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Abstract

Real world applications require many ORBs to cover a wide spectrum of functional and non-
functional requirements, and to cope with new technology (such as high performance networks,
real-time and multimedia applications). To help manage the complexity and to save engineering
effort of different ORBs, a framework ORB can be used as a kernel, which provides a common
base for the construction of fully functional, application and technology domain specific ORBs.

The DIMMA nucleus is such a framework ORB, on which real-time and multimedia ORBs can be
readily constructed. The nucleus has a generic communication scheme, which offers a high
degree of protocol configurability and extensibility.

The DIMMA nucleus supports the ODP API developed concurrently within the ANSA work
programme, and can be extended to support other object APIs, such as CORBA API and TINA
API.
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1 Introduction

1.1 Context

This document explains the current status of the Distributed Interactive
Multimedia Architecture (DIMMA) nucleus design and implementation.

The motivation and goals of the DIMMA project can be found in [APM.1295],
and for completeness a summary is given as follows:

• meeting the requirements of a distributed processing environment as
defined by the TINA architecture [TINA94]. This aspect is being
investigated through the ReTINA project

• investigating the impact of lightweight approaches to ATM (desktop area
networks, home/office multimedia systems) on operating system
structures and interfaces. This aspect is being investigated through the
DCAN project.

DIMMA addresses service management, service binding and service quality of
service (QoS) management at a level of abstraction consistent with the
application programming interfaces found in current distributed object
computing systems such as ANSAware, ANSAware/RT, Microsoft’s OLE 2,
OMG’s CORBA standard and Bellcore’s INA.

The DIMMA project includes

• the extensions that are needed to current distributed computing object
models (e.g. stream interfaces), and their engineering implications

• the additions and extensions that are needed to manage distributed
services (e.g. explicit binding operations)

• the extensions needed to current distributed object computing
infrastructures to enable interworking between them (e.g. support for
multi-protocol ORBs)

• the extensions needed to current distributed object computing
infrastructures to enable local fine grained control and monitoring of
resources to give integrity to quality of service guarantees

• the extensions needed to support distributed object services to enable fine
grained control and monitoring of resources across a distributed system.

DIMMA takes the ODP computational and engineering models, and the work
to date in ANSA on real-time and multimedia computing [APM.1270]
[APM.1393] [APM.1460] [APM.1222] [APM.1314], quality of service
management and performance management as a baseline.

Having developed the overall architecture, current work is focused on detailed
design and prototyping to validate, demonstrate and calibrate the
architecture.
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1.2 Audience

The audience is assumed to have general knowledge about distributed
processing, network communication, ODP, CORBA and DIMMA architecture.
In particular, the audience is expected to be aware of the DIMMA/ODP API
[APM.1555] and CORBA Universal Networked Objects (UNO) [OMG95].

1.3 A framework ORB 1

It is well understood that real world applications require many ORBs to cover
diverse functional and non-functional requirements, and to cope with
technology improvements (such as high performance communication, real-
time and multimedia applications).

The approach taken in the DIMMA project is to structure an ORB as a
modular set of components that plug into a minimal framework ORB, rather
than the monolithic structures found in current ORBs.

The benefits of a framework approach are that:

• it is simpler to meet stringent performance and size constraints by
omitting components from an ORB framework than attempting to strip
down a monolithic ORB

• the cost of developing specialized ORBs for (often low volume) niche or
emerging markets is reduced by re-using the framework and design
patterns of replaceable components

• interworking between specialized ORBs is simplified because of their
family resemblance, reducing system integration cost

• standard ORB interfaces and protocols (such as CORBA API, CORBA
IIOP) can be supported as personality modules, benefiting standard-based
portability, interoperability, common services etc.

A modular approaches has already been used successfully in operating
systems, where traditional system functions are structured as separate
services running over a microkernel, simplifying operating system design,
implementation, configuration and extensibility.

The DIMMA nucleus design is based around an analogous framework or
“microkernel” ORB. It provides generic services and components that are
universal to a wide range of system requirements and platforms, including
these of real-time and multimedia. The generic services allow flexible control
of communications, processing and memory resources. They form a standard
base which supports other system specific ORB functions.

1.4 Challenges of a framework ORB

An ORB [OMG90] provides the mechanisms for object creation, invocation and
deletion. An ORB manages typically three types of resources:

• communication resources, such as network sockets and their binding to
objects/interfaces

• processing resources, such as threads for concurrent activities

1. CORBA term Object Request Broker (ORB) is loosely used as equivalent to nucleus,
as they mean the same thing in the context of this document.
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• memory resources, such as network buffers.

The main design challenges of a framework ORB is to provide general
abstractions for representing many different resource management policies
and processing schemes, including these which enable application level
control. These abstractions should be modular enough so that their
interactions are minimal, to allow designers free choice of components to
compose into a specific ORB.

In terms of functionality, a framework ORB needs to provide the following
abstractions:

• a generic communication scheme to allow the exploitation of different
communication resource multiplexing policies and the construction of
arbitrary protocols

• a generic threading scheme to allow the adaptation of different
concurrency handling techniques

• a generic buffer management scheme to allow different data presentation,
fragmentation and protocol processing techniques

• a generic event processing scheme to allow arbitrary composition of
resource management activities.

1.5 Document organization

Chapter 2 discusses the design of the nucleus generic communication scheme.

Chapter 3 presents the structure and major implementation notes of the
nucleus.

Chapter 4 discusses a RPC system implementation within the DIMMA
nucleus framework.

Chapter 5 briefs the implementation of the CORBA IIOP protocol within the
DIMMA nucleus framework.

1.6 Acknowledgements

I would like to acknowledge the valuable comments of Andrew Herbert, Nigel
Edwards, Andre Kramer and Rob van der Linden.

Dave Otway has always been patient and ready to discuss and help, and my
special thanks to him.
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2 A generic communication scheme

This chapter presents the communication scheme of the nucleus.

It is accepted wisdom that to help manage the complexity of communication
systems, network software has better being organized through some generic
abstractions, as illustrated by the socket abstraction for Berkeley UNIX,
stream abstraction for System V UNIX and the x-kernel system [HP91] for
general protocol writing. However they are all more oriented towards
operating system constructions rather than for ORB implementations, and
often lack QoS processing, binding processing and control of multiplexing.
This motivates us to design a dedicated abstract communication framework
for the nucleus.

2.1 Requirements

Network components are at the heart of any distributed system. To meet the
DIMMA goals, its communication system must meet the following
requirements:

• coexistence of many communication protocols. For example, RPC protocols
for normal object interactions, stream protocols for video/audio
transportation and real-time transport protocols for control (signalling)
messages

• protocol function composition. It is generally accepted that protocols are
layered components, and there should be some abstraction to group
functional modules into a complete unit

• protocol configuration. Protocols are often platform specific, and should
only be configured when necessary support exists. Protocol configuration
can be done either statically (at compiler time) or dynamically (at run
time)

• independence of concurrency and multiplexing, which are the major
sources of protocol overheads and inflexibility of protocol architecture

• QoS, explicit binding and stream processing.

2.2 Abstractions

The nucleus generic communication scheme has eight major abstractions,
namely module, protocol, channel, binding, binder, address, message
and QoS object.

2.2.1 Module

A module is a layer of protocol function, such as TCP, IP, ANSAware REX and
MPS.
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A module provides two functions (called openMaster  and openSlave ) to create
channels for communication and a demux function for message demultiplexing:

channel = openMaster (dispatch, qos)
channel = openSlave (address, qos, dispatch)
status = demux (message, timeout, qos)
length = header()

The openMaster  and openSlave  reflects the asymmetric nature of a pair of
communication endpoints when connection oriented protocols are used or
when a client/server interaction paradigm is used. The dispatch  parameter is
a function for a channel to upcall when a message arrives. The channel
created by openMaster  is called a master channel, and the one created by
openSlave  is called a slave channel. The address parameter in openSlave is
the master channel address corresponding a slave channel.

The demux function demultiplexes messages arriving at a module to its
channels. It does this typically by inspecting the header information of a
message, and then either queues the message for a target channel or upcalls
the channel’s dispatch or read functions.

Other generic module functions include header  (returns the length of this
module’s protocol header length), module_id  etc.

2.2.2 Protocol

A protocol is a stack of modules. A protocol is constructed by pushing modules
together. Generic protocol functions are:

push (module)
module = pop ()
status = start (qos)
status = terminate ()
channel = openMaster (dispatch, qos)
channel = openSlave (address, qos, dispatch)
length = header ()
status = active ()
message = buffer_make()

A protocol uses the open functions of its modules to create channels. The
header  function returns the length (in bytes) of the collective headers of all its
modules. The active  function indicates whether or not there are still channels
in operation.

The module at the bottom of a protocol is called an anchor module (this term is
borrowed from the x-kernel). The module at the top of a protocol is called a
dispatch module.

An instance of a module object can appear in only one protocol, since it embeds
state information always specific to a protocol.

A protocol processes a specific type of messages (buffers), which provide
specific header, body and trailer for the protocol. Therefore, each protocol has
its own buffer manager to create protocol specific buffers.

2.2.3 Channel

A channel provides functions for communication:

status = call (message, reply_message, qos)
status = cast (message, qos)



A generic communication scheme ANSA Phase III

6 DIMMA Nucleus Design APM.1553.01

status = reply (message, qos)
status = write (message, qos)
status = read (message, qos)
status = close ()
status = control (opcode, arg)

The call  and cast  functions effect client object invocations. The read, write
functions effect normal message processing and stream invocation; together
with reply  they effect object invocation processing at server side.

Channels created by an anchor module are called anchor channels, and those
created by dispatch module are called dispatch channels.

An anchor channel typically uses a network interface (e.g. a socket or device
driver) directly for message passing. A dispatch channel typically calls an
application level function (such as a server stub) for message processing.
Details of message processing are given in section 2.4.

A channel, by default, knows its lower layer channel in the protocol stack and
upper layer module, but may not necessary knows its upper layer channel,
this allows flexible channel multiplexing and demultiplexing.

2.2.4 Binder

A binder is used to setup necessary infrastructure components (i.e. bindings)
to allow an activity in one object to invoke an operation of an interface in
another object.

Bindings and binder provides the bridge between a computational API and the
framework ORB.

In the communication scheme, a binder has a set of protocols, and creates
bindings by using of these protocols. A RPC system binder typically has the
following operations:

server_binding = svr_bind (dispatch, qos)
client_binding = clt_bind (interface_reference, qos, dispatch)
status = active ()

Bindings can be generated either implicitly by some object adapter API (see
section 3.3, which does not require any programmer intervention) or explicitly
by some explicit binding API (which requires a programmer to call the API).

Each binder understands a specific interface reference format.If the binder
understands multiple protocols, the interface reference format must allow
multiple protocol address representation.

The active  function indicates whether or not the binder has any active
bindings.

2.2.5 Binding

A binding is a set of channels through which object interactions take place.

An interface reference can be generated from a (server) binding by wrapping
its channel address information. An interface reference can then be used to
generate a peer (client) binding by some address selection procedure and
protocol by using the wrapped address. This reveals the important nature of
channel asymmetry i.e. the need of a master channel (have an address to be
used by an interface reference) and a slave channel (only to match the
address).
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In a typical multiple protocols environment, a binder creates one channel per
available protocol when creating a server binding. This allows any client
which shares common protocol with the server to complete the binding.

A server binding provides a function to generate an interface reference:
interface_reference = if_ref ()

A client binding normally contains only the necessary channel(s) (typically one
for RPC system) for object interactions.

For stream bindings (where the distinguish of client and server is not obvious),
multiple channels may required at both ends, for example, one for video
processing and another for audio processing.

2.2.6 Message

Messages are linked buffers. Each buffer contains a block of data abstracted
within a presentation policy. This policy can be overridden via object
inheritance (polymorphism) to reflect a particular protocol specific policy
requirement. The policy is represented as marshalling routines, which are
defined along with the specific computational object API types system.

Buffers may have a manager. Buffer managers are protocol specific (see
section 2.2.2). They are also buffer type specific so that different types of
buffers are not mixed.

A buffer manager implements a specific management policy. For example,
standard sized buffers may be cached for reuse, while other sized buffers are
released immediately when free.

Buffer and protocol are related but orthogonal, e.g. one type of buffer may be
used by several protocols.

Protocol and buffer together determines a data buffering policy, e.g. whether
or not linked buffers are used, whether or not buffer size is automatically
expanded etc.

Each message has an address record, which is used for identifying a message
destination by the sending site, and which provides the complemental address
information of a message header (which is used for identifying a message
target by the receiving site).

2.2.7 Address

An address has a sequence of address record. Each address record is a
sequence of octet. This is a generic address form.

Each channel has an address record for its channel address. An address is
normally the concatenation of a stack of channels (corresponding to the
module stack of a protocol). The content of an address record, i.e. the octet
sequence, is only meaningful to a particular module or channel. Each protocol
needs to provide a special mapping of its address format to this generic
address form.

2.2.8 QoS object

A QoS object is a record, which contains a set of properties to drive operations
in protocols, modules, channels and binders.

QoS objects have operations to put and get property values.
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Two types of QoS objects are introduced, one for interface (binding) creation,
one for object invocation.

A simple and often used case of QoS object is to implement port based
applications, where a well known service address (an interface reference) must
be able to be hand crafted, such as the interface reference for a Trader or a
Factory in ANSAware. In such case, a QoS object may be used to drive
protocols to generate channels with specific addresses.

2.3 Examples

Figure 2.1 illustrates a case of protocol configuration and composition. In the
figure, a box represents a module, and a stack of module represents a complete
protocol.

Figure 2.1: Protocol Configuration and Composition

Figure 2.2: Server binding
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Figure 2.2 illustrates a case of server binding. There are three protocols in the
example, namely REX/MPS_UDP for normal RPC, TREX/MPS_UDP for real-time
RPC and Stream/RTP  for stream transport. REX, MPS_UDP, TREX, Stream  and
RTP are modules. The three protocols may belong to three different binders
(one for normal RPC, one for real-time signalling, one for stream processing).
Two instances of MPS_UDP are used, one for REX/MPS_UDP and the other for
TREX/MPS_UDP. Interfaces If1, If2  are each tied to a REX channel (which in
turn shares a common MPS_UDP anchor channel). The real-time interface Rt_If
has a TREX channel. The stream interface Stream_If has two Stream  channels
(each of which has a separate RTP anchor channel).

2.4 Message processing

Message processing is done by channel functions and module demux functions,
as messages are passed by normal procedure calls between protocol layers.
Message processing ends when processes arrive at a dispatch channel (for
incoming messages) or at an anchor channel (for outgoing messages).

Sending a message (including call , cast , reply  and write ) is processed down
through a protocol stack. When a channel finishes its protocol processing for a
message, it passes the message to the next lower layer channel. This
procedure terminates when an anchor channel is encountered.

Receiving a message can be done asynchronously, synchronously or half
synchronous and half asynchronously.

In the asynchronous receive case, shown in Figure 2.3 case (1), an incoming
message is firstly processed by the demux function of an anchor module, which
selects the target channel and passes the message to it. This channel either
passes the message to its dispatch  routine (if the channel is a dispatch
channel), or passes the message to the demux  function of the next upper layer
module. The procedure ends when the message is dispatched.

In the synchronous case, shown in Figure 2.3 case (2), the read  function of a
channel calls the read  function at a lower layer channel to get an incoming
message. The read  function of an anchor channel blocks waiting at a network
interface. When a message arrives, it unblocks and passes the message to its
upper layer.

Figure 2.3: Message processing
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Synchronous receive involves less protocol processing overhead but does not
allow channel multiplexing. Synchronous and asynchronous message
processing can also be combined, and it requires detailed knowledge about
concurrency, channel multiplexing and event processing. This is further
discussed in the next section.

2.5 Multiplexing and concurrency

Multiplexing is an essential part of any communication system to enable
resource sharing. Arbitrary channel multiplexing is possible in the DIMMA
communication scheme. However, the cost of multiplexing must be understood
as it often prevents QoS and introduces extra protocol processing overhead. In
applications where high performance and QoS are necessary, controlled
multiplexing is an important technique.

Two simple channel multiplexing policies are

• maximum multiplexing - upper layer channels always multiplex at a
lower layer channel, as used by IIOP and ANSAware REX

• no multiplexing - there is a one to one correspondence between a upper
layer channel and a lower layer channel. This technique has been used by
some multi-service RPC systems and most high performance RPC systems
[McAuley89], e.g. to benefit the one multiplexing and demultiplexing ATM
communication paradigm.

More complicated multiplexing policies require and are driven by QoS objects,
one example is the Timed RPC (TREX) protocol developed in ANSAware/RT.

Controlled multiplexing and protocol concurrency processing are related
topics, and they are better discussed by examples.

Figure 2.4: Client channel multiplexing and concurrency (1)
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Figure 2.4 shows two cases of client message processing in a RPC system. The
first case is the non-multiplexing case, an object invocation send the message
along the channels and then waits at the anchor channel for a reply message.
As no message demultiplexing is required, and the reply comes directly to the
calling thread, protocol processing time is minimized. However, the price is
high, for each RPC channel, a dedicated message processing anchor channel is
required, and there is no concurrency access allowed for the RPC channel.

The second scenario uses maximum channel multiplexing. The calling thread
waits at its own RPC channel for reply messages. All network incoming
messages at anchor channels are processed by a dedicated network listening
thread, which demultiplexes replies to destination RPC channels, and then
wakes up the calling thread. This case allows RPC channels to share lower
layer message processing (anchor) channels, and resource usages are
minimized. The price paid is a demultiplexing processing and an extra thread
context switch.

Similar cases for server channel message processing are given in Figure 2.5.
In the second case a new thread is spawned for each invocations.

Figure 2.6 shows how to allow concurrent RPC calls by introducing a session
layer at client side. A session caches the information about a channel and an
invocation, and enables concurrent access to a channel.

Figure 2.7 shows how to have controlled server concurrency by introducing a
message queue.  It shows actually the ANSAware server side message
processing scenario. The scheme is extended in ANSAware/RT by having
multiple message queues (called entry), this allows separate (fine-grained)
resource allocation and management for different (real-time and non-real-
time) interfaces.

Figure 2.5: Server channel multiplexing and concurrency (1)
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Figure 2.6: Client channel multiplexing and concurrency (2)

Figure 2.7: Server channel multiplexing and concurrency (2)
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3 Implementation notes

This chapter gives a description of the various nucleus modules
implementation in the C++ prototype.

3.1 Structure

The structure of the nucleus is given in Figure 3.1.

The nucleus consists of a number of generic software modules and some
derived platform specific or protocol specific modules. They are explained in
the following sections.

Figure 3.1: Nucleus structure
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3.2 Protocols

The nucleus implements four protocol modules: ansa_RPC, MPSUDP, MPSTCP and
IIOP . They can constitute three protocols: ansa_RPC with MPSTCP, ansa_RPC
with MPSUDP, and IIOP .

Apart from providing standard abstractions defined by the framework, these
protocols have an extra abstraction: sessions, which are used to associate
invocations to channels.

The ansa_RPC and IIOP  are further discussed in later chapters.

3.3 Binder and object adapter

The nucleus has a binder for setting up implicit bindings for the DIMMA API.
The binder has three protocols as discussed in the last section.

The binder uses CORBA2 UNO Interoperable Object References (IOR) as its
interface reference format. IOR supports multiple protocols and allows
arbitrary protocol address formats as they can be encapsulated as IOR
protocol profile (as a byte sequence).

A server binding is created when a server stub is generated. A server binding
has three channels, each for a protocol of the binder. The interface reference
(an IOR) for a server binding contains three tagged profiles, each for one of its
channels.

A client binding is created the first time a remote invocation is made. The
binder finds one of its common protocols with an remote interface (by
searching the IOR profiles), and creates one channel for the binding.

A client/server binding is deleted when its related stub is deleted.

The object adapter implements routines for API to access the binder and its
generated bindings. This module also implements the IOR to/from character
string transformation routines defined by CORBA2 UNO.

3.4 Thread

An abstract thread package interface is defined and which must be
implemented by the real thread package of a platform.

All threads are managed, i.e. have a manager, and are created by a manager.
The nucleus has a default thread manager, and extra thread manager can be
created by an application.

Thread manager is designed to apply some overall policies to its threads. At
the moment, a thread manager only reports how many threads are active.
This would be expected to be enhanced with other thread managing routines
as defined in the ANSAware/RT entry abstraction.

Threads are created as normal objects. An optional property attribute can be
used to generate real-time threads (if the real thread package supports real-
time threads).

The following thread manipulation primitives are defined:

• join: wait till another thread finishes

• yield: let other thread execute
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• cancel: send a signal to another thread

• detach: no thread will join this thread

• exit: force finishing.

The following synchronization mechanisms are defined:

• binary mutex

• conditional variable and timed conditional variable

• semaphore and timed semaphore.

The nucleus implements two real thread packages: one for POSIX thread
environments and one for non-threaded environments (null thread).

The implementation of a semaphore package using POSIX synchronization
primitives is not trivial when a spurious thread wakeup is allowed, and
readers interested are suggested to study the source code.

The protocol implementation is designed in such a way that to take
appropriate event processing actions depending on whether real concurrency
is supported or not, and therefore able to work without forcing a specific
concurrency scheme.

3.5 Buffer

Buffer is the basic abstraction for message processing as discussed in section
2.2.6.

A buffer defines virtual functions for implementing a data representation
protocol, which are overridden by protocol specific procedures.

Buffers can be either managed (created by a buffer manager) or non-managed.
A managed buffer is typically used for stubs and they are subject to some
system defined management policy (such as free, creation and cache). Non-
managed buffers are often for temporal use, and their management is done by
protocol code. Non-managed buffers are used frequently in our IIOP
implementation to marshal GIOP encapsulation.

Buffer managers are typed, and are dependent on the type of buffer they
manage.

3.6 Index management

Table lookup to map some identifiers from network messages to some protocol
objects (channels or sessions) is required by protocol processing.

If a system is to scale (from few interfaces to millions of interfaces, and from
few activities to millions of activities), this table lookup operation is one of the
keys. The requirements are twofold

• be able to allocate real protocol objects (either channels or sessions) on
demand

• be able to keep the lookup time constant (neither linear search nor hash
tables do this).

A technique similar to UNIX inode management is used in the nucleus. But
instead of using fixed length indirection (typically 3 levels in UNIX), the
nucleus uses one level and automatically expanding index nodes. This is
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illustrated in Figure 3.2. In this structure, both index nodes and real nodes
(which can be channels or sessions) are allocated on demand (i.e. when the
required real nodes exceed current allocated number). Real nodes are
allocated in group of size N , to prevent excessive memory segmentation.

With such an arrangement, table lookup is an indexing operation from an
index number to a real node. The object provides this service is called inode in
this document.

3.7 Timer

The timer module provides a facility for the creation and management of both
sporadic and periodic alarms, which can be used by both protocol code and
application code.

A Timer  abstraction is supported and the following overloaded operator can be
applied:

• +, -, =

• <, >, <=, >=, ==

3.8 Tracing and debugging

The nucleus can be conditionally compiled to provide tracing messages.

Tracing is based on individual nucleus modules. To give tracing informations,
an environment variables (ANSA_TRACE) can be set to the required modules
value.

Figure 3.2: Index nodes

N

N

...

index nodes

real
nodes

current maximum index
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4 A RPC protocol

This chapter describes how an RPC protocol, called ansa_RPC, has been
implemented in the DIMMA nucleus. It works on both TCP and UDP. The
RPC protocol is lightweight and is designed for internal use, experimentation,
and performance comparison with standard RPCs.

4.1 Structure

The RPC is a protocol layer in the generic communication framework. It
implements the module  and channel  abstract classes in the framework.

The RPC module has two inodes : one for channel management, and one for
session management.

The RPC channel implements both client channels (created by openSlave ) and
server channels (created by openMaster ).

A session object is used for a client channel to maintain the state for each
invocation.

In a multi-threaded environment, a dedicated message demultiplexing thread
is created. It receives all network incoming messages and dispatches them to
the right channels and sessions by the module demux function (single thread
case is discussed in section 4.9).

The RPC module requires a stateless message passing service (MPS) protocol
layer (like ANSAware). Two such layers are implemented: one for TCP, one for
UDP. They are named as MPSTCP and MPSUDP. Each such MPS layers
implements also the module  and channel  abstract classes in the framework.

Specifically, the RPC module provides the header, start, openMaster ,
openSlave  and demux functions. The client channel provides call and cast
functions. The server channel provides the dispatch  function.

The MPS module provides also the header , start , openMaster , openSlave  and
demux functions. Its channel provides write  and reply  functions.

4.2 Client channel

Each client channel contains information about its peer (server channel) and
maintains a session list for all ongoing concurrent invocations.

4.2.1 Session

A session is allocated for each invocation. Each session contains a request_id ,
a result status , a reply buffer  and a semaphore . The request_id  is
allocated protocol module wise, and is used to guard against reused sessions
(because of timeout, for example). The module manages its request_id  in
some non-descent order for this purpose. An invocation normally waits at its
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session semaphore, until a reply buffer is collected by the module demux
function. The invocation thread then is woke up (and picks up the reply) by the
message demultiplexing thread. A session is immediately released after an
invocation is finished.

A request message is sent out by a MPS channel write  function.

4.3 Server channel

Each server channel has a nonce  and a dispatch  function. The nonce  is a
random number and is used to guard against reused channels (for reasons of
reallocation, service destruction etc.).

An invocation request is dispatched by the demultiplexing thread, which
generates a new thread for each request. The generated thread executes the
channel dispatch  function with the incoming message and thus upcalls to a
server stub. A reply message is sent back by invoking a MPS channel reply
function.

Client and server channels are not symmetric: for each server channel, there
may be many client channels.

4.4 Messages

All RPC messages have a fixed header with the following fields:

• magic , 4 octets, for the indication of an ansa_RPC message

• version , 2 octets

• type , 2 octets, type of messages

• request_id , 4 octets

• channel , 4 octets, peer channel index

• nonce , 4 octets

• session , 4 octets, session id

• data_length , 4 octets, length of payload.

Four types of messages are defined: CALL, CAST, REPLY and NACK.

4.5 IOR profile

The interface reference generated by the nucleus binder is CORBA2 IOR. The
IOR has a tagged profile for each protocol the binder understands. Each profile
contains the required information for object (interface, to be more precise)
location.

For the RPC protocol, its profile in the IOR has the following fields:

• channel id , 4 octets

• nonce , 4 octets

• host IP address , 4 octets,

• host port address , 2 octets

This profile is sufficient for the RPC to run on either TCP or UDP, because
they use the same IP address family.
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4.6 Presentation

User data are marshalled in network byte order and packed continuously as a
byte stream (i.e. no alignment gaps are padded) in the RPC messages.

The RPC buffer marshalling functions pack the outgoing data into network
byte order, and the unmarshalling functions transfer them back into host byte
order.

4.7 MPSTCP

The MPSTCP protocol layer provides a message passing service based on host
TCP protocol.

A single channel is allocated and used by all upper layer (RPC) channels. The
channel encapsulates a passive TCP socket, which provides the address for
IOR and enables the opening of connections for TCP transportation.

TCP sockets (connections) are opened on demand and cached, this allows the
sharing use of socket resources and their concurrent access.

Only the write  function in the MPSTCP channel enforces the opening of a new
connection (if not found in the current cache). For the reply  function, opening
a new connection is not required, because a client must have abandoned a
early connection, and this often means it is either down or not interested in a
reply.

The MPSTCP layer adds another header to the RPC messages, the header has
two fields:

• magic , 4 octets

• data_length , 4 octets

The data_length  field helps the receive site to allocate a sufficient large buffer
for an arriving message.

4.8 MPSUDP

The structure of the UDP protocol layer is similar to the MPSTCP layer. A single
channel is allocated and used by all upper layer (RPC) channels. The channel
encapsulate a UDP socket, by which all communications take place.

The MPSUDP layer does not add any header to the RPC message. Because UDP
messages have a fixed largest length, it is always safe for the receiver to collect
incoming messages with a buffer of the largest length.

It must be point out that because the ansa_RPC layer itself is not reliable, run
it over MPSUDP is not reliable as well.

4.9 Null thread case

If the nucleus runs on a non-threaded platform (i.e. the nucleus is not provided
with an implementation of its Thread  class), the protocol code can
automatically find this out and is designed to do synchronous data receive
instead.
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For an invocation, the calling thread, after sending out the request, just polls
network incoming messages by calling the RPC module demux operation, until
a reply message is come back or timeout.

For the server side, when the main thread calls capsule_ready(), it polls
network messages, and dispatches requests to channels (and stubs) by using
its own thread resource.

In a mixed server/client environment, the above scenarios can be combined,
e.g. a client, while waiting a reply, may use its thread resource to serve
invocation requests. But it is application writer’s responsibility to avoid
deadlock or liveliness problems because of lack of real concurrency.
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5 An IIOP implementation

This chapter discusses the CORBA IIOP protocol implementation in the
DIMMA nucleus. IIOP allows the interoperation between different CORBA
compliant ORBs.

5.1 IIOP

CORBA2 defines the Universal Networked Objects (UNO) for interoperability.
Its main interoperation protocol is called GIOP, and its mapping and
implementation over TCP is called IIOP.

UNO defines a standard format for interface reference representation, called
IOR, which is a type string plus a sequence of tagged protocol profiles. Each
profile itself is an opaque octet sequence, and can be used to encapsulate any
address information.

IIOP has a special mapping for its profile, called IIOP IOR profile, which has
the following fields:

• version , 2 octets

• host , a character string

• port , 2 octets

• object_key , an opaque octet sequence.

GIOP defines the following components:

• Common Data Representation (CDR), which defines the wire format (as
an octet stream) for all CORBA IDL types. Data in the octet stream are
kept alignment and in local host byte order

• RPC Messages, GIOP defines seven types of messages for RPC processing.
Each message has a common header plus a message type specific header

• Connection management, GIOP is designed to execute with a connection
oriented protocol. Conventions are defined to open, close and multiplex
network connections.

IIOP further details GIOP connection management in the case of TCP.

5.2 IIOP implementation

The nucleus IIOP implementation maintains the major features of the native
ansa_RPC protocol given in the last chapter:

• it allows concurrent invocations by introducing sessions

• server stubs are automatically dispatched by a new thread

• object lifetime is guarded by nonce, this prevents invocations on dead
objects (interfaces)
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• network connections are cached for reuse and concurrent access.

Object keys are differentiated at client and server sites. A server site object
key is a channel id  plus its nonce  (which can then be encapsulated to the
GIOP object_key  format for IIOP IOR profile), a client site object key remains
the same as the object_key format in the IIOP IOR profile, which allows this
IIOP implementation to talk to other vendors’ IIOP.

Unfortunately, IIOP mandates a special network connection management
scheme (IIOP failure semantics depends on TCP socket semantics), which
makes it difficulty (if not impossible) for us to implement it as two protocol
layers as is done in ansa_RPC. A single protocol module is used entirely for
IIOP.

Particularly, a session list is not managed by a client channel, but is managed
by a network connect, so that when the connection is closed or an error
happens, related invocations can be informed.

GIOP request message has a request_id  for the identification of invocation
source (used by a reply message). Naturally, our implementation uses session
id  as this request_id . Because there is no ansa_RPC message request_id  in
GIOP, it would be dangerous to allow an invocation timeout (and a related
session being reused), an obsolete reply may destroy another invocation.
Therefore invocation timeout is not allowed in our IIOP implementation.
However, this constraint only applies to clients using our API, it does not
affect foreign clients.

GIOP CDR is implemented by a special buffer module for data alignment and
byte order transformation.

5.3 Differences with ansa_RPC

Although the IIOP implementation inherits many of the ansa_RPC features, it
has the following differences which are necessary by the standard:

• data presentation: ansa_RPC wire representation is network formatted
and there is no data alignment padding, while IIOP’s CDR is in local host
byte order and data are kept alignment (by padding)

• message header: ansa_RPC messages have a fixed length protocol header,
while IIOP messages have a fixed length protocol header plus a message
type dependent header which is normally variable length

• IOR profile: ansa_RPC IOR profile uses IP address for its host address,
while IIOP IOR profile uses a string for its host address. It means an IIOP
implementation has to use some name server (normally DNS) to do the
string to IP address transformation at some binding stage, this can be
costly and also be a restriction for primitive (such as embedded) systems
where no DNS is supported.

5.4 Test

A standard test (published by SUN Microsoft Inc.) has be carried between our
implementation and SUN’s implementation. Object invocations using basic
types have been tested successfully. Other tests can only be done when the
appropriate CORBA APIs are supported, and they are less relevant to the
IIOP implementation.
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5.5 A discussion of GIOP relocation service

GIOP object relocation facility is not implemented, because of lack of similar
API. More importantly, it is still arguable that the GIOP approach to object
relocation is useful as discussed as follows.

Most ORB implementations run as user level processes, and objects live
within such processes. Therefore it is against intuition to have the GIOP
object relocation scenario, i.e. an ORB is still there while some of its objects
moved away. It is more nature to assume an ORB and its objects all moved,
and the ANSAware approach to object relocation by using a relocation server
is better, especially when the relocation service is used to cope with machine
crash or failures. In such cases, it is simply impossible to run a relocation
agent at the same machine and address as required by GIOP.
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