is broken and this is done by loading the trader’s remote interface
reference from the local environment; see [RM.100] for the various ways to do
this.

The third principle allows for the migration, replication, recovery and
passivation of a service. A more up to date location can be discovered from one
of the relocators [§5.4] referenced by the service’s remote interface reference.
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5 Implicit binding

This chapter deals with when and how the (operational) interface bindings
described in the previous chapter are established within the (asynchronous)
computational and engineering models.

5.1 Computational view

The computational view of bindings is that they are always fully established
and ready for use. As such their establishment is implicit.

5.2 Engineering view

A fully established binding on which invocations are being made consumes a
significant amount of memory and communication resources. But many
bindings are never used to invoke an operation, they are just stored in a
database for later distribution or are merely in transit to the real client.

Therefore, fully establishing a binding all the way down the protocol stack as
soon as it is created would waste a lot of resources. It would also create very
severe scaling problems for many kinds of database server.

5.2.1 Engineering objectives

The objectives of the engineering are to provide the computational semantics
while placing the least restrictions on the scale of applications and consuming
the least resources. To do this it must:

• not allocate resources that are never used

• allocate resources as late as possible

• share resources as much as possible

• release resources as early as possible

• match the distribution of resources to the scale of the demand

5.2.1.1 Non allocation

If a binding is merely being stored for later distribution (such as a service offer
in a trader) and it will never be used to invoke an operation, there is no need
to allocate any communication resources to it at all.

The engineering should therefore only allocate communication resources when
it is certain that the binding will actually be used.

5.2.1.2 Late allocation

If a server (e.g. a database) has millions of clients then few computers would
be able to provide the resources to keep open millions of connections. But very
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few of the clients which have bindings to such a server would actually be
invoking operations on those bindings at any one time.

The engineering should therefore not allocate communication resources until
the binding is needed.

5.2.1.3 Resource sharing

If a client capsule has a number of bindings to a server capsule then those
bindings can share the same communications resources by serial multiplexing.

If a capsule has a limited number of communications endpoints available to it
then these can be shared between the bindings on a usage basis.

5.2.1.4 Early release

Communication resources could be released as soon as an invocation had been
completed and then reallocating them for the next invocation. But this would
incur a processing and communications overhead in continually allocating and
releasing resources for heavily used bindings.

A sensible trade-off would be to only release resources after a binding has been
unused for a period of time, or when the resources are needed for another
binding.

5.2.1.5 Demand scaling

If a server has millions of clients then even the resources needed to keep track
of the existence of the clients would become prohibitive. On the other hand
each client would only need to keep track of a single server. Given this, it is
important that the fact that a client has a binding to a server, but is not
currently invoking operations on that binding, should not require any
resources to be allocated by the server.

This is why ANSA implicit bindings are unidirectional. That is, potential
clients hold details about the server, but the server has no prior knowledge of
its clients before they invoke it. In this way the resources used for dormant
bindings [§5.2.2] are allocated to the objects generating the storage demand.

5.2.2 Dormant bindings

Following the non allocation and late allocation strategies, resources are only
allocated when they are first needed. When a binding is first created it only
needs enough resources to store the address information and can then lie
dormant until it is first used to invoke an operation.

A remote interface reference is only needed when an invocation reference is
first transmitted as an argument or result of a remote invocation. Since this
needs to contain a socket address, a socket must be created. The remote
interface reference will contain addresses in all the protocol stacks over which
the server capsule is prepared to establish bindings. [The remote interface
reference could be discarded after it has been marshalled and recreated on
demand, but the socket must be kept in order to service any incoming
invocations.]

A client stub frame is created when a remote interface reference is first
received as an argument or result of a remote invocation. [The copy of the
remote interface reference must be kept because it cannot be recreated.]
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The components of a dormant binding are shown in figure 5.1  There may be

client stub frames in many potential client capsules, but the server requires
only one socket (and one copy of the remote interface reference).

5.2.3 Active bindings

When a dormant binding is first used to invoke an operation, it must be fully
established before the invocation can proceed. This requires a plug to be
created and associated with the client stub frame, as shown in figure 4.6.
When the plug is created a protocol stack must be selected from those in the
remote interface reference that is also available to the client capsule.

The binder’s job is now complete and there is a logical channel between the
plug and socket. There will not, however, be any connections between the
client and server capsules. The underlying communications protocols will
make and break these as required from the information stored in the plug.

5.2.4 Sessions

When an operation is invoked on a binding, an end-to-end session connection
must first be established. This is used to track the progress of the invocation at
both ends:

• large messages must be fragmented into packets1 and reassembled

• lost or corrupted packets must be replaced

• duplicate packets must be suppressed

• invalid packets must be discarded

In addition, concurrent invocations of the same service by different clients,
and by separate activities in the same client, must be kept apart. All these are
the jobs of the session data structures and protocol.

For operational interfaces, the session protocol is always a Remote Procedure
Call (RPC) protocol [RM.101].

1. The maximum packet size for a channel is the maximum data unit the protocol
stack can handle, while message sizes are only limited by the virtual memory of the
end systems.

Figure 5.1:  Dormant binding
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A separate session entry is created for each client thread which invokes an
operation on a binding. A matching session entry is created in the server when
the invocation request is received. Between them the client thread, client stub,
plug, client session, transport channel, server session, socket, server stub and
server thread are the engineering resources which implement the
computational view of a distribution transparent activity. Figure 5.2 shows the
engineering components of two activities in a single client concurrently
invoking the same service.

Note that the ANSAware RPC session protocol multiplexes sessions on the
same binding down the same transport channel. Other clients of the same
service will only share the socket and server stub.

The mapping between client thread and client session is fixed for the duration
of a session because the client thread keeps local data on stack between
invocations. But the mapping between server session and server thread may
vary because the server operation keeps no local data on stack between
invocations.

If each end deallocated its session entry as soon as it considered an invocation
to be complete then this could cause confusion if the other end had experienced
an error or delay and was out of step; especially if the session entry had been
reallocated. Therefore the session entries are kept after the invocation is
considered to be complete for long enough to be reasonably confident that
there are no packets still in the network.

Allocating and deallocating sessions for each invocation would be wasteful
considering that invocations on the same service are often bunched together
quite closely. Also the RPC protocol can take advantage of closely bunched
invocations by piggybacking an acknowledgement on the next request or reply,
see [RM.101] or [BIRRELL & NELSON] for details, and the session indexes
can be carried in the packets to provide fast lookup for existing sessions. This
produces a protocol with the highly desirable characteristic of being more
efficient under a high load than a low load.

Figure 5.2: Components of concurrent distribution transparent activities
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Therefore sessions are kept for a period after they have become idle. This
period will depend on network speed, scarcity of resources, average latency,
connection costs, etc.; but is likely to be of the order of seconds rather than
milliseconds or minutes.

5.3 Technology view

Establishing a transport channel for a connectionless protocol is
straightforward; the client’s plug already contains the server’s transport
address and the client’s return address is sent in the invocation request
packet. Each end then keeps the other’s transport address in its session entry.

For connection oriented protocols, the server’s transport address in the plug
(and remote interface reference) is a contact address. The client establishes a
connection to the server’s contact address and this connection is then
transferred1 to a newly allocated server address for the duration of the
connection. Each end then keeps its local connection identifier in its session
entry.

The communications engineering may multiplex all channels between a given
pair of capsules down the same transport connection.

It may also make and break transport connections in systems where transport
endpoints are scarce or where transport connections are costly. This is done on
a usage basis without disturbing the session connections.

If all the sessions using a transport connection have been deallocated then the
connection can safely be disconnected.

5.4 Relocation

Services in a distributed system can change their location(s) for a variety of
reasons, such as migration, replication, recovery and passivation. This change
of location can occur before a channel is established or during an active session
on a channel.

Such a location change may cause an attempt to establish a channel or invoke
an operation to fail. In both cases, an updated remote interface reference must
be obtained from a relocation service before the channel can be (re)bound.

To cater for this situation, a remote interface reference [RC.268] contains a
sequence of one or more interface records. The first record is always for the
service being referenced and any further records are for a set of relocation
services [APM.1003, APM.1021, RM.101].

Relocation is done by successively invoking the relocation services identified
by the relocation records in the existing remote interface reference, until one
is found which returns an updated remote interface reference. If there are no
relocation records or none of the relocation services has an updated remote
interface reference then a binding error termination is returned to the client.

If an updated remote interface reference is found then an attempt is made to
establish a channel and (re)invoke the operation which generated the initial

1. For protocols that can’t transfer calls: the newly allocated transport address is
returned to the client capsule, which then establishes a connection to it.
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bind failure. If this is not successfully then another relocation is attempted
using the relocation records found in the updated remote interface reference.

If the initial bind failure occurred during an invocation, then the invocation
must be restarted. The at-most-once semantics of the RPC session protocol
[RM.101] will ensure that the operation is not invoked twice by the server.

5.5 Garbage collection

The computational view of bindings is that all reachable bindings are usable.
It is the job of the engineering to preserve this illusion in the real world of
scarce and costly resources.

Since the engineering allocates resources without any intervention from the
application program, it can’t expect much help when it comes to deciding when
to deallocate resources.

Locally, this is fairly easy to do. As discussed above, the transport and session
resources can be efficiently garbage collected. The invocation references and
client stub frames, plus their associated plugs and remote interface references
are purely local resources and can be garbage collected by one of the many
variants of the standard techniques of reference counting or mark and sweep.

The problem gets interesting when it comes to interface frames, plus their
associated sockets and remote interface references, because references to them
can be passed all round the planet. This considerably complicates the
standard approaches to garbage collection because:

• reference counts may be lost during node crashes

• exhaustive search techniques scale very badly

• loops are much harder to detect without a reliable identity comparison1

This situation results in distributed garbage collection requiring significantly
more resources to keep track of remote references than local garbage collectors
require for local ones. But fortunately, most of the information needed to keep
track of remote references is needed or is useful for other purposes, e.g.

• information about which remote references have been transmitted and
received on each binding can also be used for optimizing their marshalling
[§4.3.2.2] on subsequent transmissions

• (the absence of) proxy references [APM.1245] in gateways can be used to
restrict the scope of garbage sweeps

1. It is impossible to provide unique identifiers for transient objects in a functional
large scale federated system and relocation may invalidate address hints.
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6 Explicit endpoint binders

This chapter discusses the programming language constructs required to
implement explicit binding of operational and stream interfaces.

6.1 Explicit endpoints

With implicit bindings, all the active clients can have their plugs (logically)
connected to a single socket because:

• the bindings are asymmetric (i.e. established from the client side)

• they all share the same Quality of Service (QoS)

As explicit bindings are symmetric and must be established from both sides,
the clients need an endpoint reference that they can pass to the server.

Since clients use explicit bindings to obtain different and independent QoS
guarantees, the server needs a different endpoint for each binding to a client
so that:

• the server can pass a different endpoint reference to each client

• the server can differentiate its bindings

Stream interfaces are symmetric and both ends need explicit endpoints.

6.2 Endpoint binders

Endpoint references contain both technology addresses and engineering
parameters (i.e. they are equivalent to remote interface references [§4.3.2.2]).
To avoid exposing this information to an application, they are wrapped up in
an interface which provides operations for an application program to
manipulate them.

The application at each end of a binding has to invoke a local binder to
establish the binding. A generic local binder that could establish a binding to
any type of interface would either sacrifice type safety or require a dynamic
type check every time a binding was established.

Explicit binding can be made type safe if the interface that the endpoints are
wrapped up in is to an instance of a local binder that is specific to the type of
the interface being bound. A compiler can generate the type of this binder
interface and check that it is correctly used by the application. The actual
binder provided at run-time will be a generic one that can bind any type of
interface.

Both ends of an explicit binding must be established [§7] before the binding
can be used and the binders must ensure that each endpoint is only involved
in one binding at any one time.
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6.3 Client endpoints

For implicitly bound operational interfaces, there are no client endpoints for a
server to bind to; so a new construct needs to be added.

What is required is an expression which creates an instance of an endpoint
binder of a particular type to represent each client endpoint; along the lines of:

clientEndpoint= “client” “of” TypeExpression

which would generate and return a new client endpoint binder of the specified
type.

The (binding to the) local client endpoint binder can be passed to a server so
the server can use its local endpoint binder to bind to the client’s endpoint. The
local client endpoint binder can be invoked to bind the client endpoint to a
server endpoint and deliver a binding which can be used to invoke the server.

6.4 Client binders

The simplest client binder is an interface with just a bind operation, which
takes a server binder as an argument and delivers a binding to the server as
the result.

The type customisation is done by generating an interface type with a bind
operation which takes an argument of the server’s binder type and delivers a
result of the server’s type. So given the expressions:

  ServerType = type ( boo() ->() hiss() ->() )
; clientBinder = client of ServerType

the type of the newly generated clientBinder  will be:

ClientBinderType= type
( bind (server:type ( bind (client:ClientBinderType)

->()
  )

   )
->(ServerType)

)

Note that the ClientBinderType  is type specific to the ServerType  because its
bind operation has an anonymous termination with a result of type
ServerType . It is also type specific to the corresponding ServerBinderType
[§6.6] because the type of the argument to its bind operation contains a bind
operation whose argument type is ClientBinderType .

The two binder types are mutually recursive, but can be defined
independently of each other by each type definition including the top level
structure of the other type and using itself as a fixed point. For instance, the
type of the argument of the bind operation in ClientBinderType  is defined as
a type expression containing a bind operation whose argument type is the very
ClientBinderType  currently being defined.
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6.5 Server endpoints

The server endpoint for implicit binding is generated by the interface
expression:

interface = “interface” “(“ { signature operationBody } “)”

Whenever an interface expression is executed, it generates a new instance of
the interface.

What is required for explicit binding is a way of generating a new server
endpoint binder to a specific interface instance that can be passed to a client
for explicit binding and which can be used locally to explicitly bind to a client
endpoint. Following the style of the client endpoint generation, this would be
along the lines of:

serverEndpoint= “server” “of” unit 1

which would generate and return a new type specific server endpoint binder
for the specified interface instance.

A server endpoint can only be generated for a local interface instance. This can
only be checked at compile time by flow analysis; otherwise any infringement
can easily be caught at run-time.

The server endpoint binder can be invoked to bind the server endpoint to a
client endpoint. The (binding to the) local server endpoint binder can also be
passed to a client so the client can use its local endpoint binder to bind to the
server’s endpoint.

6.6 Server binders

The simplest server binder is an interface with just a bind operation, which
takes a client binder as an argument and delivers a termination with no
result. A result is not provided because the server does not require a binding
on which to invoke the client.

The type customisation is done by generating an interface type with a bind
operation which takes an argument of the client’s binder type. So given the
expressions:

  ServerType = type ( boo() ->() hiss() ->() )
; service = interface ( boo() ->()

[ output.string(“boo”) ]
     hiss() ->()

[ output.string(“hiss”) ]
  )

; serverBinder = server of service

The type of the newly generated serverBinder  will be:

1. A unit is defined as: unit = name | invocation | block | object
and delivers a binding to an interface instance.
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ServerBinderType= type
( bind (client:type ( bind (server:ServerBinderType)

->(ServerType)
  )

  )
->()

)

6.7 Stream endpoints

Stream binding is always explicit. The only asymmetry in a stream is the
direction of the flows and therefore the types of the two endpoints will have
their flows reversed with respect to one another.

In order to save a lot of trivial rewriting of stream types, a type operator is
introduced to generate a type which has the reverse flows of another type:

TypeExpression= type | [“reverse”] unit

The reverse operator is only valid on types consisting of flows.

Both endpoints of a stream can then be generated by the expressions of the
form:

streamEndpoint= “stream” “of” TypeExpression

where the TypeExpressions for both endpoints can be written out in full or one
can be defined as the reverse of the other.

6.8 Stream binders

As for operational interfaces, a stream endpoint is an instance of a type
specific local binder for the particular instance of the stream binding that it
will be used to establish.

The stream endpoint binder is similar to the client and server endpoint
binders, but both stream endpoints have a binder with the same type
structure, so that given the expressions:

  StreamType = type ( >> ( boo() hiss() ) )
; streamBinder = stream of StreamType

the type of the newly generated streamBinder  will be:

  StreamBinderType= type
( bind (stream:type ( bind (stream:StreamBinderType)

->(reverse StreamType)
)

  )
->(StreamType)

)

The only difference between this stream endpoint binder and the one for the
other end is the direction of flow in StreamType . The other binder type can be
constructed by reversing the flows in the StreamType  definition or by using the
reverse1 type operator for every occurrence of StreamType .
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6.9 Client control of implicit bindings

Implicit bindings are established automatically without any involvement of
the client or server applications. If a server wants to exercise control over a
binding it can make it explicit and force its clients to cooperate. But in general
a client has to put up with what the server provides.

However, it is possible to customise the client’s binder to some extent without
requiring any changes to the server’s binder or application. The things that
can be changed are those aspects of the binding over which the client binder
has control, such as the timing of binding establishment, the opening and
closing of sessions, and the choice of protocol stacks.

Therefore, to enable a client of an implicit operational interface to take limited
control over the binding without any cooperation from the server, a client
control binder generator is introduced:

clientBinder = “control” “of” TypeExpression

So given the expression:

clientBinder = control of ServerType

and the type of the simplest binder generated would be:

ClientBinder = type
( bind (server:ServerType) ->(ServerType) )

This would enable a client to control the time of binding establishment.

If the server’s implicit binding is invoked, it will still be implicitly bound.

6.10 Binding failures

The binding service may not be able to establish a binding when requested due
to a variety of reasons, such as:

• no common protocol

• cannot guarantee QoS [§7.4]

• endpoint already bound

These binding failures will need to be notified by (as yet unspecified) failure
terminations added to the bind operations.

6.11 Customised binders

The endpoint binders discussed above are the simplest possible ones and are
only specific to the type of the interface being bound. It is possible to generate
binders with more operations (e.g. unbind, openSession, closeSession) and
with extra arguments (e.g. QoS, multiple channels). Examples of more
complex binders are given in the next chapter.

The generation of customised binders can be controlled by attributes.

But when more than just argument types are changed, what is available to the
application programmer will be severely limited by the capabilities of the local

1. reverse reverse StreamType = StreamType
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binding engineering software. This will take the form of an attribute library
containing binder templates plus a matching run-time library. Note that the
type safety of the applications will depend on the type correspondence between
the attribute and binder libraries as well as the correctness of the compiler’s
type checker.

The attribute controlled endpoint binder generators described in this paper
enable an application programmer to succinctly select binders from the
available options and have their subsequent use strongly type checked before
run-time.

A programmer can then be confident that the required binders are available
and will not be incorrectly used before an application is executed.
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7 Explicit binding management

This chapter discusses the process of negotiating and coordinating the
establishment of an explicit binding, and then monitoring and controlling its
use.

In accordance with the architectural principles of the binding model, all
binding negotiation and coordination is done as a distributed application
before each party establishes its local binding.

There are various ways of organising the establishment of an explicit binding,
but they all follow the same basic principles.

7.1 Server binding managers

The simplest form of explicit binding management is where only the server
has a binding manager as shown in figure 7.1.  Because the server cannot

distribute the same service endpoint for use by all clients [§6.1], it is must
always have a binding manager for explicit bindings. Therefore, it distributes
a reference to a binding management service that makes new application
service endpoints on request.

After the client has obtained the reference to the server’s binding manager
(either directly or via some third party such as a trader), an explicit binding is
established as follows:

Figure 7.1: Using just a server binding manager
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• the client generates a new client endpoint binder and passes its binding to
the server in an implicitly bound invocation of the server’s binding
manager [request 1]

• the server’s binding manager generates a new server endpoint binder for
the service it is managing and invokes it to bind the new server endpoint
to the client endpoint it has just been passed [request 2 and reply 3]

• the server’s binding manager then returns the server endpoint binder to
the client [reply 4]

• the client then invokes the client endpoint binder it created earlier to bind
it to the server endpoint it has just received and gets back a binding to the
service [request 5 and reply 6]

• the client then invokes or transmits to the service [request or signal 7]

This basic dialogue can be extended in a number of ways depending on the
application requirements, e.g.:

• a set of multi-media streams can be established at the same time

• the single invocation of the server’s binding manager can be extended into
a negotiation about Quality of Service, billing arrangements, costs, etc.

7.2 Client and server binding managers

Although managing the establishment of explicit bindings as an application
gives complete freedom to do whatever is required, most bindings are likely to
conform to a small set of standard styles. These will lead to the development of
a library of off-the-shelf server binding managers for the standard kinds of
explicit binding.

Since the client’s options are limited by what the server’s binding manager is
willing to provide, a matching library of off-the-shelf client binding managers
will evolve to remove the drudgery from clients willing to use a standard
binding.

The following simple dialogue between a matching pair of explicit binding
managers is shown in figure 7.2:

• the client generates a new client endpoint binder and invokes its own
binding manager with its new endpoint binder and the server’s binding
manager as arguments [request 1]

• the client’s binding manager invokes the implicitly bound server’s binding
manager with the client endpoint binder as an argument [request 2]

• the server’s binding manager generates a new server endpoint binder for
the service it is managing and invokes it to bind the new server endpoint
to the client endpoint it has just been passed [request 3 and reply 4]

• the server’s binding manager then returns the server endpoint binder to
the client’s binding manager [reply 5]

• the client’s binding manager then invokes the client endpoint binder to
bind it to the server endpoint it has just received and gets back a binding
to the service [request 6 and reply 7]

• the client’s binding manager then returns the service binding to the client
[reply 8]

• the client then invokes or transmits to the service [request or signal 9]
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Again, this basic dialogue can be extended in a number of ways, e.g.:

• the client’s binding manager can interact with traders [APM.1140] to
select and import the server’s binding manager on behalf of the client

• the client’s binding manager could negotiate federation agreements and
organise the instantiation or cooperation of gateways [APM.1142]

7.3 External binding managers

Sometimes it is more convenient to manage the bindings from an object which
will not be using the binding. This is particularly useful for multi-party
bindings [§7.7] such as conferences. A simple example of an external binding
manager dialogue for a two party binding is shown in figure 7.3:

• the client generates a new client endpoint binder and invokes its own
binding manager with its new endpoint binder and the server’s binding
manager as arguments [request 1]

• the client’s binding manager invokes the implicitly bound external
binding manager with the client endpoint binder and the server’s binding
manager as arguments [request 2]

• the external binding manager then performs its own management
functions, such as: billing, QoS negotiation, resource scheduling; then
invokes the server’s binding manager with the client endpoint binder as
an argument [request 3]

• the server’s binding manager generates a new server endpoint binder for
the service it is managing and invokes it to bind the new server endpoint
to the client endpoint it has just been passed [request 4 and reply 5]

• the server’s binding manager then returns the server endpoint binder to
the external binding manager [reply 6]

• the external binding manager then returns the server endpoint binder to
the client’s binding manager [reply 7]

Figure 7.2: Using both client and server binding managers
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• the client’s binding manager then invokes the client endpoint binder to
bind it to the server endpoint it has just received and gets back a binding
to the service [request 8 and reply 9]

• the client’s binding manager then returns the service binding to the client
[reply 10]

• the client then invokes or transmits to the service [request or signal 11]

7.4 QoS specification

One of the main requirements for explicit binding is the provision of quality of
service guarantees. Ideally, the QoS specifications should be passed to the
binding engineering in a type safe manner. But QoS specifications are specific
to a QoS domain [APM.1151] and therefore will require binders to have
different types and numbers of QoS arguments.

This problem can be solved by parameterising the endpoint expressions
defined in [§6.3], [§6.5] and [§6.7] with attributes that instruct them to
generate QoS domain specific endpoint binders containing a bind operation
with the required number and types of QoS arguments. The syntax of a
stream endpoint would then be:

streamEndpoint= “stream” “of” [attributeList] TypeExpression

and the other endpoint expressions would be similarly enhanced.

Figure 7.3: Using an external binding manager
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For example, an isochronous stream endpoint might be generated by:

  StreamType = type ( >> ( boo() hiss() ) )
; streamBinder = stream of <isochronous> StreamType

and the type of the newly generated binder might be:

  StreamBinderType= type
( bind (stream:type ( bind (stream:StreamBinderType

   bandwidth:BitsPerSec
   maxJitter:MicroSecs
  ) ->(reverse StreamType)
    ->QoS_mismatch(String)
    ->resource_limitation(String)

)
   bandwidth:BitsPerSec
   maxJitter:MicroSecs
  ) ->(StreamType)
    ->QoS_mismatch(String)
    ->resource_limitation(String)

)

If the QoS arguments provided to both endpoint binders are incompatible or
the infrastructure can’t provide the necessary resources then the bind
operations will return failure terminations [§6.10].

Note that the binder templates must already exist in the attributes library
and be accessible at compile-time. The compiler just fills in the type of the
endpoint argument of the bind operations. The run-time binding engineering
must also match the binder templates, but its endpoint arguments will be
written to accept any type. This is still type safe because the type check done
by the compiler will be for the binder type it generates from the template.

7.5 Monitoring and control

As well as controlling the establishment of bindings an application may want
to monitor and control the use of a binding. This can be done by requesting an
enhanced endpoint binder in the same way as a QoS specific endpoint binder.
The endpoint binder would have extra operations included which could be
used to monitor and/or control the binding.

The exact monitoring and control facilities available would depend on what
the local engineering could provide. For example, a monitoring and control
interface for explicit session management might be generated by:

clientSessionBinder = client of <explicitSession> serverType

and the type of the generated binder might be:
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 ClientSessionBinderType= type
( bind (server:type ( bind (client:ClientSessionBinderType

  action: type ( open() ->()
  close()->() )

       ) ->()
  open() ->()
  close() ->()
 )

   action: type ( open() ->() close() ->() )
  ) ->(ServerType)

  open() ->()
  close() ->()
)

Each endpoint binder has two extra operations which enable a session to be
opened or closed after the channel has been established by the bind operation.
Each bind operation has an extra argument to allow the application to provide
an interface for the local binder to call when the other binder opens or closes a
session.

Much more elaborate monitoring and control operations can be added to
binders and there is no requirement for the two endpoints to have identical
binders as long as each conforms to the type expected by the other.

7.6 Multi-channel bindings

An application may wish to batch together a set of bindings (e.g. a multimedia
stream) so it can bind and control them as a single entity. Again, this can be
done using enhanced endpoint binders.

The binders could be generated using attributes to add extra channels to the
main one, but this makes it difficult to associate other attributes with a
particular channel. Therefore, the TypeExpression clause in all the endpoint
binder generators is replaced by a TypeList which has a “batched” option to
combine multiple channels into a single binding:

TypeList = TypeExpression
| “batched” “(“ { [AttributeList] TypeExpression} “)”

Attributes can then by attached to the individual channels or to the whole
binding.

The type of channels that can be batched will depend on the local engineering.
For example, a three channel binder might be generated by:

multiStreamBinder = stream of batched ( AudioType MouseType
VideoType )

and the type of the newly generated binder might be:

  MultiStreamBinderType= type
( bind (stream:type ( bind (stream:MultiStreamBinderType)

->(reverse AudioType
   reverse MouseType
   reverse VideoType)

)
  ) ->(AudioType MouseType VideoType)

)
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Only the single bindings to the multi-channel endpoint binders have to be
passed around the system, and these will deliver three stream bindings when
their bind operation is invoked. If all the channels cannot be established then
none of them will be and a bind failure will be returned.

Multi-channel binders can be used with operational as well as stream
interfaces, and with explicit combinations of both.

7.7 Multi-party bindings

So far all bindings have been assumed to have only two endpoints, but this is
unnecessarily restrictive. Bindings with multiple endpoints can be very useful
and can easily be established using attribute controlled endpoint binders. For
example, a binder for a three party telephone call might be generated by:

threePartyBinder = stream of <threeParty> PhoneType

and the type of the newly generated binder might be:

  ThreePartyBinderType= type
( bind (second:type ( bind (second:ThreePartyBinderType

   third:ThreePartyBinderType
  ) ->(PhoneType)

)
   third:type ( bind (second:ThreePartyBinderType

   third:ThreePartyBinderType
  ) ->(PhoneType)

     )
  ) ->(PhoneType)

)

This will only be successful if PhoneType is completely symmetrical (i.e.
exactly the same signals can be transmitted as received), so the use of the
threeParty attribute should trigger such a check.

For a conference call with a variable number of parties, the arguments of the
bind operations would have to be lists of the appropriate type.

Symmetrical multi-party bindings could also be used for operational
interfaces, provided each party consisted of an exactly matched pair of client
and server endpoints. These can’t be constructed with any of the generators so
far described, but could easily be generated by something like:

clientEndpoint ServerEndpoint = “pair” “of” [AttributeList] unit

Note: It would be interesting to examine whether asymmetrical multi-party binders could be
constructed for operational interfaces and whether they could be usefully applied to
client and server groups [APM.1002].

Note: It would also be interesting to explore the use of multi-cast addresses [VAN
JACOBSON] for multi-party bindings.
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