
Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1285.01 Approved 8th March 1995

External Paper

An Overview of Real-Time ANSAware 1.0

Guangxing Li

Abstract

Distributed computing and real-time computing are well established areas of research, but their
integration is yet to be studied because they seldom use compatible techniques. This paper
provides an overview of an ANSA based distributed computing environment (named ANSAware/
RT) for open, distributed real-time computing. The focus of this article is the engineering
mechanisms necessary to support real-time processing. ANSAware/RT incorporates real-time
tasks and communication channels as its basic programming components. It synthesises aspects
of resource requirements, allocation and scheduling into an object-based programming paradigm.

This is an external paper for Distributed Systems Engineering Journal.

An Overview of Real-Time ANSAware 1.0 3

An Overview of Real-Time ANSAware 1.0

Guangxing Li

Architecture Projects Management Ltd., Poseidon House, Castle Park, Cambridge CB3 0RD, U.K.

Abstract: Distributed computing and real-time computing are well established areas of research, but
their integration is yet to be studied because they seldom use compatible techniques. This paper
provides an overview of an ANSA based distributed computing environment (named ANSAware/RT) for
open, distributed real-time computing. The focus of this article is the engineering mechanisms necessary
to support real-time processing. ANSAware/RT incorporates real-time tasks and communication
channels as its basic programming components. It synthesises aspects of resource requirements,
allocation and scheduling into an object-based programming paradigm.

1 Introduction

Open Distributed Processing (ODP) is concerned with the use of commodity
technology, such as OSF DCE [20] or implementations of OMG CORBA [19], to
build integrating applications that link together existing applications,
databases, control systems and users.

Real-time processing is concerned with the timeliness of computing activities.
Real-time processing places unique requirements on distributed systems
including predictability, programmer control, timeliness, mission orientation
and performance [13].

The need for an ODP architecture to include real-time processing is driven by
two technology trends:

• general purpose distributed computing environments are evolving towards
real-time systems. For example, the advances in digital communication
networks and in personal computer workstations allow the generation,
communication and presentation of real-time voice and video media
simultaneously. Many non-real-time systems are being corrected to real-
time multimedia processing [12]. This trend requires distribution and
real-time control functionality to be combined and for real-time features to
be intrinsic elements of normal system services, rather than as special
add-ons

• real-time applications are evolving towards large distributed systems.
One-million-line real-time software systems in telecomms,
manufacturing, transportation and other application areas are becoming
common today [6]. Such systems are large by any standard and inevitably
distributed. Therefore, in addition to the problems associated with real-
time operation, they are subject to all of the problems of any large
software system, such as maintainability, evolution and distribution.
There is an increasing need to adopt open architectural standards.

An ODP architecture with real-time extensions provides the capability to treat
all forms of real-time objects as first class citizens. That is, operations and

4 An Overview of Real-Time ANSAware 1.0

mechanisms provided for existing non-real-time components can be applied to,
and used by, real-time components. The provision of a uniform system
architecture facilitates increased productivity, especially for applications
which offer combinations of distributed and real-time functionality: e.g.
multimedia conferencing, distributed control etc. It allows existing distributed
system mechanisms (such as trading, security, monitoring, replication,
location, migration and federation) to be applied to real-time components. It
also allows evolution of systems from the development of individual real-time
systems, to groups of real-time systems and then to enterprise-wide command
and control real-time systems.

Current reference models for open distributed processing, including ISO RM-
ODP [9], OSI Management, OMG Object Management Architecture [19] and
ANSA [8], make no mention of real-time issues. Current standards for open
distributed processing, such as the OSF’s DCE and the OMG’s Common Object
Request Broker Architecture (CORBA) do not address real-time or
performance management requirements. As relatively new technologies,
attention has focused entirely on functionality; real-time issues are not
addressed.

This paper provides an overview of the design, implementation and
performance evaluation of the real-time ANSAware (ANSAware/RT or shortly
AW/RT) 1.0 to address the problem of real-time computing in the ODP domain.
AW/RT is based on the ANSA architecture [8] and its example implementation
ANSAware 4.1 [2]. The focus of this article is the engineering mechanisms;
other issues such as architecture and application programming interfaces can
be found in [14, 16].

This paper is organised as follows. Section 2 gives a short introduction to
ANSA. Section 3 discusses the important aspects of real-time objects. Sections
4-6 present the engineering designs required to extend ANSA for real-time
systems. Sections 7-10 outline the implementation techniques used for AW/RT
in comparison with ANSAware. Section 11 gives a performance evaluation of
the system by using of the Distributed Hartstone Benchmark [18]. Section 12
gives a summary and finally section 13 discusses related work.

2 ANSA

ANSA is an Architecture for ODP, which provides new ways of thinking about
the design and construction of object oriented distributed systems. ANSA uses
five complementary models (enterprise, information, computational,
engineering and technology) to describe architectural components, of which
the computational model and engineering model are most relevant to this
work. The overall ANSA framework has heavily contributed to the joint ISO/
ITU Reference Model of ODP (RM-ODP) [9].

2.1 ANSA object model

The ANSA computational model (ACM) uses objects as units of distribution for
management and replacement. An object has one or more interfaces that are
the points of provision and use of service. Interfaces are first class entities in
their own right and references to them may be freely passed around the
system.

An interface contains a set of named operations (i.e. procedures or methods)
which defines its type. Interfaces have the usual remote procedure call style of

An Overview of Real-Time ANSAware 1.0 5

interaction: operations are invoked with a set of arguments and a response is
returned. Arguments and results to invocations consist of data and (possibly)
references to other interfaces. The effect of an interaction is that the client and
server share access to the argument and result interfaces. This model makes
each interface an abstract data type. ANSA also has a stream interface for
representing arbitrary communication flows, which is beyond the scope of this
paper.

2.2 ANSA engineering model and ANSAware

The ANSA Engineering Model (AEM) provides a framework for the
specification of mechanisms to support distribution of application programs
that conform to ACM. ANSAware (AW) is an example implementation of AEM.
AW is a suite of software for building ODP systems, providing a basic platform
and software development support in the form of program generators and
system management applications. AW provides a uniform view of a multi-
vendor world, allowing system builders to link together distributed
components into network wide applications. It historically preceded, and
accurately predicted the need for both the DCE and CORBA.

The main components of AEM are:

• transparency mechanisms which automate aspects of distribution such as
object migration and object replication

• nucleus which provides minimal resource management support for the
implementation of distribution. It encapsulates all of the heterogeneity of
processor and memory architecture

• capsules which are collections of application objects, transparency
mechanisms and nucleus objects forming a virtual node of a network

• threads: sequences of instructions modelling a computational model
activity within a capsule. A thread represents a unit of potentially
concurrent activity that can be evaluated in parallel with other threads,
subject to synchronization constraints

• tasks: virtual processors which provide threads with the resources (e.g.
stacks) they require to progress. Tasks1 provide the resources for real
concurrency. An ANSA task is conceptually equivalent to an operating
system thread

• interface references: identifiers which contains sufficient information to
allow their holder (client) to establish communication with the interface
denoted by the reference (server)

• channels: resources (e.g. stubs and protocol drivers) required to enable
end to end communication. The initiating side (typically a client) end-
point of a channel is called a plug. The receiving side (typically a server)
end-point is called a socket

• binders: components to support binding: the process by which an activity
in one object establishes the ability to invoke operations at an interface to

1. ANSA threads are cheap resources (each requires less than one hundred bytes);
whereas ANSA tasks are expensive resources (each requires several kilo-bytes). In a
distributed application there may be many threads (e.g. 100’s or 1000’s); it is
important only to allocate a task to execute a thread when there is a processor
available to run it.

6 An Overview of Real-Time ANSAware 1.0

some other object. Binding establishes and controls the communication
channels between objects so their interactions are possible.

3 Distributing real-time objects

The essence of a real-time object model is to provide the basic abstractions so
that stringent timing constraints of real-time activities are respected
(guaranteed ideally). The main difficulty is that the actual timing
characteristics of software are determined not only by the raw processor
speed, but also by competition for scarce resources. In most high level
languages, this dependency is considered as non-essential detail to be hidden
from the programmer. As a result the performance of software implemented in
these languages becomes sensitive to resource allocation strategies (in a
dynamic system, this means performance depends on system load), and
outside the control of individual programmers. More complex resources such
as the communication subsystem of distributed systems further accentuate
the problem with the introduction of (sometimes distributed) resource
allocation algorithms which are usually inaccessible to the application
programmer.

Object interdependence can be classified into two categories:

• static interdependence --- the structural relationships between objects

• dynamic interdependence --- the interactions (execution views) between
objects.

Many useful results are known about the static relationships between
distributed objects. Related concepts, such as abstract data typing, type
checking and subtyping, are accepted and used widely. On the other hand,
little consensus has been achieved on the execution view of objects. Many
approaches to object execution have been proposed, some of which are the
active object model [4], the passive object model [1], and the actor object model
[3].

For real-time applications, this execution aspect is of vital importance --- it
has fundamental impact on the predictability of computational activities.
Real-time object execution models are required to address not only how the
computational activities are carried out, but also how shared resources are
used (i.e. the manner in which contention for system resources is resolved
taking into account timing constraints of real-time activities). Distributed
real-time systems must provide support for the specialized requirements of
real-time communication, tasking, scheduling, and control. These
requirements must be explicitly addressed in the object execution model, if it
is expected to be applicable to a real-time world.

4 ANSAware/RT design

Collectively, the ACM and AEM define the ANSA object execution model. This
model is designed for object distribution, but not for real-time applications. It
lacks real-time predictability in the following sense:

• it multiplexes both tasks and communication channels whenever possible

• both thread/task scheduling and communication scheduling are implicit

An Overview of Real-Time ANSAware 1.0 7

• no abstraction is provided to express urgency and resource requirement
for application programmers.

A real-time object model can be obtained by extending the execution model
with explicit resource allocation, real-time scheduling and real-time
communication support. The AW/RT real-time object model has two parts: a
tasking model and a communication model.

5 ANSAware/RT tasking model

5.1 Real-time objects

A real-time object is composed of data, one or more tasks of execution, and a
set of interfaces. A new abstraction, scheduling entry, or shortly entry, is
introduced as the basic mechanism for real-time scheduling and resource
allocation.

An entry is a thread queue with a record of control data. An entry may be
created, and interfaces may be bound to it dynamically. When an interface is
bound to an entry, each operation request on the interface will be transferred
(by the infrastructure) to a thread enqueued on the entry. Any thread
representing a computational activity is also spawned on an entry. The entry
is an engineering concept which is confined within a capsule. Figure 1 gives a
graphical illustration of a real-time object.

Tasks may be allocated for each individual entry to execute its threads. When
executing a thread, a task is also allowed to rendezvous with other entries
dynamically. A rendezvous of a task with an entry means that the task waits to
accept and execute one thread on the entry. Different control parameters may
be selected for each entry to choose a thread queuing policy, a task/entry
rendezvous policy, and to enforce concurrency controls.

In such an object model with data, interface, entry and tasks encapsulated
within a capsule, there is a choice of how many entries are allocated, which
interface is attached to which entry, how many tasks are allocated to an entry,
whether a task can rendezvous with a specific entry, and what kinds of
resource scheduling policies are used.

Figure 1: Real-time object illustration

Task Group

Task

Invocation
enqueue

Entry

Rendezvous

InterfaceScheduler

private date and object state

8 An Overview of Real-Time ANSAware 1.0

The choice to allocate a separate entry for some interfaces reflects the need to
separate these interfaces from others for the purpose of resource management.
The number of tasks allocated to an entry not only enforces the real
concurrency allowed for the execution of threads on the entry, but also affects
the real-time scheduling properties, for example, preemptivity and priority
inversion [17]. The flexibility for allowing a task to rendezvous with an entry
enables an application to have complete control over its virtual processor(s)
based on its knowledge of the system state. These resource management
activities can all be done dynamically, increasing the flexibility and usefulness
in an open dynamic environment.

5.2 Real-time object invocation

AW/RT allows the association of an optional priority (criticality) and/or
deadline with each invocation. As the invocation crosses from one object to
another, this priority and/or deadline is passed and becomes a property of the
executing thread on the server site.

5.3 Scheduling

The main goal of the real-time tasking design is to allow the maximum control
of scheduling at the application level. Care has been taken to achieve the
balance between flexible and deterministic scheduling. Scheduling is defined
in layers as:

• thread scheduling --- by a rendezvous scheduler for each entry

• task scheduling --- by a nucleus scheduler for tasks.

Task scheduling and thread scheduling are two separate, but related
scheduling domains. Task scheduling is defined in the nucleus or the
underlying operating system kernel. Preemption can be used together with
task scheduling parameters to order (either partially or completely) the
otherwise non-deterministic behaviour of the task execution. Thread
scheduling manages the multiplexing of requests (thread) over tasks. The
primary function performed by multiplexing is the sharing of processor
resources, which is similar to the multiplexing in communications systems
and protocols for sharing communication resources. The use of separate
entries to process requests on separate interfaces offers a number of
(potential) advantages

• it allows the use of different scheduling policies at each interface or
interface class,

• it allows the possibility of using interface specific tasks to serve requests,
and thus allows for more efficient resource utilisation,

• separate entries may be processed in parallel, thus increasing
performance,

• it allows the possibility of end-to-end scheduling and guarantees,

• it preserves the modularity and separation of interfaces.

There are two issues in thread scheduling management. One is how a thread
is enqueued in an entry (with the assumption that the first thread in the
queue is executed first). Such a policy may be a system defined one, like
invocation priority based, or an application provided one. Some typical thread
enqueue policies are (1) first come first service, (2) priority based, (3) deadline
based, (4) priority and deadline based.

An Overview of Real-Time ANSAware 1.0 9

Another issue is how a serving task rendezvous with a thread in an entry, i.e.
how the thread scheduling parameters (priority and/or deadline) are used/
inherited by the task. This is defined by a task/thread rendezvous policy. Such
a policy affects how the serving task competes for processor resources with
other tasks. Some typical task/thread rendezvous policies are (1) null --- the
priority/deadline of a thread has no effect on the serving task, (2) priority
inheritance, (3) transitive priority inheritance, (4) priority ceiling and (5)
deadline inheritance.

Detailed examination of some typical real-time scheduling schemes, such as
priority based scheduling and deadline based scheduling, can be found in [17].

6 ANSAware/RT communication model

Real-time applications present more complicated functional requirements to
the underlying communication systems. AW/RT provides abstractions to
express the individual Quality of Service (QoS) constraints for a
communication channel and the selection of in-band QoS parameters of an
invocation.

The following abstractions are provided in AW/RT

• the allocation of a separate communication channel (with an individual
QoS) for each client/server binding by an explicit binding operation,
allowing the control of communication multiplexing and time of binding

• the association of in-band QoS with each invocation

The in-band QoS object supports the specification of a priority, a timeout, a
deadline, a deadline type, and any other QoS parameters a communication
channel may support, depending on the individual network’s capabilities.

Priority and deadline are used to convey the urgency of a real-time activity
across a network. The combination of a timeout, a deadline and a deadline
type can be used to bound the expected execution time of an invocation (see
section 6.2).

From engineering point of view, the following mechanisms are required:

• a parallel protocol stack

• a timed RPC protocol

6.1 A parallel protocol stack

A parallel communication protocol stack allows the preallocation of
communication resources (a separate channel, for example) and the removal of
layered multiplexing. The main gain is that it allows the application to explore
the communication QoS that the low-level operating environment can provide.
For example, in an ATM environment, a channel (or a virtual circuit) is
allowed to associate with various transportation QoS, such as jitter, delay,
priority etc. Even in an ordinary operating environment, this design allows a
choice of communication protocols, such as TCP, UDP, IPC etc.

6.2 A timed RPC protocol

Arbitrary delays associated with synchronous invocations cannot be tolerated
due to the time-dependent nature of real-time applications. A dependable

10 An Overview of Real-Time ANSAware 1.0

protocol is desirable to provide a timeliness service for real-time RPC, or timed
RPC.

Invocations in AW/RT can attach deadline constraints to their communication
requests. Such calls raise the following three issues:

• the management of time in a networked environment. Intuitively, a
deadline is an upper bound, which is placed on the time duration for the
invocation to occur. Therefore both the server and client must have the
same sense of time --- the deadline. It is thus necessary to assume that a
common sense of time is provided by the infrastructure between a client
and a server

• the interpretation of deadlines

• a communication protocol to implement reasonable meanings of deadlines.

There are two goals one might try to accomplish with the deadline:

• to establish a bound on the time at which the delay in awaiting a call
expires

• to establish a bound on the time at which a call is either scheduled to
execute and finish or is unschedulable and cancelled.

The design of a timed RPC is complicated by the fact that the end-to-end delay
of messages can be arbitrary or even infinite (messages can get lost). It can be
shown that the two goals are not mutually compatible. In its simplest form, in
which each request takes zero service time, the problem is equivalent to the
timed synchronous communication problem [11]. In the case of message loss,
timed synchronous communication is the well known Two Generals problem
[11], in which the two generals are trying to agree upon a common time of
attack before a deadline but can only communicate via unreliable messengers.
Such a protocol does not exist.

The design of a timed RPC is further complicated by the fact that making the
decision of whether a request is schedulable at the server side is often
unattainable [23] --- a guarantee implies constraints such as that the
invocation service time is known, operations are independent etc.

Because using one deadline value to accomplish the two goals in a timed RPC
may result in incompatible situations, two arguments --- a timeout and a
deadline --- are used instead. Each is aimed at one goal only. The timeout is
used to specify how long the client is willing to wait for its result. It affects a
client side of the protocol only. The deadline specifies the time within which
the request should be executed on the server. It affects the server side of the
protocol only.

It should be pointed out that using the two separate arguments does not solve
the consistency problem. Rather, the two arguments give the problem a more
realistic definition, allowing different relaxations be explored.

The first relaxation is using a timeout to enforce the client’s absolute deadline.
The client decides that the request is unsuccessful if it does not get a reply/
acknowledgement from the server by the timeout. There is a possibility for
inconsistent decisions --- the client believes the request is failed, while the
server knows the request is successful. Deadlines may or may not be used in
this situation. The timeout expiration presents the client an exception
situation of don’t know. It is up to the client to take further rescue actions.

The second relaxation is using a deadline to specify a client’s objective time
value by which the request should be finished. Whether this deadline can be

An Overview of Real-Time ANSAware 1.0 11

guaranteed or not is purely a matter of server scheduling and message passing
delays. In this relaxation, the client waits until a reply/acknowledgement is
received from the server. Therefore, the client deadline is not absolute. This
relaxation allows a client and its server to reach a consistent decision.

The second relaxation can be further extended by relaxing the meaning of a
deadline. Instead of bounding the finishing time of a request, a deadline can be
used to bound the start time of a request in the server --- to bound the start
time by which the request must rendezvous with a server task. If the
rendezvous is issued before the deadline, then the request is successful and a
success acknowledgement is sent back to the client, otherwise the request is
cancelled and a fail acknowledgement is returned. At the client side, there are
two possible actions to be taken when it receives a success acknowledgement.
One is that the client thinks the request is finished, and control is returned so
that it can continue. This is defined by the RendezvousCommunication
deadline type. Another is that the client cancels its timeout, if any, and waits
until a reply is returned later by the server. This is defined by the
RendezvousInvocation deadline type. The two resulting interaction patterns
are illustrated in figure 2.

The deadline type parameter is introduced to choose how the deadline can be
used in the server side of a call. It can be used to control the latest start or
latest finish time of an invocation.

In summary, an invocation may be associated with an optional timeout, an
optional deadline, and an optional deadline type. The collective choice of the

Figure 2: Rendezvous communication/invocation interaction

Client

Server

Request

Client

Server

Request Reply

Ack

Deadline

A. Rendezvous Communication (success)

Deadline

Ack

Timeout alarm cancelled, if any

B. Rendezvous Invocation (success)
Client

Server

Request

Deadline

Fail

C. Rendezvous Communication/Invocation (fail)

time

12 An Overview of Real-Time ANSAware 1.0

three parameters determines the behaviour the timed RPC protocol. The
result of such a timed RPC call can be a timeout --- possibly an inconsistent
state, a success or a failure.

An example of object invocation using timed RPC in AW/RT is shown as
following. In the invocation, the deadline type is RendezvousCommunication,
the deadline value is 100 ms, the timeout value is 200 ms. If the timeout
expires, an operation specific exception handler will be called which may take
whatever necessary actions for the error recovery.

ansa_InvQoS qos;
ansa_invqos_setdeadline(&qos, 100);
ansa_invqos_setdeadlineType(&qos, rendezvousCommunication);
ansa_invqos_settimeout(&qos, 200);
{result} <- ifref$op(parameters) Signal clientTimeout {qos}

7 ANSAware/RT implementation

AW/RT was first implemented as RIDE [17] in the Cambridge University
Distributed Systems Environment. It used an experimental real-time
microkernel named WANDA, and ANSAware 3.0. The environment was
composed of interconnected 680x0, VAX, Acorn RISC Machine, and MIPS
machines over a mixed ATM and Ethernet network.

AW/RT described in this paper is an evolution of RIDE to run over a standard
real-time environment. AW/RT also uses binding and QoS concepts taken from
the RM-ODP to provide a more general vehicle for resource management and
requirement specification.

AW/RT has been ported to the DEC/Alpha OSF1 operating system, the HP/RT
target system and LynxOS. AW/RT 1.0 achieved the following design goals

• portability and interworking with a new version of ANSAware (4.1)

• running over a de-facto industry standard: real-time POSIX threads
(pthreads)

• full pthread real-time scheduling and threading capabilities

• selective communication multiplexing by QoS specification and explicit
binding operations

• application controlled resource allocation

• multiple RPC protocols: different protocols are used for real-time and non-
real-time interactions

• interoperation between different real-time platforms while retaining their
real-time features.

In the following sections, ANSAware is explained first and then the AW/RT
tasking and communication system.

8 ANSAware

Logically, AW starts with several threads and one or more tasks. There is a
receiver thread for receiving messages at communication endpoints, a time
thread to execute time-related activities, and an application program thread to
execute the user program code.

An Overview of Real-Time ANSAware 1.0 13

AW tasks are user level entities implemented by a coroutine. Additional tasks
may be created to provide extra physical concurrency. Tasks are shared by all
threads. Threads waiting to execute are queued on one FCFS queue. The AW
scheduler in the nucleus assigns free tasks to execute queued threads. The
scheduler is non-preemptive and is only entered when the current thread/task
blocks or terminates. If a thread/task is resumed, the scheduler will return
control to it.

AW takes several advantages of the coroutine nature of its concurrency:

• use of global, continuous and extensible memory areas to store the shared
data structures holding the system state. AW increases memory for
shared data structures in a dynamic manner but requires that the
existing memory and the newly allocated memory be contiguous. This
requirement has been achieved by copying the existing data to a new
location where contiguous memory is available

• use of global variables to carry context information. The variables that
form the context of an ANSA task are global variables which are shared
by all ANSA tasks. Thus, context information is passed to all the
procedures through global variables. This allows fast inter task context
switch and fast procedure execution (i.e. there is no need to pass context
information through procedure parameters)

• shared data are accessible without requiring a synchronization
mechanism since the AW scheduler is non-preemptive. A task, while
execution, will not relinquish control until it blocks or terminates.
Therefore, it is guaranteed exclusive access of the shared data in a single
processor environment, and there is no need for access protection of
shared data.

The AW communication system implements four protocol layers:

• Message passing protocol (MPS): an interface to the transport protocols
provided by the underlying operating system

• Execution protocol (EX): implement the invocation of ANSA operations.
AW 4.1 supports the Remote Execution Protocol (REX) for point to point
invocations and the Group Execution Protocol (GEX) for invocations
between replicated clients and servers

• Channels/sessions: used to store the end-to-end state required for a
remote invocation and to synchronise the execution of the tasking and the
communication systems

• Stubs: marshal host language level variables into (and out of) linear
communications buffers.

The communication system supports an implicit binding model which was
designed to have good scaling characteristics and to optimise the usage of
resources. It uses maximum multiplexing to efficient resource management
and provides only one Quality of Service.

An interface reference (ifref) contains sufficient information to allow the
holder (client) to establish communication with the interface denoted (server).
An interface reference has a set of address records, each of which in turn
consists a channel name and the network address of the underlying MPS.

The MPS interface is stateless and defines an unreliable datagram service.
There is no mechanism for QoS based selection/setup of a MPS module. High-

14 An Overview of Real-Time ANSAware 1.0

level protocols multiplex MPS endpoints whenever possible (in a capsule wide
basis).

The EX interface is also stateless and there is also no mechanism for QoS
based selection/setup of an EX module. REX is designed for asynchronous
communication optimized for either low-latency or high throughput. REX
provides a rate-based fragmentation service. The execution reliability
semantics of REX calls are exactly-once in the absence of total communication
failure.

Channels (i.e. sockets and plugs) are used to store static communication
information; sessions duplicate channel state and store additional dynamic
information for each invocation. There is an one-to-one correspondence
between channels and ifrefs. Clients send/receive invocation requests/replies
through plugs. Servers receive/transmit invocation requests/replies over
sockets. The channel name provides an extra layer of demultiplexing on top of
the MPS address, so that the capsule can locate the right dispatcher for a
specific interface. There is no interaction between the channel and MPS
modules when channels are created and destroyed; the two are independent of
each other.

A service provider fabricates an ifref by an interface creation operation, which
can then be passed to a potential client. A client holding the ifref must then
bind to the service in order to communicate with it. Client side binding (the
creation of a plug) is performed on the first invocation of a service; the first
invocation is detected by the absence of the ifref from the ifref to plug cache.
The bind operation which allocates a new plug also adds the plug to the cache.
Removing an ifref from the cache will force a rebinding operation. At no stage
is there any interaction between the binding process and the EX and MPS
modules; it is assumed that all communications between channels is
multiplexed over a single MPS address within a capsule.

9 ANSAware/RT tasking

In AW/RT, each task is mapped into a pthread, and task scheduling is done by
the underlying operating system. All pthread attributes also apply to tasks,
allowing the exploitation of preemptive real-time scheduling, multiple
scheduling policies, kernel supported synchronization objects, task private
data, task exception handling, task synchronous I/O etc. pthread features.
Thus the original AW task scheduler is made redundant.

9.1 Global data protection

Because of the real concurrency and preemptive nature of the pthread system,
synchronisation is needed to ensure the safe access to shared data. A
pessimistic synchronisation approach is taken: all data structures are
protected by a single lock. To perform any AW/RT operation, a task must first
acquire the lock, then operate on the shared data, and finally release the lock
when finished.

9.2 Thread private state

Each thread has a few private state variables, such as exception_code ,
exception_state, memory_list etc. These thread private state variables are
stored in the global data area in AW. Thread private state are used frequently
in both application program and AW operations, therefore it would be

An Overview of Real-Time ANSAware 1.0 15

expensive to leave these state still in the global data area in AW/RT which
need to be protected by a synchronization mechanism for each access. The
solution adopted is to use pthread per-thread state to store AW thread private
state (rather than using the global area). Such state information are then
accessible by using of the pthread_getspecific procedure without a
synchronization operation. The thread private state is actually part of a task
private data area. When a task is created, it allocates a private state area as
pthread per-thread data, and part of this area is used as thread private state
when the task is executing a thread.

9.3 Stacked threads

AW threads are non-stacked: a task will not execute another thread before it
finishes the current one. AW/RT introduces the dynamic rendezvous
mechanism: a thread may rendezvous with another thread while executing.
The required extensions are to allow a task to execute another thread when it
is executing a thread. This stacked thread mechanism is implemented by
pushing the thread private state area into the task’s stack before executing
the new thread (so that the new thread still can use the same task private
data as its thread private state), and restore the thread private state from
stack when the new thread finishes.

9.4 Threads

Threads are created in two cases: (1) an application may create new threads
for additional concurrency; (2) a communication task may create one
additional thread for each RPC request from a client. In AW, a new thread is
queued on the capsule-wide FCFS thread queue, waiting to be executed by a
free ANSA system task. In AW/RT, a new thread is queued on an entry instead
of the capsule FCFS queue. In case (1), the application gives an additional
entry argument when a new thread is created. In case (2), the binding between
an interface and an entry determines on which entry the new thread should be
queued.

9.5 Entry

Each entry is associated with a thread queue and a thread queuing policy.
Policy/mechanism separation is used for efficient coding. A common set of
thread queuing/dequeuing mechanisms are provided, and on top of the
mechanisms a set of scheduling policy objects are imposed. Figure 3 illustrates
the design.

Each entry is also associated with a rendezvous policy. Each policy provides
two functions: rendezvous_inheritance and rendezvous_deinheritance .
The rendezvous_inheritance function is executed before a task executes a
thread so that the task can take the thread scheduling parameters into
consideration. For example, it allows the task to inherit the thread’s priority.
The rendezvous_deinheritance function is executed after a task finishes the
execution of a thread to eliminate any scheduling effect on the task caused by
the rendezvous_inheritance function.

9.6 Synchronous I/O

AW assumes a totally asynchronous I/O model because

• it allows the tight combination of communication event processing and
task scheduling for efficiency

16 An Overview of Real-Time ANSAware 1.0

• it prevents a capsule from blocking because of an otherwise synchronous
I/O operation.

The asynchronous I/O approach separates out the indication that data is
available from the actual reading of the data. The asynchronous I/O model in
AW is supported by

• a UNIX signal like programming interface called pin. An application can
register an interrupt handler to be invoked when input occurs on a pin
and that handler is then able to spawn a thread to read any input data

• a non-blocking keyboard input library

• a library for supporting X11 applications.

With pthread implementation of the tasking system, the asynchronous I/O
model is no longer necessary because

• task scheduling is done by the operating system; there is no tight
integration of tasking scheduling and communication scheduling

• a capsule will not block when a thread is doing a synchronous I/O

In other words, AW/RT does not need to assume the asynchronous I/O model,
and a complete synchronous I/O model is more natural and easy to
programming. Therefore, AW/RT removes the pin interface, the non-blocking
keyboard input library and the X11 library. The application programmer can
use the equivalent synchronous I/O operations supported by the pthread
interface.

9.7 Communication tasks and system tasks

Dedicated communication tasks are spawned to process incoming messages
and the corresponding protocol by using of synchronous I/O operations. For
each message passing service endpoint (i.e. a socket), a task is spawned to
handle messages from it. The communication task generates a thread
corresponding to each invocation request. The thread is queued on an entry to
which the called interface is bound. Thus, the communication task is both a
thread generator and a thread scheduler. The threads are executed by tasks at
an entry allocated by an application. The scenario is shown in figure 4.

When a thread makes a synchronous invocation to a server, it blocks at a
condition variable which is defined on a task’s private data area. When a reply
is returned and has been processed by a communication task, the condition
variable is signalled and therefore the calling thread is woken up.

Figure 3: Thread scheduling: policies and mechanisms

FCFS PB DB PDB DPB

thread scheduling mechanisms

entry A entry B

scheduling policies

: thread

An Overview of Real-Time ANSAware 1.0 17

10 ANSAware/RT communication system

10.1 QoS and explicit binding

QoS objects are introduced to express different communication requirement
and are used by explicit binding operations to create different communication
channels.

When creating a service instance, a QoS object is allowed to be associated with
the interface creation operation. The operation uses an explicit binding
function to fabricate the required ifref. The explicit binding function calls the
corresponding explicit binding operations in each protocol layer (EX and
MPS). The binding function at each protocol layer interpret the relevant QoS
attributes, setups the protocol related binding states, and return data that
may be used to build the ifref as the result.

In comparison with implicit binding, the ifref created by an explicit binding
contains only that data deduced from the QoS, rather than the default data
that provides the maximum communicability and also the maximum
multiplexing.

Client side explicit binding is performed by a binding function, which is also
associated with a QoS object. This function, like the server side binding
function, calls the explicit binding operations at each protocol layer with the
ifref and the QoS object as arguments. The explicit binding operation at each
protocol layer executes a complimentary procedure to the relevant QoS and
the ifref to create the client site binding. The binding function finishes by
creating a plug and adding it in the plug cache, so that later calls on the
interface are guaranteed an established channel.

10.2 State-full message passing protocol

The MPS interface is extended to be state-full: it supports a connection-
oriented communication paradigm. Each channel is associated with a binding
data structure which represents end-to-end state establishment with some
known channel-specific properties (deduced from a QoS object).

The MPS interface is extended with three functions: server explicit binding
function, client explicit binding function and binding release function. The
original message send and receive operations are also extended to make use of
the binding data structure. A default binding is established at MPS

Figure 4: Communication tasks and system tasks

Network

MPS communication tasks

Entries and threads

System tasks

18 An Overview of Real-Time ANSAware 1.0

initialisation time to be used as the default communication channel for the
implicitly bound interfaces.

10.3 State-full execution protocol

EX is modified to use the state-full MPS, and is itself redesigned to state-full
as well. This allows the addition of extra binding data to include EX
dependent data and state. For example, the binding data contains extra
information about the header size of an EX protocol which can be used by MPS
to fetch the correct EX-dependent packet headers. Like MPS, the EX interface
is extended with three similar binding functions.

10.4 Timed remote execution protocol

The generic design of the binding and state-full protocols allows the insertion
of new EX protocols. The timed RPC is implemented as one example.

Timed Remote Execution Protocol (TREX) is a cut-down version of REX as
follows:

• no fragmentation, this has significantly reduced the size of the protocol

• at-most-once semantics, no timeout controlled retry

• no integrity check, no passing and checking of nonce

• small header size, the result of the above three design choices

TREX also extends REX in the following aspects to implement the semantics
of TRPC:

• the header of requests is expanded to include the information about the
priority, deadline and deadline type

• extended session functions to process timeout at client side and deadline
expires at server side

• extra message types for handling deadline exception and confirmation.

TREX supports only explicit bindings, i.e. interfaces created by implicit
binding operations will not be able to use TREX.

10.5 In-band QoS

In-band QoS is allowed to be associated to each invocation to select the
dynamic QoS parameters of a channel. Currently, if a channel uses TREX as
its EX, the in-band QoS can select a priority, a timeout, a deadline and a
deadline type.

10.6 Session overridden

Client timeouts are a mixed blessing: the desired semantics requires that
when a timeout expires the client should resume control (e.g. to take some
immediate recovery actions). However, the operation is still carried on at the
server side and an extra packet exchange is required to resynchronise the
client and server. If the packet exchange takes place at the timeout expiry
time, the extra overhead of synchronisation may lead to uncertain timeout
semantics. Therefore, an alternative approach is pursued as illustrated in
figure 5.

The client continues immediately after the timeout, and the client session is
set to idle. No synchronisation packet exchange is initiated by the client, thus

An Overview of Real-Time ANSAware 1.0 19

allowing an inconsistency between a client session and its server session.
Should the server returns an obsolete result later, resynchronisation of the
client and server (sessions) are taken at that time. The approach also allows
the server session to be aware that its client may timeout, and that the client
session may be used for another invocation. Thus, a later invocation from the
same client may override an obsolete invocation at a server.

11 Performance evaluation

There are several standard synthetic benchmarks for real-time computing
systems, including Hartstone Benchmark (HB) [22], Distributed Hartstone
Benchmark (DHB) [18] and Hartstone Distributed Benchmark (HDB) [10].
The HB is a set of timing requirements for testing a system’s ability to handle
hard real-time applications. It is specified as a set of tasks with well-defined
workload and timing constraints. It is a benchmark for single processor
machines. The DHB and HDB are both extensions of HB for distributed real-
time systems. They are designed to give figures of merit for the complex end-
to-end scheduling and timing behaviour of the system. In comparison, the
HDB gives a broader definition and merit of real-time distributed systems’
behaviour, while the DHB has a concrete definition of the series of tests.

DHB was chosen to measure and evaluate AW/RT performance. The intention
of DHB is to measure the real-time performance of the processor scheduling,
the communication network scheduling and the coordination between these
scheduling domains. It is argued that since more sophisticated scheduling
algorithms may require more overhead for low-level operations, a system
which offers better schedulability for its applications and thus better overall
performance may not have the best times for low-level operations. A system
which is leaner and faster in terms of low-level operations may not be capable
of scheduling a task set to meet all of its deadlines. DHB is thus designed to
factor all of these attributes into the overall evaluation of a system.

DHB defines five sets of experiments based on a typical client/server
interaction model. The task workload is expressed in Kilo-Whetstone (KWS) or
milliseconds. A KWS is one execution of a mathematical library, which factors
out the effect of a typical arithmetic computing. Each experiment starts with
five periodic client tasks and one or two server tasks. Each task is required to
execute a specific amount of workload within its period. The experiment

Figure 5: Session timeout recovery

time

time

client

server

client

server

timeout

timeout

request reply

request request reply

A. Later client/server session synchronization

B. Override the server session

20 An Overview of Real-Time ANSAware 1.0

continues with added workload until any task’s deadline cannot be met. The
five sets of experiments are:

• DSHcl, a Distributed, Synchronized, and Harmonic task set which tests
the communication latency of the system. The server computation time is
increased in milliseconds to squeeze the time left for message passing

• DSHpq, a Distributed, Synchronized, and Harmonic task set. The server
computation time is increased in KWS to measure how well the system
does at priority queuing of communication packets

• DSNpp, a Distributed, Synchronized, and Non-harmonic task set. The
number of low-priority client tasks are increased to test the degree of
preemptability of the protocol engines

• DSHcb, a Distributed, Synchronized, and Harmonic task set. The number
of high-priority client tasks is increased to test the bandwidth for real-
time communications

• DSHmc series, a task set for measuring media contention, which does not
apply to the Ethernet.

To achieve comparable results, DHB was executed on AW/RT by using of a 10
Mbps Ethernet and two DEC Alpha 3000/300 workstations. The relevant
performance of the ARTS distributed real-time operating system and RIDE
system are also given in table 1. The ARTS performance is copied from [18]
which was measured by using SUN3/140s and a private 10 Mbps Ethernet.

Comparison of the performance of AW/RT, RIDE and ARTS is, however, not as
simple as it looks. The ARTS system uses kernel supported objects, object
invocations, and preemptive protocol processing; while AW/RT and RIDE use a
relatively heavyweight user level RPC mechanism. In RPC systems, the
marshalling and un-marshalling of arguments, the overhead of an RPC
protocol, the multiplexing of a required operation within an interface, and the
demultiplexing of replies for clients are time consuming. Taking these into
account, it is reasonable that RIDE is 9 ms less efficient in the DSHcl series
test (which tests communication latency). On the other hand, RIDE performs
as well as ARTS in the DSHpq, DSNpp and DSHcb series tests. That is, RIDE
can achieve about the same performance as ARTS in the priority queuing of
communication packets, in the preemptability of the protocol engine, and in
the provision of communication bandwidth.

The much better performance of AW/RT reflects the combined effects of the
superiority of a commercial real-time operating system, a much powerful
processor and a carefully tuned mechanisms based on the practical experience
of RIDE. Unfortunately, we have been unable to find figures that enable us to
compare all three systems in the same platform.

Table 1: RIDE, AW/RT vs ARTS performance

Series
ARTS

SUN 3/140
RIDE

DEC Firefly
AW/RT

DEC Alpha 3000/300

DSHcl 35 ms 26 ms 41 ms
DSHpq 18 KWS 16 KWS 2010 KWS
DSHpp (13) 20 tasks 18 tasks 105 tasks
DSHcb 14 tasks 15 tasks 23 tasks

An Overview of Real-Time ANSAware 1.0 21

12 Summary

The paper reviews the main features of the real-time ANSAware 1.0. AW/RT
provides a framework to facilitate the enforcement of stringent timing
constraints found in distributed real-time applications. The AW/RT design
incorporates tasks and communication channels (the two most important
resources in real-time distributed computing) as its basic programming
components. It synthesises aspects of resource requirements, resource
allocation and resource scheduling into an object-based programming
paradigm. Predictability, user control and mission criticality are the main
characteristics of the model.

The performance of the AW/RT implementation is compared to that of some
typical systems by using of the Distributed Hartstone Benchmarks, and has
shown that the design is viable.

13 Related work

 The general discussion of an open system architecture for real-time
processing can be found in [14]. The description of the AW/RT programming
interfaces can be found in [16]. Comparison of the two ANSA based real-time
environments AW/RT and RIDE is described in [15]. Current research at
CNET [7] and Lancaster University [5] are all converging on a common
architecture for distributed multimedia and real-time processing relevant to
the AW/RT system.

AW/RT has been influenced by ARTS [21] in the design of its priority
scheduling models. AW/RT also shares a few common features with ARTS in
the handling of object invocations. However, the object models of the two
systems differ substantially. Compared to AW/RT, ARTS is a relatively low-
level mechanism and interoperation between different real-time platforms is
not being addressed. AW/RT objects have the flexibility to group operations as
interfaces and the flexibility to create interface instances dynamically. This is
further enhanced with entries, by which dynamic resource allocation and
management is possible. On the communication side, AW/RT has a timed RPC
protocol which provides richer timing semantics than the simple time fence
protocol of ARTS; AW/RT also allows the preallocation of communication
resources (channels) to interfaces whereas ARTS can only associate priority to
messages.

Acknowledgement

I would like to acknowledge the contribution of my colleagues in the ANSA
core team, particularly Andrew Herbert, John Warne and Youcef Laribi for
their valuable comments and suggestions. I am also indebted to Martin
Howard of BNR and Malcolm W. Vanston-Rummey of GPT for their assistance
when the system was ported to HP/RT and LynxOS respectively. Finally,
thanks to the anonymous reviewers who also helped to improve this paper.

22 An Overview of Real-Time ANSAware 1.0

Reference

[1] J E Allchin and M S Mc Kendry, Synchronization and Recovery of Actions. In Proc. of Second
Symp. on Principles of Distributed Computing, August 1983.

[2] APM Ltd., ANSAware Version 4.1 Manual, Architecture Projects Management Ltd., Cambridge
U.K., May 1992.

[3] A Attoui and M Schneider, An Object Oriented Model for Parallel and Reactive Systems. In
IEEE Real-Time Systems Symposiums, December 1991.

[4] A P Black et al., Distributed and Abstract Types in Emerald, In IEEE Transactions on Software
Engineering, 12(12), December 1986.

[5] G Coulson et al. Extensions to ANSA for Multimedia Computing, Computer Networks and ISDN
Systems, Vol. 25, 1992.

[6] P Gopinath and T Bihari, Concepts and Examples of Object-Oriented Real-Time Systems, In
Readings in Real-Time systems, Y H Lee and C M Krishna ed., IEEE CS Press, June
1993.

[7] L Hazard et al. Towards the Integration of Real Time and QoS Handling in ANSA Architecture,
ANSA Phase 3 Project Report CNET/RC.ARCADE.01, June 1993.

[8] A Herbert, An ANSA Overview, IEEE Network, January 1994.

[9] ISO/IEC 10746-3, ITU-TS Recommendation X.903: Reference Model of Open Distributed
Processing: Architecture, January 1995.

[10] N I Kamenoff and N H Weiderman, Hartstone Distributed Benchmark: Requirements and
Definitions, Proc. of Twelfth IEEE Real-Time Systems Symposium, 1991.

[11] I Lee and S B Davidson, A Performance Analysis of Timed Synchronous Communication
Primitives, IEEE Transactions on Computers, Vol. 39, No. 9, September 1990.

[12] W H Leung et. al., A Software Architecture for Workstations Supporting Multimedia
Conferencing in Packet Switching Networks, IEEE JSAC, April 1990.

[13] G Li and J Bacon, Supporting Distributed Real-Time Objects, in IEEE Proceedings of the
Second Workshop on Parallel and Distributed Real-Time Systems, Cancun, Mexico,
April 1994.

[14] G Li and D Otway, An Open Architecture for Real-Time Processing, in ICL Technical Journal,
November 1994.

[15] G Li, Distributing Real-Time Objects: the ANSA Approach, in Proceedings of IEEE CS 1st
Workshop on Object-Oriented Real-Time Dependable Systems, Dana Point, California,
October 1994.

[16] G Li, Real-Time ANSAware Version 1.0: Programming and System Overview, APM document
1207, Architecture Projects Management Ltd., Cambridge U.K., May 1994.

[17] G Li, Supporting Distributed Real-time Computing, PhD thesis, University of Cambridge
Computer Laboratory, Technical Report 322, August 1993.

[18] C W Mercer and Y Ishikawa and H Tokuda, Distributed Hartstone: A Distributed Real-Time
Benchmark Suite, International Conference on Distributed Computing Systems, 1990.

[19] OMG, Object Management Architecture Guide, OMG TC Document 92.11.1, 1992.

[20] OSF, Introduction to OSF DCE, Cambridge, MA, 1992.

[21] H Tokuda and C W Mercer, ARTS: A Distributed Real-Time Kernel, Operating Systems
Review, 23(3), July 1989.

[22] N Weiderman, Hartstone: Synthetic Benchmark Requirements for Hard Real-Time
Applications, Software Engineering Institute, Carnegie Mellon University, Technical
Report CMU/SEI-89-TR-23, June 1989.

[23] J Xu and D L Parnes, On Satisfying Timing Constraints in Hard-Real-Time Systems, IEEE
Transactions on Software Engineering, 19(1), January 1993.

An Overview of Real-Time ANSAware 1.0 23

24 An Overview of Real-Time ANSAware 1.0

