
Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1295.00.06 Draft 16th May 1995

Request for Comments (confidential to ANSA consortium for 2 years)

An Overview of the Distributed Interactive
Multimedia Architecture

Guangxing Li , Andrew Herbert, Dave Otway

Abstract

This is a high-level design and overview of the distributed interactive multimedia architecture
(DIMMA) to be developed in workpackages C2, C3 and C4 of the ANSA 1994 - 1996 workplan
[APM.1275].

An Overview of the Distributed Interactive Multimedia Architec-
ture

An Overview of the Distributed Interactive Multimedia Architec-
ture

Guangxing Li , Andrew Herbert, Dave Otway

APM.1295.00.06

16th May 1995

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by Architecture Projects Management Limited on behalf of the companies
sponsoring the ANSA Workprogramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

Architecture Projects Management Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 0RD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

Architecture Projects Management Limited takes no responsibility for the con-
sequences of errors or omissions in this Report, nor for any damages resulting
from the application of the ideas expressed herein.

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture i

Contents

1 1 Introduction
1 1.1 Overview
1 1.2 Audience
1 1.3 Document organization

2 2 Objectives
2 2.1 Business case
2 2.1.1 Drivers
2 2.1.2 Challenges
2 2.2 Scope
3 2.3 Goals
4 2.3.1 Architecture
4 2.3.2 Programming model
4 2.3.3 Engineering model
5 2.3.4 Implementation
5 2.4 Deliverables

6 3 Programming Model
6 3.1 Plan
6 3.1.1 A: logical programming model
7 3.1.2 B: CORBA implementation
7 3.1.3 C: CORBA extension
7 3.2 Components
7 3.2.1 PL and C++
7 3.2.2 PL tools
7 3.2.3 Runtime
7 3.2.4 CORBA and C++
8 3.2.5 CORBA IDL extension
8 3.2.6 CORBA C++ tools extension
8 3.3 Documentation

9 4 Engineering Model
9 4.1 Plan
9 4.2 Major components
9 4.2.1 Stubs
9 4.2.2 Runtime
9 4.2.3 Channels

10 4.2.4 Sessions
10 4.2.5 Generic communication stack
10 4.2.6 Execution protocols
11 4.2.7 Message passing service
11 4.2.8 QoS mapper
11 4.2.9 Implicit binder

Contents ANSA Phase III

ii An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

11 4.2.10 Explicit binders
11 4.2.11 Threads
11 4.2.12 Tasks
11 4.2.13 Entries
11 4.2.14 Buffers
11 4.2.15 Scheduler
12 4.2.16 Events handler
12 4.3 Documentation

13 5 Issues
13 5.1 Ordering
13 5.2 DII
13 5.3 Programming language
13 5.4 Trader
13 5.5 GEX
13 5.6 Interoperation
14 5.7 Other services and tools
14 5.8 Coding standards
14 5.9 Documentation standard
14 5.10 System building
14 5.11 Source control standard
14 5.12 Synchronization: fine grained or not
14 5.13 Memory management scheme
14 5.14 What QoS domains to start with
14 5.15 QoS statements processing
14 5.16 A binding framework for the TINA-C connection management

15 6 Diary
15 6.1 Progress to 9 November 1994
15 6.2 Progress to 31 December 1994
15 6.3 Progress to 31 January 1995
16 6.4 Progress to 30 April 1995

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 1

1 Introduction

1.1 Overview

This document outlines the design and implementation of a Distributed
Interactive Multimedia Architecture (DIMMA) to be developed in
workpackage C2, C3 and C4 of the ANSA 1994 - 6 workplan [APM.1275].

This is a project management document. It is updated fortnightly to monitor
progress.

1.2 Audience

This document should be read by ANSA team members who are intending to
work on the detailed design and implementation of the DIMMA.

The document will also be used to coordinate with other workpackages within
the team and to enable progress monitoring by sponsors.

1.3 Document organization

The document is structured as follows:

Chapter 2 identifies the major objectives and goals for the architecture.

Chapter 3 outlines the major components of the DIMMA programming model
and a plan for their development.

Chapter 4 outlines the major components of the DIMMA engineering model
and a plan for their development.

Chapter 5 is an issues list, updated as the work proceeds.

Chapter 6 serves as a diary to log major technical decisions and results.

Objectives ANSA Phase III

2 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

2 Objectives

2.1 Business case

2.1.1 Drivers

A market for interactive, wide area access to multi-media information and
services is being created by technological developments including

• public access to networked informations services, and electronic commerce
via “the information superhighway”

• the increasing use of multi-media presentation and interaction in
education, training, entertainment and games

• the deployment of broadband communication networks, leading to
increasing bandwidth into the office and home

• the use of open systems technology and networking in embedded systems
(e.g., telecommunications, consumer electronics and manufacturing
automation)

• the development of broadband network interfaces to personal computers,
workstations and servers enabling them to support distributed multi-
media interactive services.

2.1.2 Challenges

Software is lagging behind the development of basic technology and will
hinder widespread exploitation of the drivers until

• dynamic approaches to configuration and management of information and
information services replace current static, pre-planned, over managed
approaches

• transparent interworking is possible between the different distribution
platforms used for the desktop (e.g. OLE 2, CAIRO), on workstations (e.g.
CORBA), on servers (e.g. DCE) and in information networking (e.g. INA).

• it is possible for a computer to interact with other computers via
broadband communication networks (both wide area and local area) to set
up service-oriented interactive sessions (e.g., for computer supported
cooperative working, multi-party commercial transactions)

• it is possible for applications to coordinate different media flows across the
network and local processing resources to meet users’ quality of service
expectations.

2.2 Scope

[This section is taken from [APM.1275]]

ANSA Phase III Objectives

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 3

The DIMMA addresses service management, services binding and services
Quality of Service (QoS) management at a level of abstraction consistent with
the application programming interfaces found in current distributed object
computing systems such as ANSAware, Microsoft’s OLE 2, OMG’s CORBA
standard and Bellcore’s INA.

DIMMA will cover

• the extensions that are needed to current distributed computing object
models (e.g. stream interfaces), and their manifestation in applications
programming systems

• the additions and extensions that are needed to supporting services for
distributed services management (e.g. explicit binding operations)

• the extensions needed to current distributed object computing
infrastructures to enable interworking between them (e.g. support for
multi-protocol ORBs)

• the extensions needed to current distributed object computing
infrastructures to enable fine grained control and monitoring of resources
to give integrity to quality of service guarantees

• the extensions needed to support services for distributed services
management and fine grained control and monitoring of resources in an
overall distributed system.

The work will use the ODP object model, and the work to date in ANSA on
real-time and multimedia computing, quality of service management and
performance management as a baseline.

The planned work will

• detail and animate the architecture outlined above

• develop prototype technology that shows what has to be added to current
distributed object computing systems to meet the above requirements

• identify strategies for enhancing the manageability, performance and
predictability of current distributed object systems and their supporting
operating systems.

We plan an incremental stream of architecture and prototype technology
primarily directed at sponsors’ broadband interactive multi-media
development projects.

The planned work consists of two areas: a programming model (PM) and an
engineering model (EM). The PM provides a clean high level interface for the
application programmer to use the DIMMA. The EM provides the mechanisms
that enable the execution of the distributed services specified by the PM.

2.3 Goals

The DIMMA design and implementation allows a complete evaluation and
validation of the progress made so far in ANSA Phase 3 performance
architecture work [APM.1108], [APM.1151], [APM.1239] and [APM.1222].

Delivery of an integrated prototype confirming the architecture will be of
significant and timely benefits to ANSA sponsors.

Objectives ANSA Phase III

4 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

2.3.1 Architecture

• follow ANSA principles

• maximum compatibility with RM-ODP

• maximum alignment with CORBA

• clear separation of programming model from engineering model.

2.3.2 Programming model

• extend ANSA Computational Model

— provide a computationally complete set of constructs for the full and
efficient support of distribution

— strong type checking

— high level abstraction of engineering details

— enable local optimization

• access and location transparency

• explicit and implicit binding

• synchronous and asynchronous computing

• operational interfaces and stream/signal interfaces

• selective resource transparency

— controlled scheduling

— controlled communication multiplexing

• declarative specification of QoS directives

2.3.3 Engineering model

• generic framework (interface) enabling different implementations and
implementation tradeoffs are possible

— modular - easy to replace alternative components

— extensible - easy to add extended functionality

— scale up (for large applications of many clients and servers) and scale
down (for embedded applications which have limited resources)

• scalable and resource-efficient implicit binding

• QoS driven explicit binding

• generic communication architecture for multiple protocol stacks,
addressing schemes and communication models

• different execution protocols for different style of object interactions

• generic QoS specification, conformance check, negotiation and monitoring

• resource separation and independent scheduling

• both real-time and time-sharing scheduling

• allow to map onto any suitable real-time and multimedia technology

• end-to-end communications management

• maintain only minimum functionality to enhance system portability and
applicability

ANSA Phase III Objectives

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 5

• open to alternative APIs (e.g. specialized languages, preprocessor, library,
CORBA etc.)

2.3.4 Implementation

• maintainable - a common coding/documentation standard

• using object-oriented design and particularly C++ language for
programming

• maximum reuse of CORBA implementation(s)

• maximum reuse of ANSAware

• good raw performance

• use industry standards wherever possible (CORBA, POSIX, ANSI, ITU
etc.)

2.4 Deliverables

The deliverables from DIMMA are

• architecture summary technical reports

• consultancy

• prototype software

• illustrative working examples.

The work will also generate

• inputs to CORBA evolution

• defect reports to RM-ODP

• baseline for future ODP component standards

Programming Model ANSA Phase III

6 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

3 Programming Model

The programming model provides a clean high level interface for the
applications programmer to use the DIMMA.

3.1 Plan

The PM work can be divided into three aspects as shown in figure 3.1.

3.1.1 A: logical programming model

See box A in figure 3.1. This work provides a full and consistent coverage of
the real-time and multimedia computing using ODP/ANSA architecture as the
baseline. It has three parts:

• functional design: understand the required functionality in terms of
abstractions and structures. To achieve a high-level view, a pseudo
language (named PL tentatively, embedded in C++) will be used to write
demonstration applications for future elaboration and evaluation of the
design choices.

• runtime design: understand the “templates” or runtime classes necessary
to support the execution of the functional design. This can be used as a
requirement specification for the engineering model.

• implementation: provide compile, check and link tools, e.g. an Abstract
Syntax Tree (AST) constructor, type checker, PL preprocessor, the runtime
C++ library etc.

Figure 3.1: Aspects of the Programming Model

Real-Time and Multimedia Nucleus

DIMMA runtime

PL/C++ tools

PL/C++ app

extended CORBA

extended CORBA

extended CORBA

CORBA runtime

CORBA IDL/C++

CORBA app

tools

app

IDL/C++ tools

runtime

A BC

ANSA Phase III Programming Model

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 7

3.1.2 B: CORBA implementation

See box B in figure 3.1. This work provides a full implementation of CORBA/
C++ based on our real-time and multimedia nucleus to enable interworking
between DIMMA and CORBA. It doesn’t address real-time and multimedia
issues, but rather provides the basis for the box C work. It has two parts:

• IDL/C++ tools: the CORBA IDL compiler and other CORBA ORB services
(e.g. the interface repository and the implementation repository etc.)

• CORBA runtime.

Collaborations with one or more CORBA vendor sponsors are required to
avoid “reinventing the wheel”.

3.1.3 C: CORBA extension

See box C in figure 3.1. This work integrates the work A and B to extend
CORBA/C++ with DIMMA concepts and appropriate technology for real-time
and multimedia applications. It has three parts:

• IDL extension

• runtime extension

• tools extension

3.2 Components

3.2.1 PL and C++

PL, a pseudo language, is introduced to provide a complete and convenient tool
set implementing the ANSA/ODP Computational Model and its extensions for
multimedia and real-time processing.

Design should be done in language syntax similar to C++ by providing
additional keywords to C++ that allow for the creation of objects, interfaces,
operations, stream/signal interfaces, stream operations, explicit binding
operations, QoS processing, synchronous computing and real-time
programming.

3.2.2 PL tools

An AST will be used to represent PL language level information to allow tools
to be re-used across input notations and native targets. An interface type
checker is implemented as such a tool.

The AST work should be an extension of the current AST engineering work

3.2.3 Runtime

The differences between the nucleus and multiple distribution tools requires
that a different adaptation runtime should be used for each distribution tool
set. Three such runtime are required: the DIMMA runtime, CORBA runtime
and the extended CORBA runtime.

3.2.4 CORBA and C++

Porting a CORBA/C++ implementation to the DIMMA nucleus.

Programming Model ANSA Phase III

8 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

3.2.5 CORBA IDL extension

Identification of CORBA IDL extensions for streams, explicit binding, QoS
specification etc. DIMMA features.

3.2.6 CORBA C++ tools extension

Integration of the DIMMA tools with CORBA/C++ tools.

3.3 Documentation

The following documents should be produced:

• DIMMA programming manual

• DIMMA runtime

• DIMMA tools

• CORBA/C++ and DIMMA

Other relevant documents are [APM.1108], [APM.1239], [APM.1222],
[APM.1151] and [APM.TR.031].

ANSA Phase III Engineering Model

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 9

4 Engineering Model

The engineering model provides the mechanisms that enable distributed
services to be provided in heterogeneous environments. It uses resources in a
host computing environment to enable computational objects to be created,
managed and executed.

4.1 Plan

The engineering model work can be divided into the following stages:

• functional design: identify the major engineering objects and their
relations to support the DIMMA runtime

• component specifications: define the C++ classes for the engineering
objects

• implementation.

4.2 Major components

The overall structure of the EM is shown in Figure 4.1.

4.2.1 Stubs

Stubs implement access transparency. Stubs are generated by a stub compiler.
It is still an open issue whether we generate stubs from IDL or directly from
the source.

Apart from the normal stubs for operations, signals/streams need more
thought. Signals differs from operations in several aspects:

• server operations have upcall dispatches, while signals don’t

• operations control the default memory allocation, release for marshalled
parameters, while frames for streams may wish to have direct control of
memory allocations

• signals require different message queuing and handling support than
operations.

If dynamic interface invocation is to be supported, a marshalling interpreter is
needed to support dynamic typed invocations.

4.2.2 Runtime

The runtime provides an interface for application objects to the engineering
Nucleus functions.

4.2.3 Channels

Channels provide engineering endpoints for the interactions between objects.

Engineering Model ANSA Phase III

10 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

A channel provides an abstraction that hides away the details of the
individual communication stacks and their management.

4.2.4 Sessions

Sessions provide the intermediate cache for storing the end-to-end information
for each interaction between objects.

4.2.5 Generic communication stack

A generic communication stack should be designed to

• allow the co-existence of multiple protocol stacks

• define the generic interfaces for message processing

• define the generic interfaces for communication management

• provide the generic interfaces for communication endpoints binding

• support the generic interfaces for QoS domains

4.2.6 Execution protocols

Separate execution protocols are used for

• RPC style interactions

Figure 4.1: Engineering Model Components

Generic Object Runtime

Binders

Activities

Stubs

Application Objects

Buffers

Channels

Sessions

IfRefs

Entries

Threads

Tasks

Scheduler

QoS
Mapper

Protocol Stacks

REX

MPS

TREX

MPS

Stream

Socket

Binding

Operating System Interfaces
POSIX, Nemesis etc. ATM protocols, Sockets etc.

Signal i/f Stream i/f Op i/f

Event
Handler

ANSA Phase III Engineering Model

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 11

• fragmentation

• real-time RPC interactions

• stream transportation

• group interactions

4.2.7 Message passing service

Message passing service (MPS) provide the abstraction hiding away the
detailed communication interfaces such as TCP, UDP, IPC etc.

4.2.8 QoS mapper

QoS mapper interprets QoS parameters associated with binding and interface
instantiation operations, and invokes the relevant binders to associate QoS
with communication endpoints. QoS mapper also provide the generic functions
for QoS conformance check and negotiation.

The mapper for invocation QoS needs more thought. It looks too heavy to
invoke an QoS interpreter for each invocation.

4.2.9 Implicit binder

A binder relates an interface with a channel endpoint before any interaction
can be initiated.

The implicit binder provides the late binding scheme for optimized resource
management and is the key mechanism for system scaling.

4.2.10 Explicit binders

The explicit binder provides the early binding scheme for the association of
QoS with a channel. Different QoS domain and object interaction scheme
requires different explicit binders.

4.2.11 Threads

Threads provide the resources for logical concurrency.

4.2.12 Tasks

Tasks provide the real physical resources for threads to be executed.

4.2.13 Entries

Entries provide scheduling points so that different scheduling concerns can be
identified.

4.2.14 Buffers

Buffers are the managed memory units for messages

4.2.15 Scheduler

A scheduler is needed for task/thread allocation and thread synchronization.
The scheduler is not needed if kernel threads are used for running tasks.

Engineering Model ANSA Phase III

12 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

4.2.16 Events handler

An event handle provides generic service of timing etc.

4.3 Documentation

The EM work will produce the following technical reports:

• DIMMA engineering model

• Component specifications

Other relevant documents are [APM.1207]. [APM.1051] and [APM.101].

ANSA Phase III Issues

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 13

5 Issues

This chapter discusses technical choices that should be made before the
detailed design and implementation start.

5.1 Ordering

Shall we schedule the work top-down (PL design and examples -> run time -
>Nucleus -> CORBA -> CORBA extensions), bottom-up or middle to two ends?
Top-down is obvious the best, but middle to two ends allows maximum
parallelism.

5.2 DII

do we need Dynamic Invocation Interfaces?

Will the Nucleus support DII?

5.3 Programming language

Shall we use C, C++ or a mixture of two, or a mixture of C/C++ with a
preprocessor language? (C++ looks the obvious choice, but using an abstract
language allows a clean defined design interface before committed to an
implementation).

5.4 Trader

Which trader is to be used? Do we reengineering/reuse the AW 4.1 trader or
Mike’s enhanced trader?

5.5 GEX

Will GEX be supported?

The communication framework should allow the incoporation of a group
protocol, even through GEX itself is not a goal of this work).

5.6 Interoperation

Is interworking with AW 4.1 a goal? (impact: using the Trader)

Issues ANSA Phase III

14 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

5.7 Other services and tools

Factory, Notification, and Relocation etc. AW services should be supported.

5.8 Coding standards

AW 4.0 has a C coding standard.

ELLEMTEL has a C++ coding standard dated 4/92.

5.9 Documentation standard

Which software documentation standard should be used?

5.10 System building

What system building tool set should be used? The current AW one is too
complicated.

[9/11/94] A new multi-platform software development system is under develop
(based on the current /usr/site/INSTALL).

5.11 Source control standard

What tools and procedures are used for source and release control?

5.12 Synchronization: fine grained or not

Which synchronization scheme should be used in the Nucleus to protect
system resources?

5.13 Memory management scheme

A policy for memory management and default memory management is
required.

5.14 What QoS domains to start with

What are the QoS domains / explicit binders to start with?

5.15 QoS statements processing

A choice of compilation, interpretation or build-in.

5.16 A binding framework for the TINA-C connection management

The explicit binding may target the TINA-C connection management as one
binding examine.

ANSA Phase III Diary

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 15

6 Diary

This chapter logs the major results or technical decisions made.

6.1 Progress to 9 November 1994

Met UK BSI QoS group on 6th Oct. Issued them with a version of the ANSA
Binding Model and A Model of Real-time QoS as standards contributions.

Built a cut down version of the /usr/site/INSTALL system for building
prototype software across multiple platforms (nextdevelopment is to add RCS,
packages etc.).

Develop C++ classes and coding templates for writing programs which
conform to the asynchronous ODP computational model, but without
distribution.

ANSAware/RT ported to LynxOS with Malcolm W. Vanston-Rummey of GPT
Ltd.

Presented a paper at the IEEE CS 1st workshop on object-oriented real-time
dependable systems.

Presented the DIMMA at the HP Labs in Palo Alto.

6.2 Progress to 31 December 1994

Check and write various bits for the multiplatform development tool set, and
it has a rough shape now. Need more testing and restructuring when more
codes are produced. The major change (compared to AW) is the introduction of
the GNU autoconf facility, which will benefit future porting. The unfortunate
is it does not in conherent with the Imake tools, this will make our Makefiles
fat.

Binding Model and Streams and Signals approved as TRs by TC.

Added termination (exception) handling to the odp class library.

Examined the X-kernel and ACE for a generic communication protocol engine.
It seems ACE is more near to our need and some of its code can be used.

 Attended the HIPPARCH’94 workshop

6.3 Progress to 31 January 1995

Develop C++ classes and coding templates for writing programs which
conform to the asynchronous ODP computational model, added client and
server stubs, buffer handling and marshalling.

Nucleus design and implementation: progress made in the generic
communication framework. A decision is made not to use either X-kernel or

Diary ANSA Phase III

16 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

ACE, but rather design a dedicated one (to be more flexible, suitable for our
binding model, allowing streams, supporting QoS). The mechanism allows
protocol composition, configuration, creation; is independent of multiplexing,
presentation (and therefore interfaceRef format), concurrency; supports
application layer framing.

Presented the DIMMA at BNR.

6.4 Progress to 30 April 1995

ANSAware/RT 1.0 released.

Minimum set of C++ classes and coding templates for the asynchronous ODP
computational model completed.

Developed an incr_tcl/tk front end for the development tree.

HP meeting on 6th and 7th of April.

Finished the C++ back-end for the ODP stub generator.

Nucleus: generic communication framework design and implementation done,
scalability design and implemetation done, buffer management finished,
protocol modules driving UDP, TCP implemented. A simple RPC protocol
implemented.

APM.1295.00.06 An Overview of the Distributed Interactive Multimedia Architecture 17

References

[APM.1275]

ANSA, 1994 - 1996 ANSA Workplan, Architecture Projects Management Ltd.,
Cambridge U.K., August 1994.

[APM.1108]

D Otway, Streams and Signals, Architecture Projects Management Ltd.,
Cambridge U.K., May 1994.

[APM.1151]

G Li, A Model of Real-time QoS, Architecture Projects Management Ltd.,
Cambridge U.K., March 1994.

[APM.1207]

G Li, Real-time ANSAware (RAW) Version 1.0: Programming and System
Overview, Architecture Projects Management Ltd., Cambridge U.K., May
1994.

[APM.1222]

G Li, Some Engineering Aspects of Real-Time, Architecture Projects
Management Ltd., Cambridge U.K., May 1994.

[APM.1239]

D Otway, Explicit Binding, Architecture Projects Management Ltd.,
Cambridge U.K., June 1994.

[APM.TR.031]

D Otway, DPL Programming Manual, Architecture Projects Management Ltd.,
Cambridge U.K., February 1993.

[APM.1051]

F Wai et al., A Performance Framework, Architecture Projects Management
Ltd., Cambridge U.K., December 1993.

[APM.101]

ANSA, ANSAware 4.1 System Programming Manual, Architecture Projects
Management Ltd., Cambridge U.K., 1992.

References ANSA Phase III

18 An Overview of the Distributed Interactive Multimedia Architecture APM.1295.00.06

