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1 Introduction

1.1 Motivation

Distributed real-time computing is spreading. The need of a supporting
system environment is inevitable. Even though the distributed computing
environment and real-time computing environment are established vehicles,
their integration is yet to be researched, because they seldom use compatible
techniques.

This document explains how ANSAware (AW) 4.1 is extended to support real-
time computing. The modified AW is referred to as ANSAware/RT Version 1.0
or ANSAware/RT in short.

1.2 Goals

The main goal is to implement an extended AW 4.1 that runs over a standard
real-time environment and retains the real-time properties of the
environment. Specifically, the goal can be divided into the following items:

= compatible with AW4.1
= running over a de-facto industry standard: real-time POSIX threads
= full p-thread real-time scheduling and threading capabilities

= selective communication multiplex by QoS specification and explicit
binding operations

= application controlled resource allocation

= supporting the real-time programming model given in [APM.1222]
= comparable to other distributed real-time system environments

= interoperation between different real-time platforms

= interoperation between different real-time and non-real-time platforms

1.3 Audience and context

This document gives programming and system guidance for ANSAware/RT.
The intended audience consists of system designers and implementors for
distributed real-time system environments with an interest in the issues
involved in extending AW. The audience is assumed to be familiar with AW,
concurrent and real-time programming in general, p-thread package, and
APM.1222 “Some Engineering Aspects of Real-Time”.
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1.4 Scope of extensions

[APM.1222] explains in detail the rational, concepts and mechanisms for a
real-time ANSA system.

ANSAware/RT extends AW4.1 in the following aspects in terms of functional
requirements:

= extended tasking system

entry: this is a new abstraction which represents a scheduling point.
Functions related to entry including creation, release, allocation of
tasks, association of interfaces etc. are provided

real-time scheduling: preemptive priority-based scheduling

multiple scheduling policies: the co-existing of real-time and non-real-
time scheduling supports

real-time tasks: full real-time p-thread functions.

stackable threads: a thread may use its task resource to execute
another thread

real-time threads: a thread may be associated with a priority and/or
deadline

multiple thread scheduling policies based on policy/mechanism
separation.

= extended communication system

multiple execution protocols

timed execution protocol: this is a new RPC protocol which
understands priority, deadline and deadline types

stateful execution protocols and message passing protocols: this
allows the preallocation of separate communication endpoints for
different interfaces

selective multiplex of communication channels

= extended application programming interface

abstractions for access tasking resources

QoS objects, two kinds of QoS objects are introduced: one for the
description of a communication end point, another for the description
of in-band QoS requirement for an invocation.

explicit binding operations: to bind an interface with a communication
channel of a specific QoS

invocations with QoS: the attachment of in-band QoS based on
invocations.

e extended PREPC and IDL

1.5 Outline

The document is organized as follows:

« chapter 2 outlines the ANSAware/RT programming interface as
extensions to AW 4.1

« chapter 3 discusses the extended tasking and scheduling

2 ANSAware/RT Version 1.0: Programming and System Overview APM.1207.00.08
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« chapter 4 presents the extended communication system

« chapter 5 shows the various experimentation and system performance
result.

= chapter 6 presents the availability of the system.

APM.1207.00.08 ANSAware/RT Version 1.0: Programming and System Overview 3
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2

Application programming interface

2.1

This chapter first briefly describes current ANSAware 4.1 programming
interface, and then proceeds to discuss ANSAware/RT programming interface
as extensions.

AW 4.1 programming interface

2.2

AWA4.1 provides the following major functions for programming object,
concurrency and resource management:

= interface instances, multiple instances of an interface type can be created
dynamically

= thread spawn, threads can be created by either a fork or a spawn function

= task creation, tasks can be added dynamically via invoking the
nucleus_tasks  function

= object invocation, PREPC provides a generic statement for object
invocations.

The above functions are extended by ANSAware/RT. Other functions such as
factory, trading, relocation, notification, exception handing etc. are retained in
ANSAware/RT, and therefore not mentioned.

Environment variable

2.3

Real-time applications should set the SCHEDPOLICY environment variable
one of the p-thread supported real-time scheduling policies, which can be
SCHED_FIFO or SCHED_RR. Otherwise ANSAware/RT will choose the
default time-sharing scheduling policy SCHED_OTHER for its task
scheduling.

Tasking and scheduling

The ability to control scheduling is an important requirement for real-time
application designers. Real-time applications must be able to control
scheduling in order to service external events (which can be an invocation, for
example) in a timely and predictable manner. Control over scheduling takes
several forms in ANSAware/RT:

= select how the operating system scheduler selects tasks (which are
mapped to a p-thread each) to run --- select a task scheduling policy

= choose the priority of each task

= control the allocation of entry or scheduling point --- select the basis where
separate scheduling concerns are identified

ANSAware/RT Version 1.0: Programming and System Overview APM.1207.00.08
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23.1

« select how ANSA threads are queued on an entry for execution --- select a
thread queuing policy for an entry

= control the allocation of tasks for each entry

= select how a thread’s scheduling attributes may affect a task’s scheduling
attributes --- select a rendezvous policy of an entry

= control to which entry a service interface be bound.

The above seven forms of real-time functions allow for a great amount control
over application execution. At run time, the combination of these real-time
features gives the user control over system CPU resources.

For p-thread system, only priority-based scheduling is supported, which
implies the same for ANSAware/RT task scheduling. Task scheduling policies
work in conjunction with priority levels. A global priority range applies to all
task scheduling policies, but each policy has an associated priority range.
Tasks are allowed to change both scheduling policies and priorities depending
on application needs.

Attributes objects

An attributes object is used to describe a ANSAware/RT task, thread or entry.
This description consists of the individual attribute values that are used to
create a task, thread or entry. An attributes object is analogous to a type
definition in a programming language; it describes details of the object to be
created.

To create an task attributes object, the following function can be used
ansa_Status ansa_taskattr_create (ansa_TaskAttr *attr)
This routine create an task attribute object containing default values for
individual attributes. The following attributes can be changed:
= scheduling inheritance
= scheduling policy
= scheduling priority
= stack size
To modify any attribute values in a task attributes object, use
ansa_Status ansa_taskattr_setinheritsched (ansa_TaskAttr *attr,
ansa_Cardinal inherit)
ansa_Status ansa_taskattr_setsched (ansa_TaskAttr *attr,
ansa_Cardinal scheduler)
ansa_Status ansa_taskattr_setprio (ansa_TaskAttr *attr,
ansa_Cardinal prio)

ansa_Status ansa_taskattr_setstacksize (ansa_TaskAttr *attr,
ansa_Cardinal stacklen)

To obtain an attribute value in a task attribute object, use

ansa_lInteger ansa_taskattr_getinheritsched(ansa_TaskAttr attr)
ansa_lInteger ansa_taskattr_getsched (ansa_TaskAttr attr)
ansa_|Integer ansa_taskattr_getprio (ansa_TaskAttr attr)
ansa_lInteger ansa_taskattr_getstacksize (ansa_TaskAttr attr)

To delete a task attribute, use
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ansa_Status ansa_taskattr_delete (ansa_TaskAttr *attr)

Similar routines exist to control the creation, manipulation and deletion of
entry attributes objects.

The following entry attributes can be changed:
= thread queuing policy

= task/thread rendezvous policy

= priority ceiling value

e priority range values

Routines related to entry attributes are:

ansa_Status ansa_entryattr_create (ansa_EntryAttr *attr)
ansa_Status ansa_entryattr_delete (ansa_EntryAttr *attr)
ansa_Status ansa_entryattr_setqueuing (ansa_EntryAttr *attr,
ansa_Cardinal queuing)
ansa_Status ansa_entryattr_setrendezvous( ansa_EntryAttr *attr,
ansa_Cardinal rendezvous)
ansa_Status ansa_entryattr_setceiling (ansa_EntryAttr *attr,
ansa_Cardinal ceiling)
ansa_Status ansa_entryattr_setprio_min (ansa_EntryAttr *attr,
ansa_Cardinal prio)
ansa_Status ansa_entryattr_setprio_max (ansa_EntryAttr *attr,
ansa_Cardinal prio)
ansa_Cardinal ansa_entryattr_getrendezvous (ansa_EntryAttr attr)
ansa_Cardinal ansa_entryattr_getceiling (ansa_EntryAttr attr)
ansa_Cardinal ansa_entryattr_getprio_min (ansa_EntryAttr attr)
ansa_Cardinal ansa_entryattr_getprio_max(ansa_EntryAttr attr)

Routines related to thread attributes are:

ansa_Status ansa_threadattr_create (ansa_ThreadAttr *attr)

ansa_Status ansa_threadattr_delete (ansa_ThreadAttr *attr)

ansa_Status ansa_threadattr_setprio (ansa_ThreadAttr *attr,
ansa_Cardinal prio)

ansa_Status ansa_threadattr_setdeadline (ansa_ThreadAttr *attr,

ansa_Cardinal deadline)
ansa_Cardinal ansa_threadattr _getprio (ansa_ThreadAttr attr)
ansa_Cardinal ansa_threadattr_getdeadline (ansa_ThreadAttr attr)

2.3.2 Entry

An entry is a scheduling point by which different scheduling/processing
concerns can be identified. Each capsule has a default entry by which all new
created interfaces of the capsule are bound. The binding of an interface with
an entry means all invocations on the interface are queued on the entry and
are later processed by the tasks allocated for the entry.

Additional entry can be created by

ansa_Status ansa_entry create (ansa_Entry *entry,
ansa_EntryAttr attr)

An interface can bind to another entry by

ansa_Status ansa_entry_bind (ansa_InterfaceRef *ref,
ansa_Entry *entry)

6 ANSAware/RT Version 1.0: Programming and System Overview APM.1207.00.08
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An interface can resume to the default capsule entry by
ansa_Status ansa_entry_unbind (ansa_interfaceRef *ref)
An entry may be closed by

ansa_Status ansa_entry_close (ansa_Entry *entry)

2.3.3 Task
ANSAware/RT tasks can be spawn for two purposes:
= to process the requests on an entry
= toinitiate a separate execution thread
In the first case, tasks can be allocated by
ansa_Status nucleus_tasks_onentry (ansa_Entry *entry,

ansa_TaskAttr attr,
ansa_Cardinal extratasks)

In the second case, a task (with its own ANSA thread) can be created by

ansa_Status ansa_task_spawn ( void (*proc)(),
long arg,
ansa_TaskAttr attr)

2.3.4 Task scheduling policies

Task scheduling policies are introduced to give flexibility and control in
determining how work is performed so that an application can balance the
work with the behaviour of a capsule.

Essentially, there are two categories of tasks:

= time-sharing processing: used for interactive or background work with no
critical time limits but a need for reasonable response time and high
throughput.

= real-time processing: used for critical work that must be completed within
a certain time period.

To control the scheduling policies for the two categories of work, appropriate
policy parameter must be selected when creating a task. There are three
scheduling policies supported by ANSAware/RT:

= AW_SCHED_OTHER: time-sharing scheduling
= AW_SCHED_FIFO: fixed-priority, first-in first-out preemptive scheduling
= AW_SCHED_RR: fixed-priority, round-robin preemptive scheduling.

They are mapped to the equivalent p-thread scheduling policy
SCHED_OTHER, SCHED_FIFO and SCHED_RR respectively.

Detailed discussion of the relations between scheduling policies, priority
ranges and operating system processes can be found in a p-thread manual.

2.3.5 Thread and entry scheduling policies
ANSA thread (or thread) can be generated in two cases:
= by an explicit spawn operation

APM.1207.00.08 ANSAware/RT Version 1.0: Programming and System Overview 7
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2.4

ansa_Status instruct_Spawn_onentry (ansa_Dispatch dispatch,
ansa_Entry *entry,
ansa_BufferLink buffer,
ansa_ThreadAttr attr)

- for each invocation, ANSAware/RT generates a representing thread on the
entry upon which the called interface is bound. This is a implicit operation
done by the infrastructure.

Threads are queued on entries. Each entry has two scheduling attributes
which can be controlled by an application:

e thread queuing policy

e task/thread rendezvous policy

[APM.1222] defines five thread queuing policies:

= first-come first-service: this is the default thread queuing policy
- fixed priority based

= earliest deadline based

e priority first and then deadline based

= deadline first and then priority based

They are supported by ANSAware/RT and can be chosen by an entry attribute
value of AW_E_FCFS, AW_E_PRI, AW_E_DEADLINE, AW_E_PRI_PLUS or
AW_E_DEADLINE_PLUS.

[APM.1222] defines five task/thread rendezvous policies:

« null: the default policy

e priority inheritance: the task inherits the priority of its serving thread

= priority ceiling: the task inheritance the priority ceiling value of the entry
e transitive priority inheritance

= deadline inheritance

= priority and deadline inheritance.

ANSAware/RT supports the first three rendezvous policies which can be
selected by AW_R_NULL, AW_R_PRI, AW_R_CEILING.

QoS objects

An QoS object consists of the individual attribute values and is introduced to
describe communication resource and performance constraints. Two categories
of QoS objects are defined in ANSAware/RT:

« endpoint QoS object: to describe QoS constraint associated with a
communication endpoint which could be either a socket (a server
endpoint) or a plug (a client endpoint). These QoS objects are used by
binding operations to set up a communication channel between a client
and its server.

= in-band QoS object: to select the in-band QoS parameters of an
established communication channel. These QoS objects are associated
with individual invocations.

ANSAware/RT Version 1.0: Programming and System Overview APM.1207.00.08
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2.5

AW has two layers of communication protocols: the execution (EX) protocol
layer and the message passing service (MPS) protocol layer. An endpoint QoS
object has attributes to select:

< an EX protocol: this can be either the standard AW REX protocol or TREX
protocol defined in [APM.1222].

= a MPS protocol: currently it can be either IPC or UDP.

= control parameters specific to an individual protocol. For example for
UDP, an application can choose a specific port number, and spawn a
specific p-thread for managing the communication on the port.

An in-band QoS object can be associated with an invocation to select the
channel related control parameters:

= for REX protocol, these can be a timeout value and an error retry number

< for TREX protocol, these can be a priority value, a timeout, a deadline
type and a deadline value.

In future implementations, it is expected that the in-band QoS object may
allow the selection of the in-band QoS parameters associated with a real-time
MPS service.

To create an endpoint QoS object and setup the default values of its
parameters, use:

ansa_Status ansa_endQoS_create (ansa_EndQoS *qos)
To setup the individual parameter value, use:

ansa_Status ansa_endQoS_set AnAttribute (ansa_EndQoS *qos,
a Type a Value)

Similar routines exist for the in-band QoS object:
ansa_Status ansa_invQoS_create (ansa_InvQoS *qos)

ansa_Status ansa_invQoS_set AnAttribute (ansa_InvQoS *qos,
a _Type a Value)

Binding

ANSAware/RT supports explicit binding operations for

= associating QoS with communication endpoints

= controlling the bind time

Server site explicit binding is accomplished at service creation time, use

{ir} :: Type$Create(concurrency) {QoS}

This operation creates a service instance and sets up the service
communication endpoint with the required QoS constraint. This binding
operation is combined with service instance creation because the QoS
constraint may affect the formation of the interface reference ir .

Without the QoS parameter, the creation operation will use the default
implicit binding operation, which means the capsule only ensures a minimum
communication QoS (use multiplex as much as possible, for example) for the
service instance.

APM.1207.00.08 ANSAware/RT Version 1.0: Programming and System Overview 9
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Client site explicit binding is accomplished when the client holds a server
interface reference ir , and use

{} :: ir$Bind() {QoS}

This operation will create a client communication endpoint, a plug, with the
required QoS. The client can then use their to invoke the server as is the case
without using the explicit binding operation.

It is worthing point out that the TREX protocol requires the explicit binding
operation be initiated, before any further interaction can take place. In other
words, a real-time invocation cannot be initiated before a real-time
communicate channel is explicitly set up.

The server site explicit binding is destroyed and therefore related resources
released when the server make an explicit call

{} :: Type$Destroy(ir)

The client site operation is

ir$Discard
2.6 Invocations
Each invocation can be associated with an optional in-band QoS object, which
may be used to control the semantics of communication. The invocation syntax
is
{results} <- irsoperation(arguments) signals {QoS}
This allows the association of priority, deadline etc. invocation dependent
control parameters.
2.7 Rendezvous
ANSAware/RT also extends AW tasking system to allow stackable execution of
threads. This permits a thread, while executing (holding a task), to wait at an
entry to rendezvous and execute another thread (may be an invocation). The
benefits is that it allows an application to schedule thread execution based on
its runtime knowledge.
The rendezvous function is
ansa_Status ansa_rendezvous (ansa_Entry *entry,
ansa_Cardinal timeout)
2.8 Clock

The deadline associated with an invocation implies both the server and the
client share the common view of time. As there are many clock
synchronization mechanisms and systems, it would be inappropriate to build
the clock synchronization mechanism within the capsule. ANSAware/RT
provides only minimum functions for clock reset and relying on an application
to provide the appropriate clock synchronization service at application level
(as a normal ANSA service, for example).

10
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The nucleus provides two functions:

void system_readTime (ansaTime *time)
void system_resetTime (ansaTime time)

The first function reads the current clock value of the capsule and the second
resets the clock according to a given parameter.

APM.1207.00.08 ANSAware/RT Version 1.0: Programming and System Overview 11
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3 Tasking and scheduling

3.1 AW tasking

AW threads represent points of execution and provide the notion of logical
concurrency. AW tasks represents the resources required (stacks) to execute
an AW thread and provide the actual concurrency.

Logically, AW starts with several threads and one or more tasks. There is a
receiver thread for receiving messages on the communication endpoints, a
time thread to execute time-related activities, and an application program
thread to execute the user program code.

AW tasks are user level entities implemented through a coroutine package.
Additional tasks may be created to provide extra physical concurrency. Tasks
are shared by all threads. All threads waiting to execute are queued on one
FCFS queue (named entry in ANSAware/RT). The AW nucleus scheduler
assigns free tasks to execute queued threads. The scheduler is non-preemptive
and is only entered when the current thread/task blocks or terminates. If a
thread/task is resumed, the scheduler will return control to it.

AW takes several advantages of the coroutine nature of its tasking package:

= use global, continuous and extensible memory area to store the shared
data structures holding the capsule state. AW increases memory for
shared data structures in a dynamic manner but requires that the
existing memory and the newly allocated memory be contiguous. This
requirement has been achieved by copying the existing data to a new
location where contiguous memory is available.In this way, memory space
is allocated on demand, resulting downsize of AW process

= use global variables to carry context information. The variables that form
the context of an ANSA task are global variables which are shared by all
ANSA tasks. Thus, context information is passed to all the procedures
through global variables. This allows fast inter task context switch and
fast procedure execution (i.e. there is no need to pass context information
through procedure parameters)

= shared data area can be accessed without a synchronization mechanism.
AW task scheduler is non-preemptive, a task, while executing, will not
relinquish control until it blocks or terminates. Therefore, it guarantees
exclusive access of the shared data in a single processor environment, and
there is no need for access protection of shared data.

3.2 ANSAware/RT task

In ANSAware/RT, each task is mapped into a p-thread, and task scheduling is
done by the underlying operating system. All p-thread attributes also apply to
tasks, allowing the exploitation of preemptive real-time scheduling, multiple
scheduling policies, kernel supported synchronization objects, task private

APM.1207.00.08 ANSAware/RT Version 1.0: Programming and System Overview 13
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3.2.1

3.2.2

3.3

data, task exception handling, task synchronous 1/O etc. p-thread features.
The original AW task schedule was made redundant.

Global data protection

Because of the real concurrencyland preemptive nature of the p-thread
system, synchronisation is needed to ensure the safe access to shared data. A
pessimistic synchronisation approach is taken: all data structures are
protected by a single lock. To perform any ANSAware/RT operation, a task
must first acquire the lock, then operate on the shared data, and finally
release the lock when finished.

Thread private state

Each thread has a few private state variables, such as exception_code
exception_state, memory_list etc. These thread private state variables are
stored in the global data area in AW. Thread private state are used frequently
in both application program and AW operations.

In ANSAware/RT, global data area needs to be protected by a synchronization
mechanism. Therefore, the AW thread private data may introduce a
significant performance overhead if no change to AW is made.

The solution adopted is to use p-thread per-thread state to store AW thread

private state (rather than using the global area). Such state information can
then be accessed by using of the pthread_getspecific procedure without a
synchronization operation.

The thread private state are actually part of a task private data area. When a
task is crated, it allocates a private state area as p-thread per-thread data,
and part of this area is used as thread private state when the task is executing
a thread.

Stackable task

3.4

AW tasks are non-stackable: a task will not execute another thread before it
finishes the current one.

ANSAware/RT introduces the dynamic rendezvous mechanism: a thread may
rendezvous with another thread while execution. The required extensions are
to allow a task to execute another thread when it is executing a thread.

This stackable task mechanism is implemented by pushing the thread private
state area into the task’s stack before executing the new thread (so that the
new thread still can use the same task private data as its thread private
state), and restore the thread private state from stack when the new thread
finishes.

Thread

Threads are created in two cases: (1) an application may create new threads
for additional concurrency; (2) a communication task may create one
additional thread for each RPC request from a client. In AW, a new thread is

1. p-threads can be executed in parallel, for example, in a multiprocessor
environment.

14
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3.5

queued on the capsule-wide FCFS thread queue, waiting to be executed by a
free ANSA system task.

In ANSAware/RT, a new thread is queued on an entry instead of the capsule
FCFS queue.In case (1), the application gives an additional entry argument
when a new thread is created. In case (2), the binding between an interface
and an entry determines on which entry the new thread should be queued.

Entry

3.6

Each entry is associated with a thread queue and a thread queuing policy.

Figure 3.1: Thread scheduling: policies and mechanisms

| Fcrs] [P | [pB | [ PoB | [ DPB | scheduling policies

thread scheduling mechanisms

Y

O 0O O O
O :thread

Policy/mechanism separation is used for efficient coding. A common set of
thread queuing/dequeuing mechanisms is provided, and on top of the
mechanisms a set of scheduling policy objects are placed. Figure 3.1 illustrates
such a design.

Each entry is also associated with a rendezvous policy. Each such policy
provides two functions: rendezvous_inheritance and
rendezvous_deinheritance . The rendezvous_inheritance function is
executed before a task executes a thread so that the task can take the thread
scheduling parameters into consideration. For example, it allows the task to
inherit the thread’s priority. The rendezvous_deinheritance function is
executed after a task finishes the execution of a thread to eliminate any
scheduling effect on the task caused by the rendezvous_inheritance

function.

Synchronous I/O

AW assumes a totally asynchronous 1/0O model because

= it allows the tight combination of communication scheduler and task
scheduler for efficient AW activity scheduling

= it prevents a capsule from blocking because of an otherwise synchronous I/
O operation.

The asynchronous I/O approach separates out the indication that data is
available from the actual reading of the data.
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3.7

The asynchronous 1/0O model in AW is supported by

< apin(3) programming interface. An application can register an interrupt
handler to be invoked when input occurs on a pin and that handler is then
able to spawn a thread to read any input data

< anon-blocking keyboard input library
« alibrary for supporting X11 applications.

With p-thread implementation of the tasking system, the asynchronous 1/O
model is no longer necessary because

« task scheduling is done by OS, there is no tight integration of tasking
scheduling and communication scheduling

= acapsule will not block when a thread is doing a synchronous 1/0.

In other words, ANSAware/RT does not need to assume the asynchronous 1/0
model, and a complete synchronous 1/0 model is more natural and easy to
programming. Therefore, ANSAware/RT removes the pin interface, the non-
blocking keyboard input library and the X11 library, and assumes the
application programmer will access the equivalent synchronous 1/O operations
supported by the p-thread package.

Communication tasks and system tasks

Dedicated communication tasks are spawned to process incoming messages
and the corresponding protocol by using of synchronous 1/O operations. For
each MPS endpoint (a socket), a task is spawned for handling messages from
the endpoint. The communication task generates a thread corresponding to
each invocation request. The thread is queued on an entry to which the called
interface is bound. In this vein, the communication task is actually both a
thread generator and a thread scheduler. The threads are executed by system
tasks of an entry which are allocated by an application or the capsule. The
scenario is shown in Figure 3.2.

Figure 3.2: Communication tasks and system tasks
e QO QO O

Entries and threads

MPS communication tasks

Network

When a thread makes a synchronous invocation to a server, it blocks at a
condition variable which is defined on a task’s private data area. When a reply
is back and processed by a communication task, the condition variable is
signalled and therefore the calling thread is woken up.

16
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3.8 Others

A timer task is spawned to process timing functions in the AW Timer Modular.

A signal task is spawned to process asynchronous interrupts (such as control-
C).

The organization and user interface of the timer task and signal task is
similar to the one provided by [APM.TR.037].
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4 Communication

4.1 AW communication system

AW communication system implements four protocol layers:

= MPS: an interface to the transport protocols provided by the underlying
operating system

< EX: implements the invocation of ANSA operations. AW 4.1 supports the
REX for point to point invocations and GEX for group invocations

< Channels/sessions: used to store the end-to-end state required for a
remote invocation and to synchronise the execution of the tasking and the
communication systems

= Stubs: marshal host language level variables into (and out of) linear
communications buffers.

AW communication design is for efficient resource utilization by multiplexing
the channels provided by each of these between those of the next layer.

Real-time communication is not a concern of current AW.

41.1 Interface reference

An interface reference (ifref) contains sufficient information to allow the
holder (client) to establish communication with the interface denoted (server).
An interface reference has a set of address records, each of which in turn
consists a channel id and the network address of the underlying MPS.

412 MPS

The MPS interface is stateless and defines an unreliable datagram service.
There is no mechanism for QoS based selection/setup of a MPS module. High-
level protocols multiplex MPS endpoint whenever possible (in a capsule wide
basis).

413 EX

The EX interface is also stateless and there is also no mechanism for QoS
based selection/setup of a EX module.

REX is designed for asynchronous communication optimized for either low-
latency or high throughput. REX provides a rate-based transportation service.
The execution reliability semantics of REX calls are exactly-once in the
absence of total communication failure.

4.1.4 Channel and session

Channels (i.e. sockets and plugs) are used to store static communication
information; sessions duplicate channel state and store additional dynamic
information for each invocation.
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4.1.5

4.2

There is an one-to-one correspondence between channels and ifrefs. Clients
send/receive invocation requests/replies through plugs. Servers receive/
transmit invocation requests/replies over sockets. The channel id provides an
extra layer of demultiplexing on top of the MPS address, so that the capsule
can locate the right dispatcher for an specific interface.

There is no interaction between the channel and MPS modules when channels
are created and destroyed; the two are independent of each other.

Bindings

A service provider fabricates an ifref by an interface creation operation. A
client holding the ifref must then bind to the service in order to communicate
with it.

The ifref is created by an implicit binding operation at the server side. The
binding operation allocates a socket and concatenates it with the default
communication addresses (address hint) supported by all MPSes in the server
to form the interface reference.

Client side binding (the creation of a plug) is performed the first invocation of
a service; the first invocation is detected by the absence of the ifref from the
ifref to plug cache. Removing an ifref from the cache will force a rebinding.

The cache provides a mapping from an ifref to a plug. The bind operation
which allocates a new plug also adds the plug to the cache.

At no stage is there any interaction between the binding process and the EX
and MPS modules; it is assumed that all communications between channels is
multiplexed over a single MPS address with in a capsule.

QoS and explicit binding

QoS objects are introduced to express different communication requirement
and are used by explicit binding operations to create different communication
channels.

When creating a service instance, a QoS object is allowed to be associated with
the interface creation operation. The operation uses an explicit binding
operation to fabricate the resulting ifref The explicit binding operation calls
the corresponding explicit binding operations in each protocol layer (EX and
MPS). The binding operation at each protocol layer interprets the relevant
QoS attributes, sets up the protocol related binding states, and returns a
result that may be used to build the ifref as the result.

In comparison with the implicit binding, the ifref created by an explicit
binding contains only these information deduced from the QoS, rather than
the default information that provides the maximum communicability and also
the maximum multiplexing.

Client side explicit binding is performed by an explicit binding operation,
which is also associated with a QoS object. The binding operation, like the
server side explicit binding operation, calls the explicit binding operations at
each protocol layer with the ifref and the QoS object as arguments. The
explicit binding operation at each protocol layer executes a complimentary
operation to the relevant QoS and the ifref to create the client site binding.
The binding operation creates a plug and adds it in the plug cache, so that
later calls on the interface are guaranteed an established channel.

20
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4.3 Stateful MPS

The MPS interface is extended to be stateful: it supports a connection-
oriented communication paradigm. The connection is encapsulated as binding
informations of a channel. Each channel is associated with a binding data
structure which represents end-to-end state establishment with some known
channel-specify properties (deduced from a QoS object).

The MPS interface is extended with three operations: server explicit binding
operation, client explicit binding operation and binding release operation. The
original message send and receive operations are also extended to make use of
the binding informations.

A default binding is established at MPS initialisation time to be used as the
default communication channel for the implicitly bound interfaces.

4.4 Stateful EX

EX is modified to use the stateful MPS, and itself is redesigned to state-full as
well. This allows the addition of extra binding information to the binding
created by MPS to include EX dependent data and state. For example, the
binding contains extra information about the header size of an EX protocol
which can be used by MPS to fetch the correct EX-dependent packet headers.

The EX interface is extended with three operations: server explicit binding
operation, client explicit binding operation and binding release operation. The
original message send and receive operations are also extended to make use of
the binding informations.

45 TREX

The generic design of the binding and state-full protocols allows the insertion
of new EX protocols. The timed REX (TREX [APM.1222]) is implemented as
one example.

TREX is a cut-down version of REX as follows:

< no fragmentation, this has significantly reduced the size of the protocol
= at-most-once semantics, no timeout controlled retry

= no security check, no passing and checking of nonce

< small header size, the result of the above three design choices

TREX also extends REX in the following aspects:

= the header of packages is expanded to include the information about the
priority, deadline and deadline type

« extended session functions to process timeout at client side and deadline
expires at server side

= extra message types for handling deadline exception and confirmation.

TREX supports only explicit binding operations, i.e. interfaces created by
implicit binding operations will not be able to use TREX.
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4.6

In-band QoS

4.7

In-band QoS is allowed to be associated with each invocation to select the
dynamic QoS parameters of a channel. Currently, if a channel uses TREX as
its EX, the in-band QoS can select a priority, a timeout, a deadline and a
deadline type.

Session overridden

4.8

Timeout at client sides are a mixed blessing: the desired semantics of a
timeout is when it expires the client should resume control (so that the client
can take some immediate recovery actions). However, the operation is still
carried on at the server side and an extra packet exchange is required to
synchronise the client and server sessions. If the packet exchange takes place
at the timeout expiry time, the extra overhead of synchronisation may lead to
uncertain timeout semantics. Therefore, an alternative approach is pursued.

Figure 4.1: Session timeout recovery
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|
Mequest /reply
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A. Later client/server session synchronization

time

timeout
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\‘request \‘request /eply
server -
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The ANSAware/RT approach for session timeout recovery is illustrated in
Figure 4.1. With this approach, the client continues immediately after the
timeout, and the client session is set to idle. No synchronisation packet
exchange is initiated by the client. It allows the existence of inconsistency
between a client session and its server side session. Should the server returns
an obsolete result later, synchronisation of the client and server sessions are
taken then. The approach also allows the server side session to be aware that
its client side may timeout, and the client side session may be used for another
invocation. A possible effect (caused by the ANSAware approach to session
management) is that a later invocation from the same client side session may
override a server side session representing an obsolete invocation.

Others

REX is adjusted to make its QoS support explicit, which includes the retry
number and timeout value.

22
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5 Performance results

Two sets of performance measurements have been taken: the basic
performance for simple RPC calls and the synthetic performance for the
integrated effect of real-time scheduling and communication.

5.1 Basic performance

Figure 5.1 shows the performance of ANSAware/RT by using REX and TREX
as two transportation protocols. For comparison, the AW.4.1 performance
(without using kernel p-threads) is also given in the figure. All experiments
were run between lightly loaded DEC Alpha 3000/300 workstations connected
by 10 Mbps Ethernet. All measurements are for an echo operation which sends
and receives n bytes of data.

Figure 5.1: Basic RPC performance
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The performance improvement of ANSAware/RT over AW.4.1 seems because

= synchronous I/O operations are more efficient than asynchronous 1/0
operations

= ANSAware/RT fixed a few memory management bugs of AW.4.1
The performance improvement of TREX over REX seems because
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5.2

e TREX uses light weight mechanisms
e TREX uses shorter packet headers

Distributed hartstone performance

5.21

There are several standard synthetic benchmarks for real-time computing
systems, including Hartstone Benchmark (HB) [Weiderman89], Distributed
Hartstone Benchmark (DHB) [Mercer90] and Hartstone Distributed
Benchmark (HDB) [Kamenoff91]. The HB is a set of timing requirements for
testing a system’s ability to handle hard real-time applications. It is specified
as a set of tasks with well-defined workload and timing constraints. It is a
benchmark for single processor machines. The DHB and HDB are both
extensions of HB for distributed real-time systems. They are designed to give
figures of merit for the complex end-to-end scheduling and timing behaviour of
the system. In comparison, the HDB gives a broader definition and merit of
real-time distributed systems’ behaviour, while the DHB has a concrete
definition of the series of tests.

DHB was chosen to measure and evaluate ANSAware/RT real-time
performance. The intention of DHB is to measure the real-time performance of
the processor scheduling, the communication network scheduling and the
coordination between these scheduling domains. It is argued that since more
sophisticated scheduling algorithms may require more overhead for low-level
operations, a system which offers better schedulability for its applications and
thus better overall performance may not have the best times for low-level
operations. A system which is leaner and faster in terms of low-level
operations may not be capable of scheduling a task set to meet all of its
deadlines. DHB is thus designed to factor all of these attributes into the
overall evaluation of a system.

DHB defines five sets of experiments. They are DSHcl, DSHpq, DSNpp,
DSHcb and DSHmc series. The DSHmc series is intended to stress the media
contention algorithm. This series is not applicable to our environment (the
Ethernet hardware has no support of prioritised packets), and therefore is not
described below.

Communication latency

The DSHcl series is a Distributed, Synchronized, and Harmonic task set
which tests the communication latency of the system. The base task set is
patterned after the periodic, harmonic task set in the original Hartstone
benchmark. The task set is extended to have a remote server, and each of the
tasks T1,..., T5 sends a request to the server before consuming its own
computation time. Figure 5.2 shows the structure of the DSHcl series task set.
Table 5.1 gives the timing requirements of the DSHcl series baseline test task
set.

The computation time of the server is increased in milliseconds to gradually
squeeze the tasks until the size of the server combined with the time the
request message is in transit causes deadlines to be missed.

The task workload is expressed in Kilo-Whetstone (KWS). The Whetstone
calculation is the self-verifying version specified by [Curnow76]. A KWS is one
execution of a mathematical library, which factors out the effect of a typical
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Figure 5.2: Five clients with a single server
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arithmetic computing. A task is required to execute a specific amount of KWS
within its period.

Table 5.1: DSHcl series task set

Task workload (KWS) Period (ms)
T1 1 80
T2 1 160
T3 2 320
T4 2 640
T5 8 1280
T server variable (ms) N/A

5.2.2 Priority queuing

The DSHpq series task set is a Distributed, Synchronized, and Harmonic task
set designed to test for priority queuing of communication packets. The base
task set is patterned after the DSHcl series. It is quite similar to the DSHcl
except for the difference in granularity. The fine-grained DSHcl uses shorter
periods for the tasks and milliseconds to measure the server workload. The
coarse-grained DSHpq uses longer periods for the tasks and KWS to measure
server workload. Table 5.2 gives the timing requirements of the DSHpq series
baseline test task set.

Table 5.2: DSHpq series task set

Task workload (KWS) Period (ms)
T1 1 160
T2 1 320
T3 2 640
T4 2 1280
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Table 5.2: DSHpq series task set

Task workload (KWS) Period (ms)
T5 8 2560
T server variable (KWS) N/A

5.2.3 Protocol preemptivity

The DSNpp series task set is a Distributed, Synchronized, and Non-harmonic
task set designed to test the degree of preemptability of the protocol engines.
The base task set is patterned after the periodic, non-harmonic task set in the
Hartstone benchmark. The base task set contains two remote servers; the high
priority server can preempt the low priority server. The client task set is
composed of one high priority (high frequency) task and a variable number of
low priority (low frequency) tasks. The high priority task T1 sends a request to
the high priority server at the beginning of its period. Each of the low priority
tasks T2,..., Tn sends a request to the low priority server at the beginning of
its period and before consuming its own computation time. The number of low
frequency tasks is increased gradually until the first deadline is missed.

Figure 5.3: N clients with multiple servers
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Figure 5.3 shows the structure of the DSNpp series task set. Table 5.3 gives
the timing requirements of the baseline test task set.

Table 5.3: DSHpp series task set

Task workload (KWS) Period (ms) Priority
T1 1 50 high
T2 1 5120 low
1 5120 low
Tn 1 5120 low
HI server 0 N/A high
LO server 0 N/A low
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5.2.4 Communication bandwidth

The DSHcb series task set is a Distributed, Synchronized, and Harmonic task
set which tests the communication bandwidth. The task set contains a remote
server that consumes no computation time. Client tasks T1,..., Tn send
requests to the server at the beginning of their periods and they consume no
computation time. The number of high priority tasks is increased, which
increases the load on the communication subsystem, until the first deadline is
missed.

Table 5.4: DSHcb series task set

Task workload (KWS) Period (ms) Priority
T1 0 80 high
T2 0 80 high
0 80 high
Tn-4 0 80 high
Tn-3 0 160 high-1
Tn-2 0 320 high-2
Tn-1 0 640 high-3
Tn 0 1280 high-4
T server 0 N/A N/A

Figure 5.4: N clients with a single server
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Figure 5.4 shows the structure of the DSHcb series task set. Table 5.4 gives
the timing requirements of the baseline test task set.

5.2.5 Result

The benchmark results of the ANSAware/RT system over the OSF/1 kernel are
presented in Table 5.5. The ANSAware/RT performance was measured using
two DEC Alpha 3000/300 machines connected by the 10 Mbps Ethernet.
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Table 5.5: ANSAware/RT vs ARTS and RIDE performance
Series ARTS RIDE ANSAware/RT
(Sun 3/140) (DEC Firefly) | (DEC Alpha 3000/300)
DSHcl 35ms 26 ms 41 ms
DSHpq 18 KWS 16 KWS 2010 KWS
DSHpp (13) 20 tasks |18 tasks 105 tasks
DSHcb 14 tasks 15 tasks 23 tasks

To make a comparison, the relevant performance of the ARTS distributed real-
time operating system and an earlier implementation of the ANSAware 3.0
based real-time system RIDE [Li93] are also given in the table.

There comes no surprise to see ANSAware/RT performs much better than the
kernelized ARTS system, which reflects the combination effects of the
superiority of a commercial real-time operating system, a much powerful
processor and a carefully tuned mechanisms based on the practical experience

of RIDE.
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6 Availability

6.1

ANSAware/RT 1.0 is currently implemented over the DEC Alpha OSF 1
environment.

Source tree is available via contacting apm@ansa.co.uk. It uses the same
installation and system build procedure as AW 4.1.

ANSAware/RT 1.0 has full interoperability with AW 4.1.

Compatibility

Two changes need to be made to run ANSAware 4.1 applications over
ANSAware/RT.

First, ANSAware/RT dose not support the asynchronous 1/0O operations of AW
4.1, this requires an application to change the operations to the equivalent
synchronous ones.

Second, the PREPC qos parameter in an object invocation statement is used in
AW 4.1 just for controlling REX retry numbers, while in ANSAware/RT it has
a more general rule, and itself is a control record.
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7 Appendix A: ANSAware/RT on HP/RT

ANSAware/RT 1.0 was ported to HP/RT 1.1 to examine the portability of the
system.

7.1 System environment

The system environment used for the porting consisted of a collection of HP
workstations (as hosts) and target machines, all connected by a 10 Mbps
Ethernet, at the BNR Harlow research centre. The workstations are HP 700
series machines running HP/UX 9.0, providing the tools and basic services for
development. The targets are HP 700 machines running the HP/RT 1.1 real-
time operating system, on which experimentation and evaluation were carried
out.

7.2 Porting

The ANSAware 4.1.1 were first installed on the workstations to provide the
trading service.

Separate system building procedures were used to create the tools (prepc and
stubs) at the hosts first, and then to use them to compile target programs
later. This is necessary because the tools and target programs use different
compilers and different libraries.

The biggest problems were HP/RT'’s partial compliance with the POSIX real-
time thread standard. For example HP/RT 1.1 has no support for thread-based
exception handling, which makes thread releasing difficult. Various HP/RT
dependent codes are used to replace the otherwise much more neat POSIX
accepting codes.

The overall effort of the porting and performance measurement was 7.5 days.

7.3 Performance

The basic performance is shown in Figure 7.1. The Distributed Hartstone
performance is shown in Table 7.1.

Table 7.1: ANSAware/RT on HP/RT performance

Series ARTS ANSAware/RT ANSAware/RT
(Sun 3/140) (HP 700) (DEC Alpha 3000/300)
DSHcl 35 ms 36 ms 41 ms
DSHpq 18 KWS 725 KWS 2010 KWS
DSHpp (13) 20 tasks |15 tasks 105 tasks
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Table 7.1: ANSAware/RT on HP/RT performance

Series ARTS ANSAware/RT ANSAware/RT
(Sun 3/140) (HP 700) (DEC Alpha 3000/300)
DSHcb 14 tasks 23 tasks 23 tasks
Figure 7.1: HP/RT Basic RPC performance
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The basic performance shows that HP 700 HP/RT’s communication
performance is better than that of the DEC Alpha OSF1 3000/300's.

The DSHcl performance shows that ANSAware/RT(HP 700) is better than
ARTS in real-time communication latency, but less efficient than ANSAware/
RT(Alpha 3000/300).

The DSHpq performance shows that ANSAware/RT(HP 700) is better than
ARTS in priority queuing of messages, but less capable than ANSAware/
RT(Alpha 3000/300). This reflects the differences of processor power of the
three systems.

The DSHpp performance shows that ANSAware/RT(HP 700) is about the same
as ARTS in handling protocol preemption, but less effective than ANSAware/
RT(Alpha 3000/300). This might suggest that HP/RT’s thread preemptivity
has some potential to improve.

The DSHcb performance shows that ANSAware/RT(HP 700) is better than
ARTS in providing real-time communication bandwidth, and is about the
same as ANSAware/RT(Alpha 3000/300). This is in consistent with the basic
performance result: even through HP 700's processor is less powerful than
that of Alpha 3000/300, its communication performance is better than the
later.
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Appendix B: ANSAware/RT on LynxOS

8.1

ANSAware/RT 1.0 was ported to LynxOS to examine the portability of the
system and interoperability of different real-time platforms by using of
ANSAware/RT.

System environment

8.2

The system environment used for the porting consistsedof a group of UNIX
workstations and a LynxOS machine, all connected by a 10 Mbps Ethernet at
APM. The workstations are DEC Alpha 3000/300 series machines running
OSF/1 1.3, providing the basic services for development. The LynxOS machine
runs LynxOS 2.2 and has a 80486 processor.

Porting

8.3

ANSAware 4.1 was first installed and ported to the LynxOS to provide the
installation and system building tools for ANSAware/RT.

The major issues that arose during porting were:

= LynxOS doesn’t provide the standard UNIX interfaces as assumed by the
ANSAware installation and system build scripts

e The ANSAware standard marshalling library for 80486 machines doesn't
work for LynxOS

e LynxOS library maintainer (ar ) and link editor (Id ) have unnecessary
constraints on the C main procedure

e LynxOS timer system calls have bugs
e LynxOS p-threads has no support for thread-based exception handling

The overall effort of the porting and performance measurement was two
people for ten days.

Performance

The basic performance is shown in Figure 8.1, this shows only the “loopback”
RPC performance of LynxOS.

The Distributed Hartstone performance is shown in Table 8.1. This
performance measurement is done by using a Alpha 3000/300 as a server
machine and the LynxOS machine as a client machine. It demonstrates the
interoperability of different real-time platforms using ANSAware/RT. No
changes were made to ANSAware/RT, because the ANSAware/RT priority and
deadline programming model has been carefully designed to overcome
interoperability problems between p-thread systems. For example, the
minimum scheduling priority of the LynxOS real-time scheduler is 0, while it
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Appendix B: ANSAware/RT on LynxOS

is 16 for the Alpha OSF/1. Minor changes have been made to the Distributed
Hartstone package to explicit use this ANSAware/RT feature.

Table 8.1: ANSAware/RT on LynxOS performance

Series ARTS ANSAware/RT/LynxOS ANSAware/RT/Alpha
(Sun 3/140) (80486 and Alpha 3000/300) (Alpha 3000/300)
DSHcl 35ms 41 ms 41 ms
DSHpq 18 KWS 1376 KWS 2010 KWS
DSHpp (13) 20 tasks |57 tasks 105 tasks
DSHchb 14 tasks 24 tasks 23 tasks

Figure 8.1: LynxOS (80486) Basic RPC performance (same machine)
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The Distributed Hartstone performance shows the combined performance of a
LynxOS 80486 and an OSF/1 DEC Alpha 3000/300 is about the same as that of
two OSF/1 DEC Alpha 3000/300 machines in communication latency and
communication bandwidth tests. In the priority queuing and protocol
preemption tests, the LynxOS/Alpha performance is in between the OSF/1

Alpha performance and ARTS Sun 3/140 performance.

8.4

Acknowledgement

The LynxOS port is done jointly by the author and Malcolm W. Vanston-
Rummey of GPT Ltd. The LynxOS machine was provided by GPT Ltd.
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