
Streams 1 © 1995 APM Ltd

Let CORBA do the talking.....

Andrew Herbert

APM Ltd

CGI...Yuk!

Streams 2 © 1995 APM Ltd

Comms Application Market
• Is huge

– Message queueing
• EDI, EFT,

– Cooperative working
• publish / subscribe
• process groups

– Interactive multimedia services
• WWW, DAVIC, TINA,

• And lacks architecture
– Low level of abstraction

• e.g., queue managers, sockets, ASCII

– Needs CORBA benefits, now

Streams 3 © 1995 APM Ltd

Interactive Multimedia

• Live video and audio applications
– Entertainment, education, telepresence

• Build comms as application software
– MIPs available
– cheaper than hardware or kernel development

• Many formats and protocols
– soft engineering for flexibility
– plug and play converters

Streams 4 © 1995 APM Ltd

CORBA

Comms Apps

Who gets the market?

Streams 5 © 1995 APM Ltd

What to add to CORBA?

• Connection
management
– plugs and sockets

• Connections and
Stream interaction
– sources ands sinks

• Nothing
– build as services

Streams 6 © 1995 APM Ltd

Necessary Extensions

• Streams
– interact through flows of data “frames”

• Explicit connection management
– multi-party coordination, QoS control

• Resource pools
– user driven scheduling and control

• Synchronous programming [optional]
– predictable software, QoS guarantees

Streams 7 © 1995 APM Ltd

OMG Standards - Implications

• Streams
– IDL extensions

• Connections
– Generalise object adapters
– Standard object adapter templates

• Resource pools
– ORB extensions

• Synchronous programming
– new “Synchronous Invocation Interface”

Streams 8 © 1995 APM Ltd

Benefits
• Convergence of communications and

distributed processing technology
– CORBA = universal systems integration “glue”

• Comms services enabled CORBA
– new services

• store and forward (esp. for mobile, low bandwidth)
• publish and subscribe
• multimedia, multiparty
• quality of service guarantees

– faster service development

Streams 9 © 1995 APM Ltd

• ISO/ITU RM-ODP

• TINA-C

• ANSA prototypes
– CNET / Chorus demos
– ANSAware/RT
– Quartz (CORBA/MBone interface)
– DCAN (“Lightweight ATM” ORB)

• EEC RETINA project (“Telecoms ORB”)

Foundations

Streams 10 © 1995 APM Ltd

New concepts

• Architecture
– Connections (ODP “bindings”)
– Streams and Stream [Object] Adaptors

• Data types
– Flows, frames (ODP “flows”,“signals”)

• Scheduling
– Resource pools

• Synchronous programming

Streams 11 © 1995 APM Ltd

CORBA connection model

• Implicit
– not under programmer control
– engineered for efficiency and scaling

– resources bound as late as possible
– resources released when connection is dormant
– multiplex wherever possible

• Asymmetric
– server has no knowledge of potential clients

• Best effort, no QoS bounds

Streams 12 © 1995 APM Ltd

When do we want more?
• When exercising control

– to provide predictable communications
– to prioritise communications
– to synchronize communications
– to give QoS guarantees

• ordering, security, reliability, performance

– to control connect/disconnect time
– to batch connnections
– to monitor delivery of guarantees
– to change connections after initial connect

Streams 13 © 1995 APM Ltd

“Connection” is an application

• QoS negotiation and connection setup
– is too complex to build into the network
– is to open ended to engineer a generic solution
– a small set of standard solutions won’t do
– would benefit from distributed objects

• Connection “by the ORB” defeats
encapsulation and breaches security
– if an object cannot control connections to itself,

how can it secure itself?

Streams 14 © 1995 APM Ltd

Flows

• Unidirectional sequence of typed frames from
a source to a sink

• Explicitly connect sources and sinks through
logical “connection”

Source Sink

Application
or Hardware

Queue Queue

Connection

Application
or Hardware

Streams 15 © 1995 APM Ltd

Application Defined Framing

• Some flows have natural formats, others don’t

• Engineering decision to decide best payload
for each processing step
– hardware framing format might differ
– alternative application formats might exist for

same hardware format
– marshalled by flow “stubs”

• abstraction, efficency, portability

Streams 16 © 1995 APM Ltd

Flows

• Multiple frame types in flow enable:
– base + delta coding
– changes in compression algorithm
– application mux / demux
– in-band control

• Model frame interactions as oneway
operation with in arguments
– n.b. interaction is with the connection “object”, not

the ultimate sink(s)

Streams 17 © 1995 APM Ltd

Streams

• A bundle of related flows to / from an
application
– named by a stream pointer (c.f. ObjPtr)
– connected as a single entity
– connection enables communication

• Can be bi-directional
– exploit duplex comms technology
– abstract over connection models

Streams 18 © 1995 APM Ltd

Stream Adaptor

• Analogous to server object adaptor

Queues

Stream adapter

Stream Pointer

operations for
source flows

Pointer(s) to server
object(s) for sink flows Stream

Connection operations
QoS, monitoring,Tx Pointer(s)

Streams 19 © 1995 APM Ltd

Stream IDL
• Connection operations

– regular CORBA IDL

• Frame interaction operations
– re-interpret oneways as frames

• source and sink for every frame, one IN flow, one OUT
flow

– pragmas for flows, IN vs OUT

– native syntax
• FRAMES clause, IN and OUT flow tags, frame formats
• FRAMES { IN flowA {frameX (arg1, ...argn); ...}; ...}

Streams 20 © 1995 APM Ltd

Stream adapter template
• Create new adaptor, disconnected

– <Adaptor>.New (RxObj, &StrRef, &TxRef1,..., QoS)

• Create new adaptor, connected
– <Adaptor>.New (RxObj, StrRef, &TxRef1,..., QoS)

• Dynamic connection control
– YourBindingRef.Bind(MyBindingRef, ..., QoS)
– MyBindingRef.ChangeQoS(....)

• Interaction
– TxRef.Message(Contents)

Streams 21 © 1995 APM Ltd

Template library

• Compiler has library of templates
– defining portability API for CORBA comms apps

• Programmer instantiates template for
application type
– gives type safe connections

• Engineering substitutes generic adapters
– link through ‘Any (objPtr)’.

Streams 22 © 1995 APM Ltd

Adaptable Adaptors

• Lots of possibilities
– keep connection model, resource model and

formats separate
– allow for composition (inheritance)
– base set for major industry standards
– reap all the benefits of distributed objects
– allow for “internal” connections

• transparent format conversion, synchronisation etc

– allow for network connection managers

• N.B. Remoting TxRef sends StreamRef

Streams 23 © 1995 APM Ltd

Architectural Footnote

• All endpoints (clients, servers, producers,
consumers have object adapters)
– but adaptors can be transparent

• and client ones currently are; server adapters could be!!

• An adaptor manages binding between
application, local ORB and connection to
remote ORB

• Binding clients to servers can be implicit OR
explicit

Streams 24 © 1995 APM Ltd

Making Connections

4
5, 12

6, 7

8, 11
Adapter

Endpoint

1,4

2,3

9, 10

Adapter

Endpoint

App

 1: Create Adapter
 2: Create Endpoint
 3: Return address
 4: Pass BindingRef
 5: Create and Connect
 Adapter
 6: Create and Connect
 Endpoint
 7: Return address
 8: Negotiate
 9: Connect Endpoint

Streams 25 © 1995 APM Ltd

Other Forms of Connections

• Multi-party

• Third Party

Audience
RxA, disconn.Speaker

(TxA, RxC)

Chair
RxA, TxC,
conn, disconn

Connection
Manager

Connect(A,B)

A B

Bind(B) Bind(A)

Streams 26 © 1995 APM Ltd

Resource Pools

• Control muxing of threads, buffers, memory,
objects
– Pool.New (Resources, Scheduler)
– Pool.Change (Resources)
– Adaptor.Share (Pool, Policy)

Resource
Pool

Scheduler

Resources
(e.g threads)Adaptors

Streams 27 © 1995 APM Ltd

Quality of Service

• QoS is end-to-end
– negotiate parameter values as part of connection
– trade-off resources against formats

• e.g. MBone ABR strategies vs. Telco CBR

– need guarantees from each element in path
• RSVP in Internet, Periodic threads in OS Scheduler
• guarantees come from predictability

• Synchronous hardware is predictable

• How to make software predictable?

Streams 28 © 1995 APM Ltd

Synchronous Programming

• Model controller as a reactive object
– at each instant take inputs, produce results
– resources and real-time synchronisation

guaranteed by the operating system

Reactive
Object

Asynchronous
Objects

Streams 29 © 1995 APM Ltd

The Theory

• Synchronous hypothesis
– execution is a sequence of discrete events
– reactions are instantaneous

• no concurrency between instants
• concurrency within instant is serialised

– deterministic (worst case) behaviour
• bounded execution paths, calculable in advance
• with known resource requirement
• gives predictable timing and reproducible behaviour

– e.g. ESTEREL, Reactive-C

Streams 30 © 1995 APM Ltd

Implementation

• Treat frame tx and rx as an event (signal)
– signal has name and arguments
– signal has direction (in or out)
– signals are grouped into interfaces

– c.f. ESTREL etc global broadcast

• gives same local and remote semantics
• enables event “broadcast” to be scoped
• enables multiple instances of same interface

– real-time synchronization via in signals from
scheduler

Streams 31 © 1995 APM Ltd

SII Semantics (1)

• tx = expr “!” signalName arguments

– fire and forget

• rx = expr “?” signalName

– wait for signal and return results

• clock ? hour ; bell ! ring

– chime on the hour

• [clock ? second]; [clock ? second] ||
[button ? press ; bell ! ring]

– debounce the button

Streams 32 © 1995 APM Ltd

SII Semnatics (2)

• presence = “present” condition

• await = “await” condition

• cond’n = “(“ { expr “?” signal } “)”

• watchdog = “during” block “watch”
condition block

– signals are held over until the instant in which the
dynamically last signal fires

Streams 33 © 1995 APM Ltd

Wrap Up
• Important need to fulfil

– reconcile CORBA and comms-oriented apps
– strong pressure from TelSIG

• Some new concepts
– streams, connections, pools, QoS, reactive objects

• CORBA extensions
– stream IDL, stream [object] adapters, SII

• Firm foundations
– ODP framework, working examples

