
Copyright  1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1555.01 Approved 30th September 1997

Technical Report

ODP C++ API Design Overview

Dave Otway

Abstract

This document describes an Application Programming Interface for writing distributable programs
in C++ which conform to the distribution semantics of the Open Distributed Processing standard’s
computational model.

It currently only describes the non real-time features. These are intended to be the lightweight
foundation for a real-time API.

This document is not complete. it is intended as the baseline for work in the 1996-1998 workplan
which will be discussed at the September TC.

ODP C++ API Design Overview

ODP C++ API Design Overview

Dave Otway

APM.1555.01

30th September 1997

APM

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by APM Limited on behalf of the companies sponsoring the ANSA Workpro-
gramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

APM Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 0RD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright „ 1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

APM Limited takes no responsibility for the consequences of errors or omis-
sions in this Report, nor for any damages resulting from the application of the
ideas expressed herein.

APM.1555.01 ODP C++ API Design Overview i

Contents

3 1 Introduction
3 1.1 Requirements
3 1.2 Background
4 1.3 Objectives
4 1.4 Relationship to CORBA
4 1.5 Status

5 2 The application programming model
5 2.1 Relevant engineering constructs
5 2.1.1 Capsules
5 2.1.2 Stubs
5 2.2 Major computational constructs
5 2.2.1 Objects
6 2.2.2 Interfaces
6 2.2.3 Signatures

7 3 The computational API
7 3.1 Programming environment
7 3.1.1 Preprocessor macros
8 3.1.2 Stub generator
8 3.1.3 Header files
8 3.1.4 Libraries
8 3.2 Language mapping strategy
9 3.3 Signatures
9 3.4 Invocation references

10 3.5 Objects
11 3.6 Interfaces
12 3.7 Module to object mapping
12 3.8 Arguments
13 3.9 Terminations
13 3.9.1 The anonymous termination
13 3.9.2 Named terminations
13 3.10 Results
13 3.11 Operations
14 3.12 Invocations
14 3.13 Object factories
14 3.14 Any references
14 3.15 Primitive types
14 3.16 Constructed types
14 3.17 Memory management
14 3.18 Trading

Contents ANSA Phase III

ii ODP C++ API Design Overview APM.1555.01

APM.1555.01 ODP C++ API Design Overview 3

1 Introduction

This document describes an Application Programming Interface (API) for
writing distributable programs in C++ which conform to the distribution
semantics of the Open Distributed Processing (ODP) standard’s computational
model.

1.1 Requirements

The ANSA Phase III Distributed Interactive Multi-Media Architecture
(DIMMA) project, the RETINA project, the DCAN project and some of the
ANSA sponsors all have similar requirements for a real-time Distributed
Processing Environment (DPE1).

This real-time DPE must provide full interoperability. That is between real-
time and non real-time programs and between real-time and non real-time
DPEs.

Non real-time objects must also be portable between real-time and non real-
time DPEs.

A real-time DPE must be able to provide performance guarantees to objects
and synchronous sub-networks of objects in a generally asynchronous
distributed system. As well as a real-time DPE, this requires an API that
provides the required real-time constructs.

1.2 Background

ANSAware is not suitable as the basis for a real-time DPE because it is
designed to optimise resource usage, provides no application control over
resource allocation or scheduling and is not lightweight enough.

CORBA implementations are likely to suffer from the same problems because
they have the same design objectives. Obtaining full access to the source code
of a commercial ORB implementation has also proved problematic.

The ODP computational model includes all the semantics required and has
now been adopted as an ISO standard.

The open systems distributed systems industry is moving firmly behind the
CORBA specification, but this has none of the real-time functionality required
and is not lightweight.

There is a definite trend away from using C towards C++.

1. In OMG speak this is known as an Object Request Broker (ORB).

Introduction ANSA Phase III

4 ODP C++ API Design Overview APM.1555.01

1.3 Objectives

The major objective is to build a prototype modular lightweight real-time DPE
framework (the DIMMA nucleus) and an API based on the ODP semantics and
implemented in C++.

This will serve the specific project and sponsor real-time requirements
previously described. But the wider requirements are to interoperate with non
real-time DPEs and provide portability of non real-time objects.

Interoperability with non real-time DPEs will be provided by adding their
protocol stacks into the DIMMA nucleus and generating DIMMA stubs from
their IDL descriptions.

The portability of non real-time objects will be provided by designing the API
to be portable to any DPE.

Two longer term goals are to feed our experience back into CORBA by
demonstrating:

• what features have to be added in order to provide performance
guarantees

• what features can be left out without losing essential functionality in
order to make it lightweight

1.4 Relationship to CORBA

Although the ODP computational model provides exactly the right set of
distribution semantics, the results of the ANSA program must be capable of
being fed back into the market.

In order to simplify this process:

• the non real-time functionality will not arbitrarily diverge from CORBA
without good reason, although subsetting by choosing only one of a set of
alternatives is encouraged

• a CORBA personality module will be added to the API to provide forward
compatibility with the CORBA C++ mapping, i.e. all non real-time
programs written for this personality module will be portable to a
standard CORBA implementation, but not vice versa

1.5 Status

This work is being done in four stages:

1. a minimal API for interworking
[only basic type and interface arguments]

2. an equivalent non real-time API to ANSAware and CORBA
[add constructed types and concurrency]

3. a real-time API

4. preprocessor support

The status of the software prototype is that a stage 1 API plus some
constructed types has been implemented over ANSAware 4.1 and the DIMMA
nucleus.

This document describes the stage 1 API.

APM.1555.01 ODP C++ API Design Overview 5

2 The application programming model

2.1 Relevant engineering constructs

2.1.1 Capsules

Capsules are the engineering units of locality, failure and security. They
provide hardware enforcement of an encapsulation boundary by protecting the
code and data inside a capsule from being read or modified from outside the
capsule.

On nodes with virtual memory support a capsule usually corresponds to an
address space. On nodes without virtual memory support the node constitutes
a single capsule.

2.1.2 Stubs

2.2 Major computational constructs

2.2.1 Objects

Objects are the computational units of locality and can not have any
externally accessible data. All components of a object must always reside in
the same capsule (as each other) and there is no protection between
components of the same object.

Multiple objects can be co-located in the same capsule, but a single object may
not be split between capsules. If multiple objects reside in the same capsule
then their individual (intra-capsule as opposed to inter-capsule) encapsulation
must rely on the integrity of the programmer and programming tools that
constructed them.

The interactions between objects must only use the computational constructs
defined in this model. But within an object, any programming construct
supported by the local programming environment may be used. [This may
limit the portability of an object but will not affect its interoperability.]

Objects represent a design choice about the minimum granularity of
distribution.

The application programming model ANSA Phase III

6 ODP C++ API Design Overview APM.1555.01

Objects have factories to generate them and all objects generated by the same
factory may be said to be of the same ”type”, but this never needs to be checked
because objects are anonymous and may only be accessed via their interfaces.

2.2.2 Interfaces

Any object which wishes to provide a service to other objects must construct an
interface via which its clients can invoke operations on it.

An interface consists of a set of operations and (optionally) some data. These
operations and data constitute the implementation type1 of an interface. An
object can have multiple interfaces of the same type and multiple types of
interfaces.

In order to preserve its object’s encapsulation, an interface must not have any
externally accessible data or be externally constructable.

Data which is to be shared between an object’s interfaces can be declared as
the object’s data. Alternatively, an interface can access the data of another
interface in the same object.

Interfaces to an object can be created by the factory that creates the object or
by an invocation of an operation on an existing interface to the object.

2.2.3 Signatures

An interface signature specifies the interaction type2 of an interface. It
consists of a set of operation signatures.

1. Equivalent to a C++ concrete class definition.

2. Equivalent to a C++ abstract class declaration.

APM.1555.01 ODP C++ API Design Overview 7

3 The computational API

An application programmer writes ODP conforming distributable C++
programs using only the computational API. This chapter describes the
computational API and explains how to use it.

3.1 Programming environment

An application source program does not exist in isolation. Application
programs using this computational API assume the following program
environment.

3.1.1 Preprocessor macros

All preprocessor macros have names with an ODP_ prefix.

3.1.1.1 ODP_NAMESPACE

Eventually all API definitions will be in the ODP namespace. But until
namespaces are widely implemented by production C++ compilers, all the API
global names will have an odp_ prefix1.

This prefix can be stripped off by defining the ODP_NAMESPACE macro before
any header files are included.

#define ODP_NAMESPACE

This has an effect similar to that which the using-directive:

using namespace ODP ;

will have when the ODP namespace is implemented.

3.1.1.2 ODP_DEBUG

The definition

#define ODP_DEBUG 1

before any header files are included switches on extra run-time checking by
defining the following macros (which can be defined individually):

#define ODP_CHECK_NIL 1

checks for nil pointer dereferencing;

#define ODP_CHECK_RANGE 1

checks for out of range accesses in sequences;

1. The API definitions cannot be nested inside an ODP class because some of the API
constructs are implement by templates and template declarations must be global.

The computational API ANSA Phase III

8 ODP C++ API Design Overview APM.1555.01

#define ODP_ROBUST 1

does extra checks on incoming messages.

3.1.2 Stub generator

Each remotely accessible interface will be described in an interface description
file using an Interface Description Language (IDL). These IDL files will be
processed by a stub generator to produce a signature header plus client and
server stubs.

3.1.3 Header files

All application source files must include the header file computational.hh ,

#include <computational.hh>

which contains all the definitions needed for the ODP computational API, but
does not include headers for any “standard” libraries.

3.1.3.1 Signature headers

A application source file must also include the signature header files for all
interfaces used or provided by objects in the source file. A header file may
include signature and invocation reference definitions for more than one
interface.

The naming convention used by the stub generator is that the type of the
invocation reference for an interface is named with the IDL interface name
prefixed by any enclosing IDL module names. The (abstract) signature class
for the interface is named by giving the invocation reference type name a _Sig
postfix.

A signature header may also include typedef and constant definitions.

3.1.4 Libraries

Applications programs must be linked with the ODP library and the library
for the underlying DPE. Because the ODP API has to be mapped onto each
DPE, there is a specific ODP library for each DPE. It is named by adding the
odp_ prefix to the DPE name.

3.2 Language mapping strategy

The C++ language has all the features needed to implement distributed
programs, but it also it has many features that are impossible, difficult or
dangerous to distribute. Accordingly the ODP C++ API is mainly concerned
with placing restrictions on the way C++ is used to implement distributed
programs.

Objects, interfaces and signatures are all mapped into C++ classes, but with
different and quite stringent restrictions.

Operations map quite naturally into methods. Named terminations map into
exceptions which naturally cater for multiple results. The last result of an
anonymous termination maps into the method result and any preceding
results are mapped into additional reference arguments.

ANSA Phase III The computational API

APM.1555.01 ODP C++ API Design Overview 9

Invocation references are mapped into typed smart pointers to the (abstract)
signature. The (concrete) class that the smart pointer actually points to can be
either a local interface or a client stub for a remote interface. The C++ virtual
function calling mechanism then provides complete access transparency
between local and remote invocations.

Primitive types are mapped onto the C++ their equivalents. they are accessed
directly and passed as arguments by value. Constructed types and interfaces
are always accessed and passed as arguments via smart pointers.

Local garbage collection of interfaces, objects and constructed types is done by
reference counting and is implemented via the smart pointers.

3.3 Signatures

Signatures are normally generated from an IDL interface definition by a stub
generator, so a programmer does not need be too concerned with the details.

A signature is represented by a C++ abstract class definition which publicly
inherits the base odp_Signature class. A signature defines the operations and
terminations of an interface.

The operations are defined as pure virtual methods.

The named terminations all inherit from the base termination of the signature
so that they can be caught collectively if desired.

class BankManager_Sig : public odp_Signature
{
public:
 class Termination : public odp_NamedTermination {} ;
 class invalidPin : public Termination {} ;
 class notOwner : public Termination {} ;
 virtual BankPin newBranch (BankPin mpin, BankBranch & odp_r1)
 throw (invalidPin,
 odp_EngineeringTermination) = 0 ;
 virtual Pence balance (BankPin mpin)
 throw (invalidPin,
 odp_EngineeringTermination) = 0 ;
 virtual BankPin getPin ()
 throw (notOwner,
 odp_EngineeringTermination) = 0 ;
} ;

3.4 Invocation references

An invocation reference is represented by a smart pointer to a signature. This
pointer is generated by the odp_InvocationRef template parameterised by
the signature. The stub generator inserts a typedef for the invocation
reference in the same header file as the signature.

typedef odp_InvocationRef<BankManager_Sig> BankManager ;

In the example above, the type of an invocation reference to (a local or remote
instance of) a Manager interface defined in the Bank module is BankManager .

Invocation references are defined by the template:

The computational API ANSA Phase III

10 ODP C++ API Design Overview APM.1555.01

template <class SIGNATURE> class odp_InvocationRef
{
private:

SIGNATURE * ir ;
public:

odp_InvocationRef () ;
odp_InvocationRef (SIGNATURE * sp) ;
odp_InvocationRef

(const odp_InvocationRef<SIGNATURE> & other) ;
~odp_InvocationRef () ;
odp_InvocationRef<SIGNATURE> & operator= (SIGNATURE * sp) ;
odp_InvocationRef<SIGNATURE> & operator=

(const odp_InvocationRef<SIGNATURE> & other) ;
int operator== (int nil) const ;
int operator!= (int nil) const ;
SIGNATURE * operator-> () const ;

} ;

This generates a smart container for the signature pointer. The default
constructor initialises an invocation reference with a nil pointer. The other two
constructors initialise an invocation reference from a signature pointer and an
existing invocation reference.

There are two assignment operators which overwrite an invocation reference
with a signature pointer and an existing invocation reference.

A nil invocation reference is one which contains a signature pointer equal to
zero. The == and != operators will test if the signature pointer is equal or not
equal to zero. Testing against any integer other than zero will always give an
unequal outcome. It is not possible or meaningful to compare two invocation
references.

The -> operator is the main purpose of an invocation reference and is used to
invoke operations on the interface pointed to by the enclosed signature
pointer.

3.5 Objects

An ODP object is represented by a C++ object defined by a class which publicly
inherits from the odp_Object base class.

The object class must declare all its interface classes as friends. It must also
declare its factory function as a friend. A factory may be defined to return zero,
one or many invocation references to interfaces of the newly created object. A
factory must never return a pointer to the object itself as this must remain
anonymous and only be accessible via its interfaces.

ANSA Phase III The computational API

APM.1555.01 ODP C++ API Design Overview 11

class Bank : public odp_Object
{

friend class Account ;
friend class Customer ;
friend class Branch ;
friend class Manager ;
friend BankManager Bank_factory () ;

private:
Pence cash ;
Bank () : cash(0) {}
BankManager body () ;

} ;

Any data which is to be shared between the object’s interfaces is declared as
private, a constructor defined to initialise it and a body method defined to
create the initial interface(s).

An object should have no public methods or data, and the only private
methods allowed are a constructor, body method and a destructor. Only the
factory function should call the constructor and body methods. Any destructor
will only be invoked when all the object’s interfaces have been deleted.

3.6 Interfaces

An interface is represented by a C++ object defined by a class which publicly
inherits from both the interface’s signature and an odp_Interface class
template parameterised by the interface’s object class.

The interface class must define as friends any interfaces that access its private
data and any interfaces (or its object) that call its constructor.

All interface data must be private as must its constructor.

The interface’s public methods must implement the virtual methods defined
by its signature.

class Manager : public BankManager_Sig
, public odp_Interface<Bank>

{
friend class Bank ;

private:
BankPin pin ;
Manager (Bank * obj)

: odp_Interface<Bank>(obj) , pin(0) {}
public:

BankPin newBranch (BankPin mpin, BankBranch & r1) ;
Pence balance (BankPin mpin) ;
BankPin getPin () ;

} ;

The Manager interface inherits from odp_Interface<Bank> a const pointer to
its Bank object.

Bank * const object ;

This pointer can be used by operations in the interface to access the shared
data in the object and is initialised by the odp_Interface constructor. The

The computational API ANSA Phase III

12 ODP C++ API Design Overview APM.1555.01

interface constructor must therefore have an object pointer argument that can
be passed onto the odp_Interface constructor.

An interface can access the private data of another interface if it has been
declared a friend and passed a pointer.

class Customer: public BankCustomer_Sig
, public Interface<Bank>

{
friend class Account ;
friend class Branch ;

private:
Branch * const branch ;
const BankPin pin ;
Customer (Bank * obj, Branch * bp)

: odp_Interface<Bank>(obj), branch(bp), pin(rand()) {}
public:

BankAccount newAccount (BankPin cpin,
 BankAccountNo & odp_r1) ;

BankAccount getAccount (BankPin cpin, BankAccountNo no) ;
} ;

In the example above, the Customer interface allows the Branch interface to
create it and it can access the Branch interface’s data because it is passed a
pointer to the Branch interface in its constructor; and presumably the Branch
interface makes it a friend.

Also, the Customer interface has allowed the Account interface to access its
data; and presumably the Account interface’s constructor will be passed a
pointer to the Customer interface.

3.7 Module to object mapping

IDL modules just provide naming scopes. An object and its interfaces can be
structured to match the module scoping so that the interface Manager for the
object Bank implements the signature BankManager_Sig and can be assigned
to invocation references of type BankManager , but this structuring is not
mandatory. The interfaces defined in a single IDL module may be
implemented as interfaces to multiple objects and a single object may provide
interfaces defined in multiple modules.

3.8 Arguments

An argument with a primitive type is directly passed by value. Both client and
server end up with their own copy of the argument.

An argument with a constructed type is referred to by a smart pointer and
passed by value. Both client and server end up with their own copy of the
argument and smart pointer.

An argument which is an interface is referred to by an odp_InvocationRef
and passed by reference. Both client and server end up with their own
odp_InvocationRef which refers to the same instance of the interface. The
interface referred to may reside in the client object, the server object or a third
party object (i.e. anywhere). Using an interface as an argument does not
change its location.

ANSA Phase III The computational API

APM.1555.01 ODP C++ API Design Overview 13

3.9 Terminations

The anonymous termination is handled differently from named terminations.

3.9.1 The anonymous termination

The last result of an operation’s anonymous termination is passed as the
result of the C++ method implementing the operation.

Any preceding results are returned via C++ reference (&) arguments added to
the end of the method’s argument list.

3.9.2 Named terminations

A named termination is represented by a C++ exception of the same name.
The exception name is declared in the scope of the signature declaration and
must be qualified by the signature name when used outside of the
corresponding interface definition (e.g. when it is caught by a client).

All of a named termination’s results are passed as arguments of its exception.

3.10 Results

Results are passed with the same semantics as arguments.

But remember that the additional arguments added to a method’s argument
list to specify where to return all but the last result of an anonymous
termination must be C++ references (&) to the result types being returned.

3.11 Operations

An operation is represented by a C++ method in an interface class.

BankAccount Customer::newAccount(BankPin cpin,
 BankAccountNo & odp_r1)

{
if (cpin == pin)
{

int accNo = branch->nextAccNo++ ;
branch->accounts[accNo].acc =

new Account(object,branch,this) ;
branch->accounts[accNo].pin = pin ;
odp_r1 = accNo ;
return branch->accounts[accNo].acc ;

}
else throw invalidPin() ;

}

In the example above, the first result of the operation’s anonymous
termination is returned via the odp_r1 argument and the last result is
returned as the result of the method. The named termination is thrown as an
exception.

The computational API ANSA Phase III

14 ODP C++ API Design Overview APM.1555.01

3.12 Invocations

An operation in a (local or remote) interface is always invoked via an
invocation reference. The -> operator provided by the odp_InvocationRef
template returns a signature pointer which points to a local interface or client
stub on which the method representing the operation is invoked.

BankPin mpin = manager->getPin() ;

If the anonymous termination has more than one result then all but the last
must be declared prior to the invocation and added to the argument list.

BankAccountNo acc1no ;
BankAccount acc1 = customer1->newAccount(cpin1,acc1no) ;

Named terminations can be caught by using the exception handlers of a C++
try statement.

try {
BankAccountNo acc1no ;
BankAccount acc1 = customer1->newAccount(cpin1,acc1no) ;
}

catch (BankAccount::invalidPin())
{

cout << “\nEXCEPTION: invalid pin\n\n” ; exit() ;
}

3.13 Object factories

3.14 Any references

Invocation references only. No concrete types. In initial version types
described by name.

3.15 Primitive types

Same as CORBA.

3.16 Constructed types

Same as CORBA but only accessible via smart pointers.

3.17 Memory management

Local garbage collection automatically handled by the invocation references
and smart pointers.

3.18 Trading

Export and import using Any types.

