
Copyright  1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1222.02 Approved 11th April 1995

Technical Report

Some Engineering Aspects of Real-Time

Guangxing Li

Abstract

Advances in digital communication networks and in personal workstations are beginning to allow
the simultaneous processing of real-time data, voice, and video. There is a great demand to
provide real-time functionality as standard system services, not as features added as
afterthoughts. At the same time, the size of real time systems is increasing: one-million-line real-
time software systems are becoming common today. Such systems are very large and distributed
by nature. There is an increasing need to adopt an open architectureal approach so that real-time
system engineering can be addressed not only with real-time constraints, but also with other
software practise constraints such as scale, evolution, distribution etc.

Distributed real-time processing places unique requirements on systems and their designs (e.g.
predictability, programmer control, timeliness, mission orientation and performance). Such
features do not exist in today’s computing environments.

This document proposes an integrated architecture for distributed real-time systems. It describes
some engineering designs of a distributed environment for real-time applications.

Some Engineering Aspects of Real-Time

Some Engineering Aspects of Real-Time

Guangxing Li

APM.1222.02

11th April 1995

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by Architecture Projects Management Limited on behalf of the companies
sponsoring the ANSA Workprogramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

Architecture Projects Management Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 0RD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright  1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

Architecture Projects Management Limited takes no responsibility for the con-
sequences of errors or omissions in this Report, nor for any damages resulting
from the application of the ideas expressed herein.

APM.1222.02 Some Engineering Aspects of Real-Time i

Contents

1 1 Overview
1 1.1 Motivation
1 1.2 Scope of the document
2 1.3 Benefits
2 1.4 Audience
2 1.5 Outline of the document

3 2 Towards an Open Architecture for Real-Time
3 2.1 Problems
3 2.1.1 Predictability
3 2.1.2 Programmer control
3 2.1.3 Timeliness
4 2.1.4 Mission orientation
4 2.1.5 Performance
4 2.2 An integrated system architecture
5 2.3 Technologies
5 2.3.1 Contributory technologies
6 2.3.2 Distributed system environments
7 2.3.3 Real-time distributed system environments
8 2.4 Target
8 2.5 Summary

9 3 ANSA Computational Model and Engineering Model
9 3.1 Introduction
9 3.2 Computational Model

10 3.3 Engineering Model

13 4 Areas of Work
13 4.1 Real-time programming model
13 4.2 Real-time communication

15 5 A Real-Time Programming Model
15 5.1 Introduction
15 5.2 Distributed object execution
15 5.3 ANSA object execution
16 5.3.1 ANSA object execution model deficiencies for real-time applications
16 5.4 Real-time objects
19 5.5 Real-time object invocation
19 5.6 Scheduling
21 5.7 Priority scheduling
21 5.7.1 Priority management and priority inheritance
21 5.7.2 Resource allocation and task preemption
22 5.7.3 Dealing with priority inversion
24 5.8 Deadline scheduling

Contents ANSA Phase III

ii Some Engineering Aspects of Real-Time APM.1222.02

24 5.9 Other scheduling paradigms
25 5.10 Application controlled rendezvous
25 5.11 Summary

27 6 A Real-Time Communication System
27 6.1 Introduction
27 6.2 Towards a parallel protocol stack
28 6.3 Towards a timed RPC protocol
29 6.3.1 Discussion of problem
30 6.3.2 The protocol
32 6.3.3 Server deadline expiry
32 6.4 Towards a decomposable RPC protocol
34 6.5 Summary

35 7 Summary
35 7.1 Major results
35 7.2 Conclusions
35 7.3 To be addressed issues
36 7.4 Acknowledgments

APM.1222.02 Some Engineering Aspects of Real-Time 1

1 Overview

1.1 Motivation

Advances in digital communication networks and in personal workstations are
beginning to allow the simultaneous processing of real-time data, voice, and
video. There is a great demand to provide real-time functionality as standard
system services, not as features added as afterthoughts. At the same time, the
size of real time systems is increasing: one-million-line real-time software
systems are becoming common today [Gopinath93]. Such systems are very
large and distributed by nature. There is an increasing need to adopt an open
architectural approach so that real-time system engineering can be addressed
not only with real-time constraints, but also with other software practise
constraints such as scale, evolution, distribution etc.

Distributed real-time processing places unique requirements on systems and
their designs (e.g. predictability, programmer control, timeliness, mission
orientation and performance). Such features do not exist in today’s computing
environments.

This document proposes an integrated architecture for distributed real-time
systems. It describes some engineering aspects of a distributed environment
for real-time applications. The perspective and scope of this research is the
entire system environment, rather than being focused on the more narrow
subsystem or algorithms. The stress is on the engineering design that would
stand on both the current and future technologies. This document is not a full
coverage of all engineering aspects of a distributed real-time environment.

The aim of this document is to set up a start point for the development of a
detailed design and implementation of an ANSA based real-time platform
[Li94].

1.2 Scope of the document

It is the stringent timeliness and performance natures that are the primary
source of problems posted by real-time applications. The services provided by
existing distributed system environments predate the present concerns of
real-time applications and provide insufficient and inappropriate services for
supporting real-time applications. For example, current standards for
distributed processing, such as the OSF DCE, OMG CORBA and ISO RM-
ODP make no mention of real-time issues. This report shows how it is possible
to extend a distributed system environment to support real-time applications
and hence help avoid these problems.

The principle issues covered by this document are:

• real-time system environment characteristics, i.e. the problems to be
addressed

Overview ANSA Phase III

2 Some Engineering Aspects of Real-Time APM.1222.02

• the uniform treatment of real-time computing and non-real-time
computing i.e. system integration

• technology bases i.e. the relevant technologies for the system design and
implementation

• environment i.e. the services and scope of the proposed system

• target i.e. the possible application areas of the architecture

• distributing real-time objects

• real-time programming models

• real-time communications.

The design is presented as an extension of ANSA, because it has generic
engineering model. The architectural issues of this work are also applicable to
other distributed system environments such as OSF DCE and OMG CORBA,
where computational and engineering issues are blurred, and where the
internal structure is monolithic.

1.3 Benefits

The benefits of the work are several:

• permits the application of open system architecture to real-time systems.

• identifies how and where real-time applications may constraint open
system architecture.

• explains how real-time technologies are integrated with open systems.

1.4 Audience

The reader is assumed to be familiar with the ANSA Computational Model
and Engineering Model. A brief overview of the two models are included in
chapter 3 to improve the readability of this document. It is also assumed the
reader is familiar with the basic concepts of real-time and distributed systems,
which can be found in [Wai93] or [Li93].

1.5 Outline of the document

The document is structured as follows:

• chapter 2 discusses the architectural issues of a real-time open system.

• chapter 3 briefs the ANSA computational model and engineering model.

• chapter 4 outlines the areas of engineering high level design.

• chapter 5 presents the distributed real-time programming model.

• chapter 6 presents some of the real-time communication designs.

• chapter 7 gives the summary.

ANSA Phase III Towards an Open Architecture for Real-Time

APM.1222.02 Some Engineering Aspects of Real-Time 3

2 Towards an Open Architecture for Real-Time

2.1 Problems

Consider a distributed real-time computing environment, in which
autonomous machines communicate via various shared communication media.
Processing requests can originate at any node in this environment. The actual
processing of the requests makes use of the resources within this environment.
Such distributed real-time processing requests place a set of unique
requirements including predictability, programmer control, timeliness, mission
orientation, and performance. These features do not exist in today’s computing
environments, and must be addressed by future systems research.

2.1.1 Predictability

Predictability is the tendency of a system to perform a set of operations in a
well-defined, or determined fashion, so that each of these operations’ timing
requirements are satisfied. A fully predictable system can perform operations
with guaranteed upper bounds, independent of surrounding conditions.
Conversely, a fully non-predictable system is one in which operation times
have no guaranteed upper bound. Predictability applies to every level of the
components of a real-time distributed system environment. Such an
environment must provide a certain degree of predictability, even though it is
not always possible to be fully predictable, to support any useful real-time
performance guarantee.

2.1.2 Programmer control

Programmer control means an application programmer has ultimate control of
the behaviour of a system. This feature comes from the fact that many real-
time applications are embedded systems (which are often static systems, and
therefore it is possible to control the systems’ behaviour) and that real-time
applications have immense behaviour diversity (therefore it is impossible to
use one fixed system behaviour for many real-time applications). The simplest
method of programmer control on system behaviour is probably the choice of
priorities for real-time tasks. By allowing a user to indicate the relative
priorities of tasks, the programmer can affect throughput and/or
responsiveness goals for the system on a much finer granularity than by a
best-effort approach. A programmer may also be allowed to select the
scheduling policy, pre-allocation of system and application resources to critical
services and so on.

2.1.3 Timeliness

Real-time applications are different from the no-real-time paradigm of
computation in that they impose strict requirements on the timing behaviour
of the system. The correctness of a real-time system depends not only on the
functional behaviour of the system, but also depends on the temporal

Towards an Open Architecture for Real-Time ANSA Phase III

4 Some Engineering Aspects of Real-Time APM.1222.02

behaviour as well. A real-time system environment must provide mechanisms
which take these time related issues into account and must help application
programs to meet these time constraints. A simple example is to allow an
application to associate deadlines with real-time activities, and the system
employs a deadline based scheduling policy to help the deadlines be met or to
identify and cancel obsolete operations. Other more complicated functions
include the description and enforcement of temporal relations among related
computational activities.

2.1.4 Mission orientation

Mission orientation means that an entire distributed computer system is
dedicated towards accomplishing a specific purpose through the cooperative
execution of one or more application programs distributed across its nodes. In
the real-time sense, mission orientation also means mission critical --- the
degree of mission success is strongly correlated with the extent to which the
overall system can achieve the maximum dependability regarding real-time
constraints. In its simplest form, mission orientation requires that a priority
or deadline associated with a mission has global meaning when it spans over
the network. More generally, global importance and urgency characteristics
are propagated through the system, for use in resolving contention over
system resources according to application defined policies.

2.1.5 Performance

Many real-time applications have stringent raw performance requirements.
The optimized integration of application software and its supporting
environment is desirable. This is in contrast with the popular layered design
for non-real-time applications. Also, real-time applications often require
trading off modularity, flexibility and functionality to maximize performance.

2.2 An integrated system architecture

The objective of this research is the provision of an open real-time distributed
system environment architecture. An important issue is that such an open
system environment cannot be designed by considering only component design
issues. An integrated system design philosophy is required. This section
discusses the principle approach --- system integration. The importance and
benefits of the approach are also briefly highlighted.

The system integration approach provides the ability to treat all forms of real-
time objects or data as first class citizens in a system environment. That is,
operations and mechanisms provided for existing non-real-time components
can be applied to, and used by, real-time objects. The provision of a uniform
system environment will increase productivity, especially for the creation of
applications which offer combinations of distributed and real-time
functionality: e.g. multimedia conference, distributed control. Increased
integration allows existing distributed system environment mechanisms to be
applied to real-time components (such as trading, security, monitoring,
replication, location, migration and federation). The aim is also to allow
evolution of the architecture from the development of individual control
systems, to groups of control systems and then to the enterprise-wide
command and control systems.

Two technology trends exhibit the importance of system integration:

ANSA Phase III Towards an Open Architecture for Real-Time

APM.1222.02 Some Engineering Aspects of Real-Time 5

• General purpose distributed computing environments are evolving
towards real-time systems. For example, the advances in digital
communication networks and in personal computer workstations are
beginning to allow the generation, communication and presentation of
real-time voice and video medium simultaneously. Many non-real-time
systems have been disembowelled to extend their use to real time
[Leung90]. Many UNIX systems, for example, are used for real-time
control because of their rich programming tools, despite their
unsuitability for such applications. There is a great demand to provide
real-time functionality as normal system services, rather than as
later added on features

• Real-time applications are evolving towards large distributed
systems. One-million-line real-time software systems are become common
today [Gopinath93]. Such systems are large by any standard and are
distributed by nature. Therefore, in addition to the problems associated
with real-time operation, such applications are subject to all of the
problems of any large software system, such as maintainability and
distribution. Furthermore, in many real-time applications, tight real-time
constraints may apply to only part of the whole system. For example, it is
estimated that only 10 to 30 percent of a typical vehicle control software
system is directly related to actual real-time control of the vehicle. There
is an increasing need to adopt an open and architectural
approach so that real-time software engineering can be addressed
not only with real-time constraints, but also with other software
practise constraints such as evolution, scale, distribution etc.

2.3 Technologies

This section is structured as follows:

• a description of the fundamental contributory technologies

• a review of functions in an open distributed system environment

• a brief description of the current state of art of the distributed real-time
system environment research and engineering, and the additional
functions required in such an open, real-time, distributed architecture.

2.3.1 Contributory technologies

The fundamental contributory technologies are illustrated in Figure 2.1. It
represents the integration of real-time systems, open systems and object
oriented systems.

The real-time system technology provides the functionality of resource
management for guaranteeing the stringent time-constrained computing
activities.

The open system technology provides the functionality for distribution,
evolution, heterogeneity, federation and scale.

The object oriented technology provides the functionalists for software reuse
and maintenance.

Towards an Open Architecture for Real-Time ANSA Phase III

6 Some Engineering Aspects of Real-Time APM.1222.02

2.3.2 Distributed system environments

A distributed system environment is a run-time system that provides a set of
abstractions and tools to support the writing of programs in a distributed
environment. The effect of using a distributed system environment is that
applications are automatically supported by a run-time environment which
incorporates a set of distribution transparency mechanisms. These shield
application designers and users from the technological complexities involved
in distributed application programs. Remote Procedure Call (RPC) and client-
server interactions are widely accepted as distributed system environment
technical apparatus.

It is now recognised [Herbert93] that distribution transparency can be broken
down into a number of individual transparency issues:

• location transparency --- masking off the physical location of services

• access transparency --- masking any differences in representation and
operation invocation mechanism

• concurrency transparency --- masking overlapped execution

• replication transparency --- masking redundancy

• failure transparency --- masking recovery of services after failures

• resource transparency --- masking changes in the representation of a
service and the resources used to support it

• migration transparency --- masking movement of a service from one
application to another

• federation transparency --- masking administrative and technology
boundaries.

Figure 2.1: Contributory Technologies

Generic IPC
RPC
Client/Server
Transparency tools
ANSA
ODP
CORBA

Real-time OS
Microkernel
Real-time Scheduling
Real-time Communication
Mission Orientation
ATM (B-ISDN)
Multimedia

Object Models
OO Programming
OO Data Bases
Object Management
C++

Open
Systems

Real-Time
Systems

Object-Oriented
Systems

ANSA Phase III Towards an Open Architecture for Real-Time

APM.1222.02 Some Engineering Aspects of Real-Time 7

2.3.3 Real-time distributed system environments

Despite the relative maturity of distributed system environment research,
real-time distributed system environment remains a neglected, if not
unaddressed, topic. The result is that even if base technologies (such as
microkernel, ATM networks etc.) can provide real-time services, a distributed
system environment provides no corresponding abstractions to use these
services. Even worse, a distributed system environment often mask off the
real-time features of base technologies. Therefore, one of the main aim of this
work is to extend the real-time features of base technologies to the distributed
system environment level.

One common misconcept is perhaps that distributed system environment is
not the suitable technology for real-time applications because RPC (as one of
the main technique basis of distributed system environment) is often criticized
for providing poor performance or is not fast enough. This is a misconcept
because the objective of real-time computing is to meet the timing
requirements of an application, rather than being fast. The most important
property of a real-time system is predictability. On the other hand, fast is a
relative term. As technology progress, there will be faster and faster RPC
systems. Even now it is not difficult to provide milliseconds level RPC calls (as
the required performance for the supervisory control targeted by our
architecture, see also section 2.4). For example, there are already reports of
systems that can provide hundreds of microseconds level RPC calls.
[Biagioni93] [Johnson93]. Fast computing is helpful in meeting stringent
timing constraints, but fast computing alone does not bring real-time
properties.

A real-time system must be able to handle time-constrained processing of
requests. A real-time distributed system environment adds another dimension
to the problem of distributed system environment, because the concern is now
not only with the functional correctness, but also with the timeliness of the
results produced. In Figure 2.2, a graphical illustration of the real-time
distributed system environment functionality is given. The curve in the figure
illustrates that the real-time distributed system environment functionalists
are the trade-off of the real-time functionality and distributed system
environment functionality. This reflects the fact that real-time functionality

Figure 2.2: Real-Time ODP Functionality

Real-Time
Functionality

ODP Functionality

(predictability
programmer control
timeliness
mission-orientation
performance)

(location, access, concurrency etc. transparencies)

Real-time ODP functionality

Towards an Open Architecture for Real-Time ANSA Phase III

8 Some Engineering Aspects of Real-Time APM.1222.02

and distributed system environment functionality are often conflicting goals.
For example, most distribution transparencies (such as RPC protocols) are
based on time redundancy technologies, such technologies need to be revised
for real-time applications.

2.4 Target

Real-time systems span a wide variety of field of applications, including
military, industry, commerce, medicine and so on. This indicates a wide
spectrum of possible problems.

The scope of this research for real-time applications is supervisory control
[Northcutt88] as opposed to low-level, synchronous sampled data loop
functions like sensor/actuator feedback control, signal processing, priority
interrupt processing and so on.

Supervisory control is a middle-level function (see Figure 2.3), above the local
control and data acquisition functions and below the human interface
management functions. This type of system does not do much direct polling of
sensors and manipulation of actuators, nor does it provide extensive man
machine interfaces; rather, it deals with subsystems which provide these
functions. The real-time response requirements of a supervisory control
system are closer to the millisecond than either the microsecond or second
ranges.

2.5 Summary

This chapter has examined the problem space and technology bases of real-
time open distribued processing. An integrated system architecture is
suggested and the benefits of the architecture are presented. The practical
need and importance of the architecture is discussed along with the current
technology trends in both distributed processing and real-time applications. It
also suggests that the architecture may target (not exclusively) supervisory
control as its applications.

Figure 2.3: Supervisory Control

Host local control &
data acquisition Target

Human
interface

Human
interface

Open Distributed Command and Control
(supervisory control layer)

APM.1222.02 Some Engineering Aspects of Real-Time 9

3 ANSA Computational Model and Engineering
Model

3.1 Introduction

This chapter provides a brief overview of ANSA Computational Model (ACM)
and ANSA Engineering Model (AEM) to improve the readability of this
document. Readers familiar with ACM and AEM may skip this chapter.

3.2 Computational Model

A computational model is a framework for describing the structure,
specification and execution of programs. The principle behind and the concepts
underlying the ANSA architecture are articulated via the ACM [Rees93]. This
section briefly summarises the overall concepts of the ACM.

The key ACM concepts are:

(Computational) Object: a unit of program modularity state and
operations for initializing, accessing and updating that state. Object state
may contain references to the interfaces of itself and other objects.

Interface: a view of an object as an abstract service. An interface is
specified as a set of operations together with synchronization and ordering
constraints on the use of these operations.

Operation: part of an interface. An operation has a signature and a body
which defines the effect and outcome from an invocation of the operation.

Signature: a specification of the name of an operation, the number and
interface types of the argument parameters and, optionally, a set of
terminations which specify the possible outcomes from the operation.

Activity: the agency by which computations make progress. An activity
may pass from one object to another by the first invoking an operation on
an interface of the second. Activities may split into parallel sub-activities
and later recombine. New activities can be initiated to proceed in parallel,
these may be able to communicate with other activities but are not
dependent upon their initiating activity.

Termination: the specification of a set of possible outcomes from
invocations of an operation. A termination has a name and specifies the
interface types of the result parameters from an outcome with that name.

Interface type: the signature of the operations in an interface of the
type.

(Operation) Invocation: the execution of the body of an operation
defined by a reference to an interface and an operation name in a context
established by the referenced interfaces and a set of arguments.

ANSA Computational Model and Engineering Model ANSA Phase III

10 Some Engineering Aspects of Real-Time APM.1222.02

Server: in the context of an invocation, the object which provides the
interface containing the operation being invoked.

Client: in the context of an invocation, the object from which the
invocation was initiated.

The ACM is in two parts:

• an interaction model defines permitted forms of interaction and a type
scheme within which potential interactions are to be classified. The
interaction model consists of an invocation scheme and a type scheme.

• a construction model defines elements from which the interacting
objects may be constructed.

The invocation scheme defines how clients may use interfaces provided by
servers. Two kinds of operation, interrogation (call) and announcement (cast),
are permitted. Invocation of an interrogation is a synchronous request/
response style. Invocation of an announcement is an asynchronous request
only style, a new activity is created in the server and the invoking activity
continues in the client.

The type scheme provides a set of types into which interfaces are classified
and defines a relation over interface types that allows the detection of the
possibility of interaction errors before the interaction commences.

The ANSA construction model provides the elements necessary to construct
objects that conform to the ANSA interaction model.

3.3 Engineering Model

The AEM provides a framework for the specification of mechanisms to support
distribution of application programs that conform to ACM. The details of AEM
can be found in [ISO/IEC95]. The AEM contains a number of sub-components
and supports a number of application-level components as shown in Figure
3.1.

• Transparency Mechanisms provide a uniform interface for distributed
applications that address the problems and benefits of distribution. The
transparency mechanisms communicate with one another via the nucleus
and the network to achieve the desired transparency.

• Nucleus is the part of the AEM which provides minimal and sufficient
support for the implementation of distribution. It encapsulates all of the
heterogeneity of processor and memory architecture. The Nucleus itself is
not distributable.

The main concepts of the AEM may be summarised:

Capsule: the collection of computational objects (in engineering form),
transparency mechanisms and nucleus forming a virtual node of a
network. It can be seen as the abstraction of an address space in a local
operating system to provide the unit of protection and failure atomicity.

Thread: a sequence of instructions modelling a computational model
activity within a capsule. It represents a unit of potentially concurrent
activity that can be evaluated in parallel with other threads, subject to
synchronization constraints.

Task: a virtual processor which provides a thread with the resources (e.g.
a stack) it requires to progress. Tasks1 provide the resources for real

ANSA Phase III ANSA Computational Model and Engineering Model

APM.1222.02 Some Engineering Aspects of Real-Time 11

concurrency. An ANSA task is conceptually equivalent to an operating
system thread.

Interface Reference: an interface reference is an identifier which
contains sufficient information to allow the holder (the client) to establish
communication with the interface denoted by the reference (the server).
Interfaces have types (corresponding to their code component) which may
be instantiated multiple times with different state (corresponding to their
data component). Such instantiations are called interface instances, and
interface references always refer to interface instances.

Channel: the abstraction for initiating operations to a specific remote
interface and for receiving invocations on a specified interface. The
initiating side (client) end-point of a channel is called a plug. The
receiving side (server) end-point is called a socket. Channels are
asymmetric in that a channel may have many clients (plugs) bound to it,
but only one server (socket).

• Binder: a component to support binding: the process by which an activity
in one object establishes the ability to invoke operations at an interface to
some other object. Binding establishes and controls the communication
channels between objects so their interactions are possible.

Interpreter: a portion of the nucleus. It can be viewed as defining an
instruction set for a distributed abstract machine. It interprets inter-
object interactions (invocations), performs all argument and result
processing, and links threads to sessions (a session is a cache of a plug or a
socket) and transfers buffers between them. It also provides the necessary
session, thread and task state changes to complete the execution of each
instruction.

1. ANSA threads are cheap resources (each requires less than one hundred bytes of
memory); whereas ANSA tasks are expensive resources (each requires several kilo-
bytes of memory). In a distributed application there may be many threads (e.g. 100’s
or 1000’s); it is important only to allocate a task to execute a thread when there is a
processor available to run it.

Figure 3.1: ANSA Engineering Model

Computational
Objects

Transparency
Mechanisms

Nucleus

NetworkOperating System
Resources

Operating System
Resources

ANSA Computational Model and Engineering Model ANSA Phase III

12 Some Engineering Aspects of Real-Time APM.1222.02

APM.1222.02 Some Engineering Aspects of Real-Time 13

4 Areas of Work

The areas of engineering design work include:

• a real-time programming model

• a real-time communication system.

The following sections provide a brief overview for each of the two major
issues. More details can be found in later chapters.

4.1 Real-time programming model

The essence of a real-time programming model is to provide the basic
abstractions so that stringent timing constraints of real-time activities are
respected (guaranteed at best). A serious difficulty is that the actual timing
characteristics of software are determined not only by the raw processor
speed, but also by the sharing policy for scarce resources. For example, the
real-time response of a time-shared system depends heavily on the processor
scheduling policy of its operating system. In most high level languages, this
dependency is considered as non-essential detail that is to be hidden from the
programmer. As a result the performance of software implemented in these
languages becomes sensitive to system resource allocation strategies (in a
dynamic system, this means performance depends on system load), and
outside the control of individual programmers. More complex resources such
as the communication subsystem of distributed systems further accentuate
the problem with the introduction of (sometimes distributed) resource
allocation algorithms which are usually inaccessible to the application
programmer.

The real-time programming model developed in this document is based on the
ANSA computation and engineering models. As in the ANSA system, objects
provide the basis for distribution, interfaces of objects provide service access
points, and named operations of an interface provide the actual services.
Abstractions, mechanisms and policies are developed to allow a programmer
to access and control the resource allocation of the supporting environment.
Tasks (representing processor resources) and communication channels
(representing communication resources) are considered the most important
system resources. Both static resource allocation --- the allocation of system
resources to interfaces --- and dynamic resource allocation --- the allocation of
system resources to invocations are supported. Predictability, programmer
control and mission criticality are the main concerns of the real-time
programming model.

4.2 Real-time communication

Real-time applications present more complicated functional requirements to
the underlying communication systems. This section outlines some

Areas of Work ANSA Phase III

14 Some Engineering Aspects of Real-Time APM.1222.02

mechanisms for providing such functions within an RPC communication
infrastructure. Three extensions aimed at making the ANSA communication
system more suitable for real-time applications are identified. These
extensions are:

• a parallel communication protocol stack to allow the preallocation of
communication resources and the removal of layered multiplexing. This is
required partially by the real-time programming model. The main gain of
this design is that it allows the application to explore the communication
QoS that the low-level operating environment can provide. For example,
in an ATM environment, a channel (or a circuit) is allowed to associate
with various transportation QoS, such as jitter, delay, priority etc. Even in
an ordinary operating environment, this design allows the choose of
communication protocols, such as TCP, UDP, IPC etc.

• a timed RPC protocol to allow the association of deadlines with
invocations. ANSA is an RPC based system. A basic goal of many RPC
systems is to make the semantics of a remote call as close as possible to
that of a local call. However, distribution cannot be completely ignored:
applications will have to deal with the possibilities of concurrent access to
shared resources, variable latency in accessing resources and
communication failures. The semantics of remote calls are implemented
by RPC protocols. Two often referred semantics are exactly-once and at-
most-once executions. Real-time applications add another dimension to
the problem: timeliness --- arbitrary delays associated with synchronous
RPC invocations cannot be tolerated. The solution to the timed RPC
presented in this document is the design of a dependable RPC protocol
through which reasonable timing constraints (representing different
trade-off between consistency and strictness) of a remote invocation can be
specified clearly and enforced. This relieves the additional burden of
having to monitor and manage timing constraints by application
programmers during remote calls

• a decomposable RPC protocol to allow the synthesis of the protocol to
provide different levels of invocation semantics (such as exactly-one, at-
most-once), so that an application programmer can customize the system
to application-specific requirements of functionality and performance.This
work is targeted at new transportation protocols with QoS parameters in
the operational interface.

The three designs are integrated within a coherent architecture to provide a
communication infrastructure for real-time applications. Predictability,
timeliness and performance are the main concerns of the real-time
communication system.

APM.1222.02 Some Engineering Aspects of Real-Time 15

5 A Real-Time Programming Model

5.1 Introduction

This chapter discusses some real-time extensions of ANSA objects. The
structure of the real-time objects is examined along with object invocation
mechanisms, the handling of priorities and deadlines, resource allocations,
scheduling mechanisms and policies, and the application’s control over
scheduling.

5.2 Distributed object execution

The use of an object-oriented data model and the client-server execution model
makes the distribution of data and the processing implicit in nature. In non-
real-time environments, object-oriented design has been successful in
simplifying the design, implementation, and maintenance of software in many
distributed systems.

Object interdependence can be classified into two categories: static
interdependence --- the structural relationships between objects, and dynamic
interdependence --- the interactions between objects. Many useful results are
known about the static relationships between distributed objects.
[Herbert93a] [Blair92]. Related concepts, such as abstract data typing, type
checking and subtyping, are accepted and used widely. On the other hand,
little consensus has been achieved on the execution view of objects. Many
approaches to object execution have been proposed, some of which are the
active object model [Black86], the passive object model [Allchin83], and the
actor object model [Attoui91].

For real-time applications, this execution aspect is of vital importance --- it
has fundamental impact on the predictability of computational activities.
Real-time object execution models are required to address not only how the
computational activities are carried out, but also how shared resources are
used (i.e. the manner in which contention for system resources is resolved
taking into account timing constraints of real-time activities). The latter issue
is often neglected and considered irrelevant engineering detail in non-real-
time computing. Distributed real-time systems must provide support for the
specialized requirements of real-time communication, tasking, scheduling,
and control. These requirements must be explicitly addressed in an object
execution model, if the object-oriented approach is expected to be applicable to
a real-time world.

5.3 ANSA object execution

The ANSA Object Execution Model (AOEM) is defined by the ACM and AEM.
The AOEM can be summarised as follows.

• objects export services through interfaces.

A Real-Time Programming Model ANSA Phase III

16 Some Engineering Aspects of Real-Time APM.1222.02

• threads are created either explicitly for concurrent computational
activities or implicitly by the invocations between objects. In the latter
case, a thread embodies a distinct run-time agent for a client in its server
side, representing the invocation on a computational interface.

• the infrastructure (capsule) is in charge of the management of resources
(tasks, buffers etc.) in the system, and of their allocation to the different
threads.

This means the system behaviour is completely dependent on the system’s
resource management policy. Also, the infrastructure offers no possibility of
interacting with this management. Therefore, the resulting behaviour is
totally non-deterministic, and nothing can be guaranteed; it depends entirely
on the system workload.

5.3.1 ANSA object execution model deficiencies for real-time applications

To be more specific, ANSAware is used as an example to detail the AOEM. In
ANSAware, its time-sharing characteristics of tasking and scheduling can be
summarised as follows:

• multiplexing of one thread queue. The queue is used for all interfaces
within a capsule; and all system tasks are homogeneous --- they are
allocated for serving any threads (requests on any interfaces).

• thread enqueue policy (and thus request service scheduling policy) is First
Come First Service (FCFS).

Based on this single capsule-wide thread queue with a pool of tasks, the
ANSAware tasking system is very efficient at the task/thread resource
sharing. However it imposes severe constraints on flexible and real-time
scheduling. For example, it precludes the possibility of preallocating tasks for
real-time interfaces (services). One aspect of the non-predictability caused by
this design is if all system tasks have been assigned to some time-consuming
non-real-time threads, newly arrived real-time requests (threads) have to wait
until the completion of the non-real-time threads. Also this design precludes
the possibility that an application performs its own resource management,
synchronization and scheduling on the basis of services (interfaces), and run
time knowledge of resource usage.

The simple FCFS thread enqueue policy precludes any real-time performance,
when the object is executed in an open environment where time constrained
and non-constrained operations are allowed to be requested dynamically.

5.4 Real-time objects

A real-time object model can be obtained by extending the ANSA object
execution model with explicit resource allocation and real-time scheduling
support.

A real-time object is composed of data, one or more tasks of execution, and a
set of interfaces. A new abstraction, scheduling entry or shortly entry, is
introduced as the basic mechanism for real-time scheduling.

An entry is a thread queue with a record of control data. An entry may be
created dynamically, and interfaces of an object may be bound to it. When an
interface is bound to an entry, each operation request on the interface will be
transferred (by the infrastructure) to a thread enqueued on the entry. Any

ANSA Phase III A Real-Time Programming Model

APM.1222.02 Some Engineering Aspects of Real-Time 17

thread representing a computational activity is also spawned on an entry. The
entry is an engineering concept which is confined within a capsule.

In Figure 5.1, a graphical illustration of a real-time object is given.

System tasks may be allocated for each individual entry. The tasks allocated
are dedicated to execute the threads on the entry. A thread is also allowed to
rendezvous with other entries dynamically. A rendezvous of a thread with an
entry means that the thread waits to accept and execute one thread on the
entry. Different control parameters may be selected for each entry to choose a
thread enqueue policy, a thread/entry rendezvous policy, and to enforce
concurrency controls. These policy issues are discussed in the further sections.

In such an object model with data, interface, entry and tasks encapsulated
within a capsule, there is a choice of how many entries are allocated, which
interface is attached to which entry, how many tasks are allocated to an entry,
whether a task can rendezvous with a specific entry, and what kinds of
resource scheduling policies are used.

The choice to allocate a new entry for some interfaces reflects the need to
separate these interfaces from others for the purpose of resource management.

The number of tasks allocated to an entry not only enforces the real
concurrency allowed for the execution of threads on the entry, but also affects
the real-time scheduling properties, for example, preemptivity (as explained
later in section 5.7.2).

The flexibility for allowing a thread to rendezvous with an entry enables an
application to have complete control over its virtual processor(s) based on its
knowledge of the system state.

The user control over system tasking behaviour is further enhanced by the
scheduling policy/mechanism separation used in the environment (detailed in
section 5.6).

These resource management activities can all be done dynamically, increasing
the flexibility and usefulness in an open, dynamic environment.

Figure 5.1: Real-time object illustration

Task Group

Task

Invocation
enqueue

Entry

Rendezvous

InterfaceScheduler

private data and object state

A Real-Time Programming Model ANSA Phase III

18 Some Engineering Aspects of Real-Time APM.1222.02

Some typical system configurations are illustrated below. Their combinations
are straightforward.

The simplest form (Figure 5.2) is Shared Single Entry configuration, in which
all interfaces share a single entry with all tasks serving all incoming requests
on all interfaces.

Another simple form (Figure 5.3) is Multiple Single Entries, in which each
interface has its own entry.

Another interesting simple form (Figure 5.4) is Single Task Multiple Single
Entry, in which the single task decides at its run-time which entry (interface)
it would like to serve.

Figure 5.2: Shared Single Entry (ANSA) Configuration

Figure 5.3: Multiple Single Entries

Figure 5.4: Single Task Multiple Single Entry

private data and object state

private data and object state

private data and object state

ANSA Phase III A Real-Time Programming Model

APM.1222.02 Some Engineering Aspects of Real-Time 19

A combined configuration is illustrated in Figure 5.1. It contains the three
simple configurations.

5.5 Real-time object invocation

The act of requesting that an operation of an interface be executed is termed
an invocation (a synchronous call). Each invocation is conveyed as a message
to the invoked object, and is then transferred to a thread in the capsule where
the invoked object resides.

To support the mission-critical requirements, there must be some means to
enable the urgency of a computational activity to be spread among all the
nodes it needs to access; and that urgency information should be used by the
system resource scheduler to resolve resource contention so that important or
more urgent computational activities have better access to system resources.
This can be done in the real-time ANSA by allowing the association of an
optional priority (criticality) and/or deadline with each invocation. As the
invocation crosses the physical boundary and becomes a thread in the called
object, this priority and/or deadline is passed and becomes a property of the
thread, which may then be used as a scheduling parameter on the server site.

The priority and/or deadline of an invocation is independent of its contents
(the invocation parameters) and context (the invocation thread). Allowing
explicit invocation priority (and/or deadline) has several benefits: (1) it allows
extra flexibility in conjunction with the server scheduler, in determining how
the invocation is to be processed; (2) it allows a low-priority invocation to be
sent from a high-priority task without having to enhance the server (thread)
task’s priority; (3) likewise, a low-priority thread may send a high-priority
invocation to a server indicating the system has entered an urgent situation.

It should be pointed out that the priority and/or deadline is just a client’s
objective view of the criticality of an invocation; how that will affect the
system resource management is also determined by the scheduling policy (the
interpretation of the scheduling parameters) and the resources allocated for
the service. This is further explained in the following sections.

5.6 Scheduling

The main goal of the real-time ANSA tasking design is to allow the maximum
control of scheduling at the application level. Care has been taken to achieve
the balance between flexible and deterministic scheduling. A policy/
mechanism separation approach has been taken to address the diversity of
real-time programming. Real-Time programming models have been devised
for specific applications. Therefore, an ideal general purpose real-time support
environment should provide multiple models of real-time programming. This
is supported by the multiple application-selectable scheduling policy modules
on top of a shared set of scheduling mechanisms.

The system scheduling behaviour is defined in layers as:

• thread scheduling --- the rendezvous scheduler on each entry

• task scheduling --- the nucleus scheduler on tasks.

Task scheduling and thread scheduling are two separate, but related
scheduling domains. Task scheduling is defined in the nucleus or the
underlying operating system kernel. Thread scheduling is defined per entry.

A Real-Time Programming Model ANSA Phase III

20 Some Engineering Aspects of Real-Time APM.1222.02

Task scheduling manages multiplexing of task executions over processor(s).
Thread scheduling manages the multiplexing of requests (thread) over tasks.
Figure 5.5 illustrates the structure of this multiplex.

The primary function performed by multiplexing is the sharing of processor
resources, which is similar to the multiplexing in communications systems
and protocols for sharing communication resources [Nicolaou91]. The use of
separate entries to process requests on separate interfaces offers a number of
(potential) advantages:

• allows the use of a specific scheduling policy (thread scheduling policy)
suitable for each interface or each interface class

• allows the possibility of using interface specific tasks to serve requests,
and thus allows for more efficient resource utilisation

• separate entries may be processed in parallel, thus increasing
performance

• allows the possibility of end-to-end scheduling and guarantees

• preserves the modularity and separation of service interfaces.

The nucleus scheduler defines how the real processor(s) is assigned to tasks,
i.e. it manages the context switches between tasks. Preemption is used
together with task scheduling parameters to order (either partially or
completely) the otherwise non-deterministic behaviour of the task execution.

There are two issues in thread scheduling management. One is how a thread
is enqueued in an entry (with the assumption that the first thread in the
queue is executed first). Such a policy may be a system defined one, like
invocation priority based, invocation deadline based, or an application
provided one.

Another issue is how a serving task rendezvous with a thread in an entry, i.e.
how the thread scheduling parameters (priority and/or deadline) are used/
inherited by the task. This is defined by a task/thread rendezvous policy. Such

Figure 5.5: Threads, Tasks and Processor(s) Multiplexing

processor(s)

: Multiplexing

C
A
P
S
U
L
E

C
A
P
S
U
L
E

Invocation Requests Invocation Requests

ANSA Phase III A Real-Time Programming Model

APM.1222.02 Some Engineering Aspects of Real-Time 21

a policy affects how the serving task competes for processor resources with
other tasks.

5.7 Priority scheduling

This section discusses the mechanisms needed to provide the priority based
scheduling model in the real-time ANSA framework. Priority based
scheduling is the most popular (and perhaps more important, supported) real-
time scheduling method [Ada9X93] [POSIX]. There are well-known analytic
methods [Lehockzy87] to decide the schedulability of a set of periodic or
aperiodic tasks.

While priority is a well defined and generally applicable notion, its role in task
scheduling needs to be carefully examined. A clear definition of the priority
inheritance (section 5.7.1) and priority ceiling (section 5.7.3) --- used when the
enforced synchronization during a task and a thread rendezvous --- is needed
to understand how priority works on tasking.

5.7.1 Priority management and priority inheritance

A distinction is made between a task’s static priority (that declared in its
creation) and its dynamic priority (that is the static value potentially
enhanced by a rendezvous or an explicit change of priority). It is the dynamic
priority that is used by the nucleus (or operating system) schedule to
determine the current system-wide urgency of a task.

The tasking model is designed to support a structured approach to priority
management. Statically, the different task/entry/interface configurations allow
important real-time services to be distinguished from non-real-time services.
A dedicated entry may be allocated to real-time services, and high priority
tasks may be allocated on the entry, so that request on the interface has better
response time. Dynamically, a serving task may take into account the priority
of an invocation, and use this priority as its dynamic priority. This is called
priority inheritance.

Two levels of priority inheritance schemes may be defined. They are called
(basic) priority inheritance and transitive priority inheritance. In the
first scheme, a serving task with a low priority raises its priority to the higher
priority of an invocation request before it starts the service, and changes back
to its original value after the service is completed. The second scheme is an
extension of the first scheme to consider the situation when there are no
waiting serving tasks and a high priority invocation request arrives. In this
case, the invocation priority is compared with the priorities of the running
serving tasks. If all of the serving tasks are running at priorities lower than
the invocation priorities, one of the tasks is chosen to inherit the invocation
priority. If at least one of the serving tasks is running at a priority which is
higher than the invocation priority, then the invocation is enqueued in the
entry.

5.7.2 Resource allocation and task preemption

Task preemption is a scheduling activity such that when a high priority task is
ready to run, it starts processing immediately, by preempting a low priority
running task (if any). Preemption is a basis of predictability.

A Real-Time Programming Model ANSA Phase III

22 Some Engineering Aspects of Real-Time APM.1222.02

In the real-time ANSA, task preemption may be caused by task allocation and/
or priority inheritance. By allocating tasks of different priority to different
entries, an application programmer may anticipate where and when
preemption is needed. Priority inheritance provides a complementary
mechanism to allow a serving task to use dynamically an invocation priority --
- preemption happens if there is a serving task available and the invocation
priority is higher than a current running task. This tasking model prompts a
layered management of priorities as illustrated by the following example.

One may allocate different levels of priorities to different real-time services,
while priorities in one level may be used to identify the relative importance of
an invocation among all the invocations on one interface. In Figure 5.6, three
entries are allocated to serve non-real-time interfaces, a real-time data
handling interface, and a real-time control handling interface separately. They
are named as n-entry, d-entry, and c-entry respectively. In the n-entry, a task of
priority 0 is allocated (assuming the smaller priority value means a lower
priority), a FCFS thread enqueue policy is used, and therefore invocation
priorities are masked, and have no effects on the scheduling activities.
Priorities 1 to 3 are assigned to the d-entry, on which three tasks of initial
priority 1 are allocated. Invocations on the d-entry may thus have a priority
range 1 to 3. In a single processor system, the three serving tasks may provide
two preemption possibilities among themselves with the priority inheritance
mechanism: a 2 priority invocation preempts a 1 priority invocation, and later
the 2 priority invocation is preempted by a 3 priority invocation. A task of
priority 4 is assigned to the c-entry. It is guaranteed that any invocation on the
d-entry will preempt any running thread on the n-entry, while any invocation
on the c-entry will preempt any running thread on either the n-entry or the d-
entry.

5.7.3 Dealing with priority inversion

Priority inversion is the phenomenon where a higher priority activity (task)
is forced to wait for the execution of a lower priority activity (task). The
duration of such priority inversion must be bounded to satisfy the deadline
constraint of the higher priority activity. The technique for bounding such
priority inversion is one of the main design challenge of a static priority based
programming model.

Figure 5.6: Layered Management of Priorities

private data and object state

control interface
(priority 4)

data interface
(priority 1 - 3)

non-real-time interfaces
(priority 0)

ANSA Phase III A Real-Time Programming Model

APM.1222.02 Some Engineering Aspects of Real-Time 23

Figure 5.7 shows an example of priority inversion in real-time ANSA objects.
Suppose there is a server object S with an interface I and client objects L and
H. L is a low priority client --- it runs a low priority task which sends low
priority invocations to S. H is a high priority client --- it runs a high priority
task which sends high priority invocations to S. S has a task TS for serving
invocations on I. Moreover, S has another middle priority task M running
independently.

Priority inversion happens if the following sequence of actions appears:

1. L sends a low priority invocation to S;

2. TS begins processing L’s request with the low priority;

3. M starts running, preempting TS;

4. H sends a high priority invocation to S, and has to wait until M finishes.

There are three possible solutions to the priority inversion problem. If the
operations provided by the interface allow concurrent access, a group of tasks
may be allocated for the interface. By using (basic) priority inheritance, an
alternative task inherits H’s priority so that it can preempt M.

If the operations provided by the interface do not allow concurrent access, such
as in a monitor or critical-section interface, transitive priority inheritance can
be used. In the example, after (4), TS may inherit the high priority, so that it
can preempt M. H waits only a minimum period of time till TS finishes one
operation.

Transitive priority inheritance is difficult to implement1. An alternative
approach is priority ceiling. Each entry may be associated with a fixed
priority ceiling value, which specifies an upper-bound priority that applies to
all the invocations on the interfaces bound to the entry. While a task is
executing a thread on the entry, its priority is raised to the ceiling priority. If
an invocation has a higher priority than the ceiling priority, it is rejected.
Priority ceiling is easy to implement, but may introduce some unnecessary
blocks. For example, in step (2) TS will be executed with the high priority; it
unnecessarily blocks M if H does not call S during TS’s execution. In this
sense, priority ceiling is a pessimistic technique for bounding priority
inversion. Fortunately, operations implemented by a critical-section interface
are often short. Therefore priority ceiling is still an attractive technique, even
though it is pessimistic.

1. To implement transitive priority inheritance, the infrastructure needs to maintain
the dynamic task/thread relations and requires special operating system supports for
transitive priority inheritance operations.

Figure 5.7: Priority Inversion in Real-Time ANSA Objects

(1) (2)

(3)(4)

client L

client H
server S

TS

M

A Real-Time Programming Model ANSA Phase III

24 Some Engineering Aspects of Real-Time APM.1222.02

5.8 Deadline scheduling

A deadline value associated with an invocation specifies a bound on the
completion time of the requested operation. By assigning deadline values with
invocations, the problem of satisfying timing constraints becomes one of
scheduling processes to meet deadlines, or deadline scheduling.

A simple deadline scheduling policy is to treat deadlines as priorities in thread
queuing. An earlier deadline has higher priority than a late one. Let’s call it
deadline based thread scheduling. It is not assumed that the task scheduler
(i.e. operating system scheduler) understands deadlines. The resultant
behaviour is a non-preemptive earliest deadline first execution of invocations.

Preemption is possible if the task scheduler provides an earliest deadline first
preemptive scheduling service and serving tasks are allowed to inherit thread
deadlines. Under these conditions, deadlines can be handled exactly as
priorities as defined in the last section. It should be pointed out that deadline
based scheduling provides only a deterministic scheduling approach. It
provides no guarantees for satisfying deadlines. Deadline guarantee is
discussed in more detail in [Li93].

As deadlines impose timing constraints directly to invocations, a late result
produced by a server task has little or no meaning. This timeliness
requirement suggests that the RPC protocol --- the Remote EXecution protocol
in the ANSA system --- should take deadlines into account. Timed RPC is
discussed in the next chapter.

One way to improve the robustness of a timed RPC protocol for real-time
applications is to ask the scheduler to provide an early acknowledgement to
the client. The server thread scheduler checks its local schedule information to
decide if it is possible to execute a request within its deadline. The decision
must take into consideration the invocation communication delay, the
invocation demand of the processor, and the server load. If the
acknowledgement is positive and received before a timeout value of the client,
the client will wait for the final result. Otherwise, the client may consider the
invocation unsuccessful and start to take necessary alternative actions.
Although using the early acknowledgement does not actually increase the
probability of invocation success, it will give the client more time to recover
from the timing error.

5.9 Other scheduling paradigms

Priority and deadline scheduling can be combined to provide alternative
scheduling models. One combination is priority first, and then deadline based,
in which deadlines are only used to break the tie when two thread have the
same priority. This could apply in multi-media information systems, for
example, priorities being used to identify information importance and
deadlines being used to identify the relative order of frames in media streams
(media interleaving).

Another combination is deadline first and then priority based [Miller90], in
which deadlines are used as first scheduling criteria, but in the case of
unsatisfied deadline, priorities are used instead for scheduling. This allows
function priorities to be attached while at the same time, achieving the high
throughput property of a deadline based scheduling algorithm.

ANSA Phase III A Real-Time Programming Model

APM.1222.02 Some Engineering Aspects of Real-Time 25

5.10 Application controlled rendezvous

In addition to allocating system task(s) on an entry for serving requests, a
thread is also allowed to rendezvous with entries at run-time. The interface
may be as follow:

Rendezvous(entry_set , timeout)

The effect is that the thread waits for at most timeout to serve one request on
any entry in the entry_set.

The application controlled rendezvous model has the following characteristics:

• clients do not see any difference from the standard object invocation
semantics

• the Rendezvous statement ensures that only one request is executed in
the accepting thread (with the service task). Other requests are queued to
be processed later

• the application thread may perform its own synchronisation. This may
help improve resource usage by synchronizing before a request starts
executing, and not after

• the application thread may initiate object invocations like other client
tasks

• the application thread may perform its resource management when not
responding to external requests. Therefore, it is possible to have interface
specific tasks with pre-allocated resources and optimized synchronisation
management.

5.11 Summary

This chapter has described a real-time programming model. Its scheduling
flexibility has been demonstrated by its two-level scheduling multiplexing.
Policy/mechanism separation is used to address the diversity of real-time
programming. An integrated priority management scheme is introduced for
preemption control. The programming model described in this chapter is a
conceptual model, which has not included an application programming
interface (API). The API for real-time ANSAware 1.0 can be found in [Li94].

A Real-Time Programming Model ANSA Phase III

26 Some Engineering Aspects of Real-Time APM.1222.02

APM.1222.02 Some Engineering Aspects of Real-Time 27

6 A Real-Time Communication System

6.1 Introduction

Real-time applications present much more complicated functional
requirements to the underlying communication systems than the non-real-
time ones. This chapter discusses some designs for providing such functions
within an RPC communication infrastructure. The facilities discussed are:

• a parallel protocol stack for the preallocation of communication resources
and the removal of layered multiplexing. This allows the application to
explore network QoS support

• a timed RPC protocol for the association of deadlines with invocations

• a decomposable RPC protocol for the tradeoffs between functionality and
performance. This work provides the necessary insight for the design of
new transportation protocols with QoS parameters.

6.2 Towards a parallel protocol stack

The main advantage of the ANSAware communication system design is its
efficient resource utilization. The price, however, is the heavy use of
multiplexing. This raises the following problem for real-time applications:

• there is no association between the (interface level) channels and Message
Passing Service (MPS) channels, and the two level modules have no
interactions when channels are created and destroyed; the two are
independent of one another. The end result is that even through it is
possible to distinguish interfaces providing real-time services from those
providing non-real-time services at a high level, communication to/from
these interfaces may share the same MPS communication channel (such
as a connection or virtual circuit), which inevitably introduces non-
determinism.

Detailed discussions of the adverse effect, known as performance cross-talk, of
multiplexing several channels onto a single channel can be found in
[Tennenhouse89].

The problem can be overcome as follows:

• redesign MPS interface as connection-based, it maintains simple states of
its channels. If the operating system can provide a connection-based
service, a MPS connection is directly mapped on to an operating system
IPC socket.

• extend the EXecution Protocol to use this connection-based interface,

• extend the programming interface so that applications have control over
these connections.

A Real-Time Communication System ANSA Phase III

28 Some Engineering Aspects of Real-Time APM.1222.02

The result is a parallel communication protocol stack, as illustrated by Figure
6.1, which is in contrast with the original ANSA multiplexing structure for a
server/client interaction as illustrated in Figure 6.2.

6.3 Towards a timed RPC protocol

Arbitrary delays associated with synchronous invocation cannot be tolerated
due to the time-dependent nature of real-time applications. A dependable
protocol is desirable to provide a timeliness service for real-time RPC, or timed
RPC (TRPC).

Invocations in real-time ANSA can attach deadline constraints to their
communication requests. Such TRPC calls raise the following three issues:

Figure 6.1: Parallel Protocol Stack

Figure 6.2: Multiplexing in the Testbench

MPS

REX

MPS

REX

MPS

REX

MPS

REX

Session

Channel

MPS channel

Z.Op1X.Op1Y.Op1Y.Op1 Y.Op2

Client Server

MPS

REX

Session

Channel

MPS channel

Z.Op1
X.Op1

Y.Op1Y.Op1 Y.Op2

Client Server

MPS

REX

Z.Op1
X.Op1

Y.Op1Y.Op2Y.Op1

ANSA Phase III A Real-Time Communication System

APM.1222.02 Some Engineering Aspects of Real-Time 29

• the management of time in a networked environment. Intuitively, a
deadline is an upper bound, which is placed on the time duration for the
invocation to occur. Therefore both the server and client must have the
same sense of time --- the deadline. It is thus necessary to assume a
common sense of time is provided by the infrastructure between a client
and a server

• the interpretation of deadlines

• a communication protocol to implement reasonable meanings of deadlines.

To the author’s knowledge, there is no clear definition of TRPC yet when
examined in the distributed setting. The interpretations applied significantly
affect the implementation. The problem will be approached by first making a
strictly unsatisfiable definition, and then relaxing the problem to lead to
realistic solutions.

The TRPC call can be defined as follows. At time Cs, the client sends a request
with a deadline D, which is the latest time the client is willing to wait for
successful invocation. At some time Ss the server gets the request; the server
checks if the deadline can be met, and if it is unsatisfiable a fail
acknowledgement is sent back at time Sn. Otherwise, the request is accepted
and the request is processed at time Sp, and a reply is generated at time Sf
This is illustrated in Figure 6.3.

The problem is to design a nontrivial protocol (one which allows the possibility
of success) which guarantees the client and server will meet a deadline, and
agree on whether or not the request is successful. In other words, a TRPC
protocol should enable a client and its server to arrive at a consistent state ---
they agree on whether the invocation should be continued, or failed (the
invocation is cancelled) and alternative actions should be taken.

6.3.1 Discussion of problem

There are two goals one might try to accomplish with the deadline of a TRPC:

• Goal 1: to establish a bound on the time at which the delay in awaiting a
TRPC call expires

• Goal 2: to establish a bound on the time at which a TRPC call is either
scheduled to execute and finish or is unschedulable and cancelled.

Figure 6.3: Timed RPC Communication Sequence

Client

Server

Cs

Ss Sn Sp Sf

Cf D

Request Ack, Fail Reply

Service Time

A Real-Time Communication System ANSA Phase III

30 Some Engineering Aspects of Real-Time APM.1222.02

The design of a TRPC is complicated by the fact that the end-to-end delay of
messages can be arbitrary or even infinite (messages can get lost). It can be
shown that the two goals are not mutually compatible. In its simplest form, in
which each request takes zero service time, the TRPC problem is equivalent to
the timed synchronous communication problem [Lee90]. In the case of
message loss, timed synchronous communication is the well known Two
Generals problem, in which the two generals are trying to agree upon a
common time of attack before a deadline but can only communicate via
unreliable messengers. Such a protocol does not exist.

The design of a TRPC is further complicated by the fact that making the
decision of whether a request is schedulable at the server side is often
unattainable --- a guarantee scheduler often makes many of the impossible
assumptions such as that the invocation service time is known, operations are
independent etc.

The intention of this work is to develop a protocol for TRPC that works in
reasonable environments. Therefore, an upper bound on message delivery and
a guarantee scheduler cannot be assumed. Instead, various relaxations of the
problem are investigated, this yields to a parametrised generic protocol,
allowing different combinations of the parameters to represent different
relaxed goals.

6.3.2 The protocol

Because using one deadline value to accomplish the two goals in a TRPC may
result in incompatible situations, two arguments --- a timeout and a deadline -
-- are used instead. Each is aimed at one goal only. The timeout is used to
specify the first goal --- how long the client is willing to wait for its result. It
affects a client side of the TRPC protocol only. The deadline is used for the
second goal --- within which the request should be executed on the server. It
affects the server side of the TRPC protocol only.

It should be pointed out that using the two separate arguments does not solve
the TRPC consistency problem. Rather, the two arguments give the problem a
more realistic definition, allowing different relaxations be explored.

The first relaxation is using a timeout to enforce the client’s absolute deadline.
The client decides that the request is unsuccessful if it does not get a reply/
acknowledgement from the server by the timeout. There is a possibility for
inconsistent decisions --- the client believes the request is failed, while the
server knows the request is successful. Deadlines may or may not be used in
this situation. The timeout expiration presents the client an exception
situation of don’t know It is up to the client to take further rescue actions.

The second relaxation is using a deadline to specify a client’s objective time
value by which the request should be finished. Whether this deadline can be
guaranteed or not is purely a matter of server scheduling and message passing
delays. In this relaxation, the client waits until a reply/acknowledgement is
received from the server. Therefore, the client deadline is not absolute. This
relaxation allows a client and its server to reach a consistent decision.

The second relaxation can be further extended by relaxing the meaning of a
deadline. Instead of bounding the finishing time of a request, a deadline can be
used to bound the start time of a request in the server --- to bound the start
time by which the request is rendezvoused with a server task. If the
rendezvous is issued before the deadline, then the request is successful and a
success acknowledgement is sent back to the client, otherwise the request is

ANSA Phase III A Real-Time Communication System

APM.1222.02 Some Engineering Aspects of Real-Time 31

cancelled and a fail acknowledgement is returned. At the client side, there are
two possible actions to be taken when it receives a success acknowledgement.
One is that the client thinks the request is finished, and control is returned so
that it can continue. This is defined by the RendezvousCommunication
deadline type. Another is that the client cancels its timeout, if any, and waits
until a reply is returned later by the server. This is defined by the
RendezvousInvocation deadline type. The two resulting interaction patterns
are illustrated in Figure 6.4.

In summary, an invocation may be associated with an optional timeout, an
optional deadline, and an optional deadline type. The collective choice of the
three parameters determines the behaviour the TRPC protocol. The result of
such a TRPC call can be a timeout --- possibly an inconsistent state, a success
or a failure.

Obviously, it is not necessary to choose the timeout and deadline the same
value. A timeout may be smaller than a deadline, to specify that an
acknowledge should be returned earlier; it may be greater than a deadline, to
allow the request to have a better chance of success.

The default deadline type of an invocation deadline is ServerDetermined --- it
depends on the scheduling policy used in the server to interpret the deadline,
and has no effect on the communication protocol.

Figure 6.4: Rendezvous Communication/Invocation Interaction

Client

Server

Request

Client

Server

Request Reply

Ack

D

A. Rendezvous Communication (success)

D

Ack

Timeout alarm cancelled, if any

B. Rendezvous Invocation (success)
Client

Server

Request

D

Fail

C. Rendezvous Communication/Invocation (fail)

A Real-Time Communication System ANSA Phase III

32 Some Engineering Aspects of Real-Time APM.1222.02

6.3.3 Server deadline expiry

There may be two types of deadline expiry at a server side. One type is defined
by the TRPC protocol, as illustrated by the rendezvous communications and
rendezvous invocations. The required semantics are enforced by the
communication protocol.

Another type of deadline expiry may be caused by the tasking components. An
active thread serving an invocation may be notified of a deadline expiry signal
--- if the operating system scheduler understands deadlines. If the service
routine is designed to accept and handle the signal, a deadline exception may
be raised. This deadline exception, however, is different from the one
processed by the TRPC protocol. The active thread itself detects the deadline
expiry, and may therefore cancel its execution and returns a special value
deadline-exception to the client. This kind of interaction does not require
special TRPC protocol support, as the deadline-exception is just a special
value of reply. This is illustrated in Figure 6.5.

6.4 Towards a decomposable RPC protocol

An RPC protocol is normally required to provide exactly-once call semantics.
The exactly-once protocol is used to ensure that calls are executed once and
only once in the absence of crashes or prolonged communication failure, in
order to preserve the local procedure call semantics for the client. Probes,
acknowledgements and retransmissions are used for error-detection and error-
recovery in such protocols. Error detection and error recovery both introduce
significant performance overheads.

For real-time applications probes and retransmissions are not normally
suitable techniques for error control, and exactly-once semantics are
sometimes not a desired feature because retransmitted data or control
information could be a late message, and have little meaning in real-time
sense. Alternative light-weight protocols with at-most-once semantics are
desirable instead. Real-time ANSA is assumed to operate in a system which
may consist of a mixture of real-time and non-real-time applications, therefore
both the exactly-once and the at-most-once semantics are desirable. It is
possible to implement the two protocols separately, but because the two
protocols share many similarities, alternative integrated design is more
interesting for the purposes of better structure, flexibility and efficient coding.
This raises the desire to design a decomposable RPC protocol.

Figure 6.5: Server Thread Deadline Expire

Client

Server

Request

D

Reply

Deadline expires

ANSA Phase III A Real-Time Communication System

APM.1222.02 Some Engineering Aspects of Real-Time 33

The ANSA REX service provides exactly-once semantics of RPC calls. REX can
be decomposed into three layers as illustrated in Figure 6.6. The three layers
are layered functions sharing the same protocol data structure --- sessions,
and to provide just one protocol service.

The message layer uses the underlying MPS service to provide a simple
unreliable, unfragmented message passing service. This layer sends/receives
messages not larger than a single MPS packet size. The fragmentation layer
provides unreliable, but persistent (recovery from dropped fragment)
transmission of large messages.The reliable-channel layer provides reliable
transmission of large messages (recovery from lost and duplicated messages).

The REX three layers can be reassembled to provide a multiple service
interface. The transportation protocol looks like Figure 6.7. In addition to the
exactly-once service, two other services, the at-most-once service and fast-path
services can be provided. The multi-transportation service protocol is still one
execution protocol in the ANSA sense. But it provides additional call
semantics.

The fast-path service is designed to execute operations within the critical data
path of the RPC system. It is assumed that the request is independent of other
invocations (no resource sharing with others and no nested invocations), and
both the request and result fit in one single MPS packet. Under these
conditions, the server can execute the request within a communication task
(thread), allowing significant performance improvement by saving the cost of
thread dispatches and task context switches.

Figure 6.6: REX Functions Layers

Figure 6.7: A Decomposable Protocol

Messages

Fragment

Reliable channel

Exactly-once calls

Messages

Fragment

Reliable channel

Exactly-once calls Atmost-once calls Fast-path calls

A Real-Time Communication System ANSA Phase III

34 Some Engineering Aspects of Real-Time APM.1222.02

6.5 Summary

Real-time applications present more complicated functional requirements to
the underlying communication systems. This chapter discussed some
mechanisms for providing such functions within the ANSAware RPC
communication system. The facilities examined are:

• a parallel protocol stack

• a timed RPC protocol

• a decomposable RPC protocol.

APM.1222.02 Some Engineering Aspects of Real-Time 35

7 Summary

7.1 Major results

This document presents an engineering framework for open, distributed real-
time applications. The major results of this work are:

• the identification of the practical need and importance of an open,
distributed real-time architecture

• the definition of a set of requirements for the design of an open,
distributed real-time architecture

• the development of a framework for the uniform treatment of real-time
computing and non-real-time computing i.e. system integration

• the identification of a set of technology bases

• the development of a real-time programming model and solutions for some
general real-time problems

• the development of a RPC based real-time communication system.

7.2 Conclusions

The major conclusions of this work are:

• real-time issues can be addressed in an OPEN architecture

• the ANSA computational model can be extended to cater for real-time
programming

• a real-time open system engineering model is viable

• real-time technologies can be integrated with open architecture.

7.3 To be addressed issues

It is anticipated that the ANSA performance model and infrastructure will
cover the following important aspects:

• a Quality of Service framework

• an explicit binding framework

• a performance transparency architecture

• a stream interface.

The engineering design for these ares relies on the forthcoming computational
model design and the resource management programming model design, and
is therefore left not to start until the two high level design finish.

Summary ANSA Phase III

36 Some Engineering Aspects of Real-Time APM.1222.02

7.4 Acknowledgments

The author wishes to thank Leon Bouwmeester, Nigel Edwards, Andrew
Herbert, Nicola Howarth, Rob van der Linden, Dave Otway, Jean-Bernard
Stefani, and Francis Wai for their review and feedback on the document.

APM.1222.02 Some Engineering Aspects of Real-Time 37

References

[Ada9X93]

Ada 9X Documents, Ada 9X Project Report, Real-Time Systems Annex, Office
of the Under Secretary of Defence for Acquisition, US Department of Defence,
February, 1993.

[Allchin83]

J E Allchin and M S Mc Kendry, Synchronization and Recovery of Actions, In
Proc. of Second Symp. on Principles of Distributed Computing, August 1983.

[Attoui91]

A Attoui and M Schneider, An Object Oriented Model for Parallel and Reactive
Systems, In IEEE Real-Time Systems Symposium, December 1991.

[Biagioni93]

E Biagioni, E Copper, and R Sansom, Designing a Practical ATM LAN, IEEE
Network, March 1993.

[Black86]

A P Black et al., Distributed and Abstract Types in Emerald, IEEE
Transactions on Software Engineering, 13(1), January 1987.

[Blair92]

G S Blair and R Lea, The Impact of Distribution on the Object-Oriented
Approach to Software Development, IEE/BCS Software Engineering Journal,
7(2), March 1992.

[Gopinath93]

P Gopinath and T Bihari, Concepts and Examples of Object-Oriented Real-
Time Systems, In Readings in Real-Time systems, Y H Lee and C M Krishna
ed., IEEE CS Press, June 1993

[Herbert93]

A Herbert, The Challenge of ODP, TR 33, APM Ltd., Poseidon House, Castle
Park, Cambridge U.K., 1993 Also Appeared as an Invited Paper for the Berlin
ODP Conference, October 1991.

[Herbert93a]

A Herbert, Distributing Objects, TR 18, APM Ltd., Poseidon House, Castle
Park, Cambridge, CB3 0RD, 1993.

[Ishikawa90]

Y Ishikawa, H Tokuda, and C W Mercer, Object-Oriented Real-Time Language
Design: Constructs for Timing Constraints, In OOPSLA/ECOOP’90, Ottawa,
October 1990.

[ISO/IEC95]

ISO/IEC 10746-3, ITU-TS Recommendation X.903: Reference Model of Open
Distributed Processing: Architecture, January 1995.

References ANSA Phase III

38 Some Engineering Aspects of Real-Time APM.1222.02

[Johnson93]

D B Johnson and W Zwaenepoel, The Peregrine High-performance RPC
System, Software---Practice and Experience, 23(2), February 1993.

[Lee90]

I Lee and S B Davidson, A Performance Analysis of Timed Synchronous
Communication Primitives, IEEE Transactions on Computers, 39(9):1117--
1131, September 1990.

[Lehockzy89]

 J P Lehockzy, L Sha and Y Ding, The Rate Monotonic Scheduling Algorithm -
-- Exact Characterization and average-case Behaviour, Proc. of Tenth IEEE
Real-Time Systems Symp., 1989.

[Leung90]

W H Leung et. al., A Software Architecture for Workstations Supporting
Multimedia Conferencing in Packet Switching Networks, IEEE JSAC,
8(3):380-390, April 1990.

[Li93]

G Li, Supporting Distributed Real-time Computing, PhD thesis, University of
Cambridge Computer Laboratory, Technical Report 322, August 1993.

[Li94]

G Li, ANSAware/RT Version 1.0: Programming and System Overview, APM
document 1207, APM Ltd., Poseidon House, Castle Park, Cambridge, CB3
0RD, 1994.

[Miller90]

F W Miller, Predictive Deadline Multi-Processing, Operating Systems Review,
vol. 24, no. 4, 1990.

[Northcutt88]

J D Northcutt. Mechanisms for Reliable Distributed Real-Time operating
Systems: The Alpha Kernel, Orlando FL: Academic Press, 1987.

[POSIX]

POSIX, IEEE POSIX Std 10003.4a (Draft 13), September 1992.

[Rees93]

O Rees, The ANSA Computational Model, TR 01, APM Limited, Poseidon
House, Castle Park, Cambridge, CB3 0RD, 1993.

[Stankovic88]

J A Stancovic, Misconceptions about Real-Time Computing: A Serious Problem
for the Next Generation, IEEE Computer, 21(10), October 1988.

[Tennenhouse89]

D L Tennenhouse, Layered Multiplexing Considered Harmful, In Protocols for
High Speed Networks, IFIP WG.1/6.4 Workshop, May 1989.

[Wai93]

F Wai, D Otway, N Howarth and A Herbert, A Performance Framework, APM
document 1051, APM Limited, Poseidon House, Castle Park, Cambridge, CB3
0RD, 1993.

