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Abstract

Distributed Multimedia programming requires the definition of new kinds of interactions between
clients and servers other than operational interfaces. IDLs have been agreed to be  the right level
for expressing the interactions between clients and servers in a distributed environment.

Within the DIMMA project, we designed and are still implementing a Stub Gnerator Toolset, which
supports several IDL languages giving more flexibility in expressing contracts between clients and
servers and supporting several runtime environments, in order to enable bridging different
environments. The toolset supports also a new IDL language specifically designed to experiment
with the expression of multimedia and real-time interfaces.

This report describes the design choices of the DIMMA Stub Generator Toolset, its architecture
and the supported IDL languages and runtime environments.
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1 DIMMA Stub Generator Design and
Implementation

1.1 Introduction

Distributed computing involves complex interactions between distributed
entities. In order to manage and control this complexity, one widely used
model is to structure the interactions in terms of services. Interacting entities
are termed as clients and servers depending on their role in the interaction;
whether they provide the service, or they use it. This model is known as the
client/server model and each interaction in the system must be either a service
request, or a reply to a service request (service provision).

In order to avoid erroneous interactions between communicating entities,
service providers define the kind (type) of requests they expect from their
clients. Requests that do not conform to the types expected by the service
provider are erroneous interactions and must not be allowed by the system. In
a similar way to progamming languages, detecting these erroneous
interactions as early as possible (e.g at compile time) is very desirable.

To achieve this goal, the type of requests that are accepted by a service
provider are expressed in languages called Interface Definition Languages
(IDLs) that are usually different from the programming languages used to
write the client and the server part but may be the same [Parrington 93].
From this definition, an IDL compiler generates modules in a programming
language compatible with the client and the server programming languages.
These modules are known as stubs. There are mainly two stubs:

• The client stub: This module emulates the server side interface that must
be used by the client code. Thus, by linking this module with the client
code, it is possible to check the correct usage of the service by the client,
using existing type checking mechanisms of the used compiler/linker/
runtime1 at the client side. Moreover, the client stub serves to hide the
distribution issues to the client code, by playing the role of a server proxy.

• The server stub: Similarly this module purpose is to hide the distribution
issues to the service provider and to interact with the client stub to
achieve the service provision.

Most modern distributed computing environments offer IDL languages and
corresponding stub generators (e.g ANSA IDL, DCE IDL, CORBA IDL).

1. This depends on when the type checking is performed at the client side (compile-
time, link-time or run-time)
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1.2 Operational and stream Interfaces

In non-distributed computing, structuring the interactions between software
modules has led to modular programming concepts and mainly to the
abstraction of the procedure, as the main concept to structure software
programs. This abstraction was so simple yet powerful, that there was an
early search to extend it to distributed computing [Birrell 84]. This has led to the
construction of Remote Procedure Call (RPC) systems, where modules
resident on different sites in the distributed system interact by procedure
calls, as in non-distributed computing. The RPC system hides the distribution
effects, and unifies local and remote programming.

With the advent of the object era, the software structure has changed to
become a set of objects, instead of a set of modules. Each object definition
consists of a data part and a set of procedures called object operations that
manage this data. Objects interact only through invocations. An invocation is
a directed interaction that specifies a target object, a name of an operation
supported by that object and a set of parameters for that operation. The result
of the invocation is the execution of the operation with the given parameters
on the server side, and the attention of return results on the client side. In the
same way to procedures, new Remote Object Invocation technologies have
been built to support remote object usage [Parrington 92]. In that case, objects
are said to have operational interfaces.

However, interactions between software components are not always of the
operational type. For example, if a service provision consists of feeding the
client with a continuous flow of data (e.g audio or video streams), this kind of
service cannot be specified using an operational interface. The interface is best
described as a flow of data items of some type from one side to another instead
of a request/reply interface. These kind of interfaces are called a stream
interfaces.

Other kinds of interactions like signals1 may also be of interest to the
distributed computing community. However, most currently available
distributed computing environments (e.g DCE, CORBA) restrict their support
to operational interfaces.

1.3 Services and runtime environments

Clients and service providers rely on some distributed computing environment
to express their interactions, check their validity, enable their occurrence and
deal with issues like failures and heterogeneity, found in any realistic
distributed environment.

Stubs insulate clients and service providers from most of the engineering
details of the runtime environment such as data formats on the wire, used
transport porticoes, and other issues such as trading, security and error
recovery.

Commonly, it is the IDL compiler that embeds the knowledge about the
runtime interface knowledge and generates the adequate stubs according to
that knowledge.

1. Usually used in real-time computing
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Hence stub generators are tightly related to the runtime environment for
which the stubs are generated and any change to the runtime interface (e.g
transport protocols), may require updating the stub generator.

1.4 The DIMMA Stub generator Objectives

Within the DIMMA project [Li 94], we undertook the design and
implementation of a new stub generator toolset for the following reasons:

• The need to support a new IDL language which allows for the definition of
streams interfaces, in addition to operational ones. This language called
the DIMMA IDL, will be used to specify multimedia service interfaces.

• The desire to support existing IDL languages such as the CORBA IDL
[OMG 94]: We want to take advantage of existing services whose interfaces
are expressed in other IDL languages.

• The desire to support several runtime environments. As some runtime
environments are better suited for some applications, we want to decouple
services from runtime environments.

This architectural choices of the DIMMA stub compiler were motivated by the
following reasons:

• Services are semantically independent from the runtime environment
that they will be running on. Hence, it is interesting to enable the usage of
a service, described by an IDL language, in any available runtime
environment offering the required features.

Figure 1.1: Different structuring of Stub compilers

• IDLs and runtime requirements are different components and they may
evolve independently. It is important to reflect the evolution of one IDL in
all the potential runtimes that might be used with it and vice-versa. A
stub generator enables the propagation of these changes transparently.

• It is easier to experiment with new features added to an IDL (e.g QoS
attributes for multimedia) by using any available runtime supporting the
corresponding engineering mechanisms (e.g real-time transport).

Some of the benefits we seek from such a design are:
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• Running existing services on several runtime environments (portability).

• Decoupling services interface description from the runtime environment
on which the client and the server will run.

• Mapping between different computational models and bridging runtime
environments (with the help of an engineering support).

• Enabling clients running on one runtime environment to use services
available on other environments (interoperability).

In the remaining sections, we will explain the architecture of the stub
generator, how it can be extended to support new IDLs and new runtime
environments.

1.5 AST: a key architectural component

A compilation process is usually divided into four phases (cf. Figure 1.2:):

• Lexical Analysis: This phase is dedicated to recognize the lexical entities
as defined by the language, and to tokenize the input program. Hence
from a program defined as a set of characters, the output of this phase is a
set of tokens.

• Syntactic Analysis: This phase checks that the program respects the
syntactic rules defined by the grammar of the language. One of the most
used outputs of this phase is an intermediate form called the Abstract
Syntax Tree (AST).

• Semantic Analysis: Commonly, this phase is dedicated to type and scope
checking, ensuring that the operand types in an operation are as expected.
It also performs the implicit type conversion where necessary (e.g integer
conversion to real).

• Code generation: Starting from the AST, the code generation phase
consists of generating the appropriate output required by the target
environment.

Figure 1.2: Different phases of the compilation process

In the DIMMA stub generator toolset, the AST is a central component of the
architecture, because it enables to capture the semantics of the service
interface, independently from the IDL originally used to describe that service
interface. Therefore, the AST module in the Stub compiler architecture, has
been designed as a separate component, with well-defined interfaces, that
might be used from the front by a parser to generate the AST, or from the
back, by a code generator, to generate an output form.
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The AST component defines the DIMMA supported computational model. This
computational model is based on the ODP reference model [ODP 94]. Each
supported IDL in the stub compiler toolset must have for all its features,
corresponding representations in the AST component. By compiling an IDL
service interface description into a DIMMA AST, the stub generator maps the
service interface described by one computational model (expressed by the IDL)
into an equivalent representation expressed using the DIMMA computational
model.

The Figure 1.3: depicts the internal structure of an AST tree. Each node of the
tree represents a syntactic item, and contains the necessary information
required by the backend to generate the corresponding output form.

Figure 1.3: AST internal structure
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• Basic Types (integer, short, long, boolean, real, char, double, ...).

The front-end is responsible to translate the input service description into an
equivalent description based on those computational constructs.

Note: The computational constructs and the attached semantics may evolve in the future, to
support new features as new IDL languages and new runtimes are added to the
toolset.

1.6 Overall Architecture

The stub compiler can be split up into a set of major components:

• Front-ends: They are responsible for performing the lexical and syntactic
analysis. There are as many front-ends as supported IDLs. The front-end
allows also to map between the computational model described by its IDL
and the DIMMA computational model.

• Backends: generate an output form given an AST. They interact with the
AST component to read the AST representation. Each targeted language/
runtime combination is implemented by a separate backend.

• The AST component: Enables the generation of the AST by the front-ends
and its usage by the backends.

• The compilation driver: Processes command-line options, chooses the
front-end and the backend involved in compiling an input service interface
description and coordinates the actions of the different modules in the
stub compiler.

The Figure 1.4: outlines the main components of the stub compiler toolset. The
AST Generator component serves as the AST interface to the front-end. The
internal structure of the AST is hidden from the front-end. Expressed in C++,
this interface that enables the front-end to generate the AST looks like:

1 class AST_Generator {

2 virtual AST_SignatureNode *CreateSignature();

3 virtual AST_TerminationNode *CreateTermination();

4 ....

5 virtual AST_IdentifierNode *CreateIdentifier();

6 };

When the front-end creates an AST item (e.g a signature), the AST Generator
returns a handle for that item that can be used to create other AST items (e.g
a signature list). The handle is opaque to for the front-end and can only be
interpreted by the AST Generator.

The AST layout is not necessarily well-suited for the backend to generate the
output form. In order to optimize that layout so that code generation from the
AST can be done without restructuring it, we allow the backend to change the
AST layout during its generation, by providing a back-end generator as is
depicted in Fig.1. If a backend involved in the compilation provides a back-end
generator, the AST generator will delegate the AST generation to the backend
generator.

However, backend generators are constrained to only add to the basic
structure of the AST. They are not allowed to change it. This is important to
preserve the AST structure independence from the backends used.
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Figure 1.4: Architecture of the stub compiler

Using C++ object-oriented features, this can be achieved by letting the
backend generator inherit and overload the AST Generator interface. This
way, all calls to the AST Generator interface are intercepted by the backend
generator, which first creates the AST structure corresponding to the syntactic
item (e.g signature), and adds to it the information that facilitates the code
generation phase for the backend.

Expressed in C++, the backend generator interface looks like:
1 class BE1_Generator : public AST_Generator

2 {

3 AST_SignatureNode *CreateSignature();

4 AST_TerminationNode *CreateTermination();

5 ....

6 AST_IdentifierNode *CreateIdentifier();

7 };

In Figure 1.5:, the backend needs to generate the first argument’s type (node
6) before the signature name (node 2). To facilitate the code generation, it adds
a link between the signature node and the typeName node. When crossing the
AST tree at the code generation phase, the backend can obtain the type name
of the first argument without any further search, by using the link added by
the backend generator when the AST was generated.
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1.7 A DIMMA front-end and an ODP backend

To start with, we have developed a front-end for a DIMMA IDL language, our
experimental IDL language for expressing multimedia requirements, and a
backend targeted to the ODP runtime environment. The front-end parses a
DIMMA IDL service description into an AST, while the ODP backend
generates C++ client and server stubs for the ODP runtime environment
developed within DIMMA [Otway 95].

Figure 1.5: AST structure augmented by the backend added information

1.7.1 The DIMMA IDL front-end

The DIMMA IDL front-end performs the lexical and syntactic analysis, and
uses the AST Generator interface to produce the corresponding AST. The
lexical and syntactic analysis is done using lex and yacc [Mason 90], standard
UNIX compilation tools. The benefit of using these tools is the neat separation
between the rules (lexical and syntactic) and the recognition process itself
enabling hence, an easy maintenance and extension of the IDL grammar or its
lexical definition rules.
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5 Account : interface

6 (

7  credit (amount:Pence)->(Pence)

8  debit (cpin:Pin amount:Pence)->(Pence)->invalidPin()

9  ->insufficientFunds(Pence)

10  balance (cpin:Pin)->(Pence)->invalidPin()

11 );

12 ]

This description contains the definition of user types (Pence, Pin , etc.) and
the description of one operational interface Account  containing three
operations (credit, debit, balance ). The operation debit  has two
parameters (cpin  and amount ) and can either terminate normally by returning
a parameter of type Pence  or raise an exception to signal an abnormal
termination (invalidPin  or insufficientFunds ). The module block bank
gives a namespace scope to all the types and interfaces described inside it.

The current status of the DIMMA IDL language defines only operational
interfaces but is expected to be extended to support stream interfaces once the
engineering mechanisms in the runtime are in place.

The C++ class defining the DIMMA IDL front-end looks like:

1 class DIMMA_IDL_FE : public FE

2 {

3 public:

4 // Constructors

5 DPL_IDL_FE() {};

6

7 // Member Functions

8 void IO_Init(char *filename=0);

9 char * Version(void) { return “1.0”; }

10 void ProcessArg(char **argv, index_t *indp,

11  int argc);

12 parseStatusCode_t Parse(AST_Node **);

13 void End(void);

14

15 // The destructor

16 ~DPL_IDL_FE() {};

17 };

This class is instanciated once the compilation driver identifies that the
DIMMA IDL front-end should be used to parse an input form recognized as
expressed in the DIMMA IDL language. The created instance invoked to
perform the parsing on the input.

It is possible for the user to specify specific options to a front-end module in the
command line by preceding the option flag with the name of the front-end. For
example in the command line:

> sgen -dimma_verbose 5
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the option dimma_verbose  is recognised by the compilation driver as an option
meant for the DIMMA front-end and is hence handed to it for further analysis.
This allows the toolset to support runtime configurable front-ends.

1.8 A backend for the ODP runtime environment

On the other hand, we have constructed a backend targeting the ODP runtime
environment [Otway 95]. The aim is to generate stubs corresponding initially to
services described using the DIMMA IDL.

The ODP backend participates in the AST generation by providing a backend
generator class, which intercepts calls on the AST Generator to extends the
AST by adding information that helps into an easy stub generation.

Given an input file (e.g bank.idl), the ODP backend generates four files:

• A header file (e.g bank.hh) included in the client and server code.

• A client stub file (e.g bank_C.cc)linked with the client code.

• A server stub file (e.g bank_S.cc) linked with the server code.

• A Name file (e.g bank_N.cc) which maps between operation and
termination names and their position in their interface description.

The stubs generated by the ODP backend perform the following functions:

• Marshalling/Unmarshalling of parameters.

• Calling the underlying ODP runtime transport routines and buffer
management for sending the request message and receiving the reply
buffer.

• Dealing with abnormal terminations of an invocation by mainly raising
and catching exceptions.

1.8.1 Marshalling/Unmarshalling parameters

The stubs generated by the ODP backend are designed to be as independent as
possible from the engineering details such as the transport protocol used to
convey messages or the buffer management policy and marshalling/
unmarshalling formats. The ODP runtime hides these details from the stubs
thus offering a greater stability to the backend and to the stub generator
toolset as a whole.

As an example, here is the code generated by the backend, in the client stub
for calling the remote operation credit  on an object which offers an interface
of type Account :

1 Pence odp_Account_Client::credit (Pence a1)

2 throw (odp_EngineeringTermination)

3 {

4 const odp_Releaser buffer = (odp_request(1) << a1).invoke();

6

7 switch (buffer->_response())

8 {

9 case 0: {

10 Pence r1;

11 *buffer >> r1;
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12 return r1;

13 }

14 }

15 }

In the example above, the buffer is automatically allocated by the runtime
(line 4) when the stub calls odp_request (1)1 which returns the allocated
buffer. The marshalling of the first parameter of the operation credit  is done
by using the overloaded operator << in the buffer  object returned previously.
This has the effect of marshalling the parameter a1 without requiring the stub
to supply the type of a1. Once all the parameters have been marshalled into
the buffer, the operation invoke()  is called on it which has the effect of
conveying the request message, and receiving the reply message. After the
invocation, the buffer object contains the reply information and the
unmarshalling of the results can start using the overloaded operator >>. The
stub code is insulated from any references to which format the parameters
have been marshalled in, which transport protocols have been used, or how
the communication buffers management is done.

1.9 Current Status of the Stub Generator Toolset

We have finished the design and implementation of the toolset framework
which enables hosting complying front-ends and backends. Currently this
framework contains one front-end (DIMMA IDL) and one back-end (ODP
IDL). We are in the process of adding the CORBA IDL as a second front-end to
the toolset. This will enable us, to target the ODP runtime given service
interfaces described in either DIMMA or CORBA IDL languages. It also
allows to increase the independence between the front-end and the backend,
given that the ODP backend should be able to use ASTs generated by both
front-ends.

We are also extending the DIMMA IDL to support complex types such as
structures and the sequences.

Note: The status of the DIMMA IDL language is expected to change thoroughly in the
future.

1.10 Conclusions

This report described the DIMMA stub generator toolset, a component of the
DIMMA architecture [Li 94] which offers an environment for describing service
interfaces in different IDL languages, depending on user preferences and on
application requirements. The toolset is also able to generate stubs for any
supported runtime.

The toolset architecture was designed in such a manner that the addition of
new IDL languages (front-ends) and the support of new runtime environments
(backends) can be done easily, given the front-ends and backends respect
certain conventions.

1. The parameter “1” corresponds to the position of the operation credit  in the
interface Account .
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On the other hand, we are experimenting with a new IDL language (DIMMA
IDL) to express multimedia interfaces in a similar manner to how operational
interfaces are expressed in today’s IDLs.
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