Andrew Herbert
APM Ltd

Comms Application Market

* |s huge

— Message queueing
 EDI, EFT,

— Cooperative working
e publish / subscribe
* Process groups

— Interactive multimedia services
« WWW, DAVIC, TINA,

 And lacks architecture

— Low level of abstraction
* e.g., queue managers, sockets, ASCII
— Needs CORBA benefits, now

= Streams 2 ©1995APMLd

| nteractive Multimedia

e Live video and audio applications

 Build comms as application software

 Many formats and protocols

D |
|
L

Who gets the market?

- —
: CORBA

=

What to add to CORBA?

e Connection
management

* Nothing

«+> * Connections and i
Stream Interaction

Necessary Extensions

Streams
Explicit connection management
Resource pools

Synchronous programming [optional]

SSSSSSS

OMG Standards - Implications

Streams

Connections

Resource pools

Synchronous programming

Benefits

e Convergence of communications and
distributed processing technology

e Comms services enabled CORBA
— hew services

— faster service development

Foundations

e |ISO/ITU RM-ODP
 TINA-C

* ANSA prototypes
— CNET / Chorus demos
— ANSAware/RT
— Quartz
— DCAN

« EEC RETINA project

New concepts

Architecture
— Connections
— Streams and Stream [Object] Adaptors

Data types
— Flows, frames

Scheduling

— Resource pools

Synchronous programming

EE— Streams 10

CORBA connection model

e Implicit

— resources bound as late as possible
— resources released when connection is dormant
— multiplex wherever possible

e Asymmetric

e Best effort, no QoS bounds

When do we want more?

 When exercising control
— to provide predictable communications
— to prioritise communications
— to synchronize communications

— to give QoS guarantees
 ordering, security, reliability, performance

— to control connect/disconnect time

— to batch connnections

— to monitor delivery of guarantees

— to change connections after initial connect

“Connection” Is an application

* QoS negotiation and connection setup
— 1S too complex to build into the network
— 1S to open ended to engineer a generic solution
— a small set of standard solutions won'’t do
— would benefit from distributed objects

e Connection “by the ORB” defeats
encapsulation and breaches security

— If an object cannot control connections to itself,
how can it secure itself?

Flows

« Unidirectional sequence of typed frames from
a source to a sink

« EXplicitly connect sources and sinks through
logical “connection”

Source -

. Queue
Application - Application

or Hardware - or Hardware

Connection

Application Defined Framing

e Some flows have natural formats, others don’t

* Engineering decision to decide best payload
for each processing step
— hardware framing format might differ

— alternative application formats might exist for
same hardware format

— marshalled by flow “stubs”

Flows

Multiple frame types in flow enable:
— base + delta coding

— changes in compression algorithm

— application mux / demux

— In-band control

Model frame interactions as oneway
operation with /n arguments

— n.b. interaction is with the connection “object”, not
the ultimate sink(s)

Streams

* A bundle of related flows to / from an
application
— named by a stream pointer (c.f. ObjPtr)
— connected as a single entity
— connection enables communication

e Can be bi-directional
— exploit duplex comms technology
— abstract over connection models

Stream Adaptor

* Analogous to server object adaptor

Stream Pointer

Connection operations
QoS, monitoring,

Tx Pointer(s)

operations for
source flows

Stream adapter

Pointer(s) to server
object(s) for sink flows

Stream DL

e Connection operations
— regular CORBA IDL

 Frame interaction operations

— re-interpret oneways as frames

e source and sink for every frame, one IN flow, one ouT
flow

— pragmas for flows, IN VS ouT
— native syntax

- FRAMES clause, IN and our flow tags, frame formats
- FRAMES { IN flowA {frameX (argl, ...argn); ...}; ...}

Stream adapter template

Create new adaptor, disconnected
Create new adaptor, connected

Dynamic connection control

Interaction

Template library

 Compiler has library of templates

 Programmer instantiates template for
application type

* Engineering substitutes generic adapters

Adaptable Adaptors

 Lots of possibilities

— keep connection model, resource model and
formats separate

— allow for composition (inheritance)
— base set for major industry standards
— reap all the benefits of distributed objects

— allow for “internal” connections
e transparent format conversion, synchronisation etc

— allow for network connection managers

 N.B. Remoting TxRef sends StreamRef

EE— Streams 22 © ————

Architectural Footnote

« All endpoints (clients, servers, producers,
consumers have object adapters)

— but adaptors can be transparent

* An adaptor manages binding between
application, local ORB and connection to
remote ORB

e Binding clients to servers can be implicit OR
explicit

—— S

Making Connections

Adapter Adapter

8, 11

5,12 1,4

: Create Adapter

: Create Endpoint

. Return address

. Pass BindingRef

: Create and Connect
Adapter

: Create and Connect
Endpoint

. Return address

: Negotiate

: Connect Endpoint

O~ WNE

App

6, 7 2,3

(o)}

\l

O 00

Endpoint Endpoint

= Streams 24 © 1995 APM Ltd

Other Forms of Connections

- - Audience
Speaker RxA , disconn.
(TXA, RxC)
* Multi-party Chair
. RxA, TxC,

conn, disconn

Connect(A B)

e Third Party

Connectlon
Manager
. Bind(B) Bmal(A)8

Resource Pools

e Control muxing of threads, buffers, memory,
objects
— Pool.New (Resources, Scheduler)
— Pool.Change (Resources)
— Adaptor.Share (Pool, Policy)

Resources
(e.g threads)

Adaptors

Quality of Service

e Qo0S Is end-to-end
— negotiate parameter values as part of connection
— trade-off resources against formats

— need guarantees from each element in path
« RSVP in Internet, Periodic threads in OS Scheduler
« guarantees come from predictability

e Synchronous hardware is predictable

 How to make software predictable?

Synchronous Programming

 Model controller as a reactive object
— at each instant take inputs, produce results

— resources and real-time synchronisation
guaranteed by the operating system

Reactive Asynchronous

Objects

The Theory

e Synchronous hypothesis
— execution Is a sequence of discrete events

— reactions are instantaneous
* N0 concurrency between instants
e concurrency within instant is serialised

— deterministic (worst case) behaviour
* bounded execution paths, calculable in advance

« with known resource requirement
» gives predictable timing and reproducible behaviour

— e.g. ESTEREL, Reactive-C

| mplementation

* Treat frame tx and rx as an event (signal)
— signal has name and arguments
— signal has direction (in or out)

— signals are grouped into interfaces
— c.f. ESTREL etc global broadcast
e gives same local and remote semantics
* enables event “broadcast” to be scoped
« enables multiple instances of same interface

— real-time synchronization via in signals from
scheduler

Sl Semantics (1)

tx = expr “!” signal Name argunents
rx = expr “?” signal Nane
clock ? hour ; bell ! ring

[cl ock ? second]; [clock ? second] ||
[button ? press ; bell ! ring]

Sl Semnatics (2)

presence = “present” condition

awalt = “awalt” condition

cond’'n = “(“ { expr “?" signal } “)”
wat chdog = “during” block “watch”

condi ti on bl ock

Wrap Up
Important need to fulfil

— reconcile CORBA and commes-oriented apps
— strong pressure from TelSIG

Some new concepts
— streams, connections, pools, Qo0S, reactive objects

CORBA extensions
— stream IDL, stream [object] adapters, SlI

Firm foundations
— ODP framework, working examples

= Streams 33 © —

