
Copyright 1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1940.02 Approved 27th January 1997

Technical Report

Design and Implementation of a Persistence
Service for Java

Scarlet Schwiderski

Abstract

A persistence service has been implemented as part of the Reflective Java project in
the ANSA programme. This document describes the design and the implementation
of this persistence service. The purpose of this work is to provide a persistence service
for the Java programming language, and to demonstrate and evaluate the benefits of
Reflective Java.

Design and Implementation of a Persistence Service for Java

Design and Implementation of a Persistence Service for Java

Scarlet Schwiderski

APM.1940.02

27th January 1997

APM

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by APM Limited on behalf of the companies sponsoring the ANSA Workpro-
gramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

APM Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 0RD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright „ 1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

APM Limited takes no responsibility for the consequences of errors or omis-
sions in this Report, nor for any damages resulting from the application of the
ideas expressed herein.

APM.1940.02 Design and Implementation of a Persistence Service for Java i

Contents

1 1 Introduction

2 2 Overview of the Persistence Model
2 2.1 The Key Issue
2 2.2 The Objectives

4 3 The Implementation
4 3.1 Existing Java Technology
4 3.2 The Object Serialization API
4 3.2.1 Usage
5 3.2.2 Limitations
5 3.3 The Architecture
6 3.4 Implementation Options
7 3.4.1 Option One
7 3.4.2 Option Two
8 3.4.3 Option Three
8 3.5 The Activation and Deactivation Processes
9 3.5.1 Activation
9 3.5.2 Deactivation
9 3.5.3 Cancellation
9 3.6 The Persistence Metaobject
9 3.7 The Persistence Daemon

11 4 Examples
11 4.1 The Person Demonstration
11 4.2 The Crossword Demonstration

12 5 Summary

Contents ANSA Phase III

ii Design and Implementation of a Persistence Service for Java APM.1940.02

APM.1940.02 Design and Implementation of a Persistence Service for Java 1

1 Introduction

A persistence service has been implemented as part of the Reflective Java
project [WS96] in the ANSA programme. This document describes the design
and the implementation of this persistence service. The purpose of this work is

1. to provide a persistence service for the Java programming language.

2. to demonstrate and evaluate the benefits of Reflective Java.

The motivation for providing a persistence service for Java is to make Java
objects survive “normal” program execution, and to make Java applications
failure resilient. We would like to achieve this by supporting one persistent
store for Java objects at each computing site, usable by any number of
applications running concurrently at this site. Other issues such as security,
consistency, and redundancy are to be tackled. The main goal is to provide a
powerful persistence service and make it easy to apply for end users.

Persistence can be regarded as a non-functional requirement of an application.
Therefore, using Reflective Java seems suitable for implementing the
persistence service. The advantage is that persistence can be provided to the
end user with causing only little overhead, and without changing the Java
language. Further, the end user can use his application program with any
persistence service implemented according to the MOP (MetaObjectProtocol)
approach, and change the binding to the persistence service at any time, even
dynamically at runtime. The current binding depends on application
requirements, for example, the required security model or method of
serialisation.

This document is organised as follows. Section 2 describes our model of a
persistence service for Java. After discussing the design, Section 3 illustrates
the implementation according to the Reflective Java paradigm. Specific
implementation problems are pointed out and provide necessary feedback for
the work on Reflective Java as such. Two example applications have been
implemented, which are outlined in Section 4. The document concludes with a
summary.

Overview of the Persistence Model ANSA Phase III

2 Design and Implementation of a Persistence Service for Java APM.1940.02

2 Overview of the Persistence Model

2.1 The Key Issue

The main concern of our persistence model is to maintain a persistent store
(POS: Persistent Object Store) for Java objects in order to

• make Java objects reusable by the same or by different applications

• provide failure resilience to applications

For this purpose, the state of a Java object and sufficient information on its
type need to be kept in the POS. The following section identifies the objectives
and presents the overall model of the persistence service.

2.2 The Objectives

The following objectives for a persistence service for Java objects can be
identified:

1. writing Java objects to the persistent store

2. reading Java objects from the persistent store

3. supporting concurrent access to the persistent store

4. providing security measures

5. ensuring consistency of stored Java objects

In order to make an application object persistent, the application object and all
objects that are reachable from that object (the whole hierarchy of objects)
need to be stored in the POS. Reusability of an application object can be
achieved by writing it to the POS at the end of program execution, whereas
providing failure resilience implies that the application object has to be
written when it is updated and in a consistent state.

A persistent Java object is to be read from the POS when the state of the
corresponding application object needs to be restored, that is, at the beginning
of program execution (for root-level objects in the object hierarchy) or
whenever the object is needed throughout program execution (for lower-level
objects in the object hierarchy). In order to read an object from the POS, the
correct object has to be identified; its type has to correspond to the type of the
Java object to be restored and a specific instance has to be chosen.

We want to support one POS for each computing site. Applications running
concurrently at this site should be able to access the POS concurrently, if they
are not interfering with each other (that is, if they are not accessing the same
objects in the POS). Having applications accessing the POS concurrently
means there needs to be one central persistence manager. Hereafter, we will
call this persistence manager persistence daemon.

In order to avoid forgery, the POS needs to be protected from unauthorised
access. One way to provide security is to encrypt Java objects as they are

ANSA Phase III Overview of the Persistence Model

APM.1940.02 Design and Implementation of a Persistence Service for Java 3

written to the POS and decrypt them as they are read from the POS. Also
according to the encapsulation rule, applications should only be able to access
the POS through the persistence daemon. Further, there should always be at
least one valid copy of a Java object. Hence, a shadow copy is written to the
POS before the main copy is written. This ensures that there is always at least
one valid copy of an object, even if the system failed while writing the main
copy.

One way of ensuring consistency is to keep one and only one main version of a
Java object. Having applications working concurrently with the same object
would raise the risk of having two different, inconsistent versions. Hence,
concurrent access can only be allowed in a controlled manner.

We attempt to achieve all these objectives without changing the Java
language. In this way, there will only be little overhead for the end user. Also,
if there is existing Java technology which achieves some of those objectives, we
attempt to reuse this technology, rather than implementing everything from
scratch.

Figure 2.1: Model of the Persistence Service

Figure 2.1 presents our model for the Java persistence service. Multiple
applications contact the site’s persistence daemon in order to read/write Java
objects. The persistence daemon coordinates the access to the POS; it is
responsible for naming and locating objects and provides concurrency control.

POS

Persistence Daemon

Application Application Application...

read/write

The Implementation ANSA Phase III

4 Design and Implementation of a Persistence Service for Java APM.1940.02

3 The Implementation

Persistence can be regarded as a non-functional requirement of an application.
Hence, Reflective Java [WS96] is suitable for the implementation of a
persistence service for Java. Using Reflective Java, persistence can be
provided to applications without causing a large overhead for end users.

3.1 Existing Java Technology

There are two Java APIs which can be used for the implementation of the
persistence service:

• Object Serialization API (Sun) [OS96]

• Cryptix API (Systemics) [CRYP96]

The purpose of the Object Serialization API is to support remote method
invocation, that is, provide the means for marshalling and unmarshalling
object arguments; objects and all objects that are reachable from that object
are stored in a flat file, type checking is provided.

The purpose of the Cryptix API is to support encryption and decryption of
objects. Different protocols are supported, for example SHA, and IDEA.

3.2 The Object Serialization API

3.2.1 Usage

• Standard usage - read:

— create an object input stream oin

— make object class serialisable (by implementing
java.io.Serializable)

— object = oin.readObject();

• Standard usage - write:

— create an object output stream oout

— make object class serialisable

— oout.writeObject(object)

• Advanced usage - read:

— provide own readObject method for the object class (signature:
private readObject(ObjectInputStream stream) throws ...),
using defaultReadObject for achieving default deserialisation
behaviour

— apply readObject as above

• Advanced usage - write:

ANSA Phase III The Implementation

APM.1940.02 Design and Implementation of a Persistence Service for Java 5

— provide own writeObject method for the object class (signature:
private writeObject(ObjectOutputStream stream) throws ...),
using defaultWriteObject for achieving default serialisation
behaviour

— apply writeObject as above

3.2.2 Limitations

The purpose of Sun’s Object Serialization API is to support remote method
invocation. Therefore, there are a number of limitations with respect to
supporting persistence:

1. When an object is serialised (i.e. writeObject method), the object and all
objects that are reachable from that object (the whole object hierarchy) are
written to one flat file. That is, there is no way in splitting object
serialisation up, keeping each object of the object hierarchy in a separate
file and therefore allowing it to be reused by other applications.

2. When an object is deserialised, the readObject method always returns a
new object. That is, there is no straightforward way of returning only the
state of a serialised object and copying it to another object. Hence,
readObject cannot be applied within the constructor of an object class to
restore its old state.

3. There is the possibility to provide own readObject and writeObject
methods. Within these methods defaultReadObject and
defaultWriteObject can be used to perform standard object
deserialisation and serialisation. However, defaultReadObject and
defaultWriteObject only work if they correspond to the first statements
in readObject and writeObject respectively. The motivation for this is to
allow users to append serialisation information at the end of a serialised
object only. Moreover, the user-defined readObject and writeObject
methods are private , that is, they are not visible outside the object.

3.3 The Architecture

The architecture of the persistence service is shown in Figure 3.1. Each
application object is attached to a persistence metaobject which is responsible
for reading Java objects from the POS and writing Java objects to the POS.
Hereafter, reading a Java object from the POS via the persistence daemon is
called activating, and writing a Java object to the POS via the persistence
daemon is called deactivating the Java object.

The Implementation ANSA Phase III

6 Design and Implementation of a Persistence Service for Java APM.1940.02

Figure 3.1: Architecture of the Persistence Service

The persistence daemon is a well-known server at the local site. It maintains
the POS and coordinates applications in accessing Java objects in the POS.
The responsibilities of the persistence daemon include managing multiple
applications concurrently, allocating disc space for new Java objects, locating
Java objects, and providing security measures. The latter consist in allowing
access to the POS via the persistence daemon only, encrypting Java objects as
they are written to the POS, and writing shadow copies of Java objects. In
order to fulfil these tasks, the persistence daemon maintains a hashtable,
called persistent object table (POT), containing the unique name [LINDEN93]
of an object (i.e. the OID), its location in the POS (i.e. the PID), and its current
state, that is, whether the object is currently activated and if, by which
application.

3.4 Implementation Options

Figure 3.2: Basic Reflective Java Paradigm

POS

Persistence Daemon

...
Metaobject

Application
Object

Metaobject

Application
Object

Metaobject

Application
Object

OID PID
POT

application class

reflection class

metaobject class

user class

inherits has instance

uses

persistence
daemoncontacts

ANSA Phase III The Implementation

APM.1940.02 Design and Implementation of a Persistence Service for Java 7

Figure 3.2 presents the basic Reflective Java paradigm [WS96]; the
application class is to be made persistent. As stated earlier, the metaobject
class is responsible for activating and deactivating Java objects. It does so by
consulting the local persistence daemon.

In Reflective Java, method calls are made reflective, that is, the method
arguments and the method’s return value can be manipulated in the
metaBefore and metaAfter operations of the metaobject class.

3.4.1 Option One

Complying with the Reflective Java paradigm, the first option we investigated
attemps to make specific methods of the application class reflective. For
activating an object from the POS the constructor, and for deactivating an
object to the POS the finalize method seemed suitable. However, reflection
works by manipulating the parameters of method calls.

1. The constructor - activate
In the metaobject class, we would need the unique name of the object to be
restored, create that object, and return it to the reflection class. However,
the unique name is no parameter of a constructor and therefore not
available in the metaobject class. Also, there is no way of returning the
new object to the reflection class, since this (the object itself) is no
parameter of a constructor and metaBefore and metaAfter do not have an
appropriate return type either.

2. The finalize method - deactivate
In the metaobject class, we would need the unique name of the object to be
deactivated plus an object reference. Although the object reference is
available (as part of the standard data structure of metaobjects), the
unique name is not.

On the whole, this option is not suitable for implementing the persistence
service for Java.

3.4.2 Option Two

As stated above, the user can provide own readObject and writeObject
methods for serialisable objects. The second option is providing those methods
in the reflection class and the end user using those methods through the
standard deserialisation and serialisation mechanism in the user class. The
idea is that the end user would use a default/null stream to call readObject
and writeObject respectively and this stream parameter would then be
manipulated in the metaobject class/persistence daemon before the default de/
serialisation is performed. We have encountered the following problems with
this approach:

1. In this way, the reflection class is made persistent and not the application
class, because it is not possible to isolate the superclass from the class
itself.

2. In the reflection class’ writeObject method, the stream variable has to be
manipulated before defaultWriteObject is called. However, since
defaultWriteObject has to correspond to the very first statement in the
method body, this is not possible.

3. This approach is not completely transparent to the end user, since s/he
has to create a default/null stream and call the de/serialisation methods.

The Implementation ANSA Phase III

8 Design and Implementation of a Persistence Service for Java APM.1940.02

On the whole, this option is not suitable for implementing the persistence
service for Java.

3.4.3 Option Three

Figure 3.3: Adapted Reflective Java Paradigm

Figure 3.3 visualises the third implementation option, in which a simple
auxiliary class pers_service is made reflective instead of the application
class itself. pers_service provides four basic methods for using the
persistence service:

1. public Object activate(String name, boolean read_only)

2. public void write(Object oid, String name)

3. public void deactivate(Object oid, String name)

4. public void cancel_activation(String name)
This method is used when an exception occurs in an end user program
after activating an object. Hence, the activation for the object is cancelled
and its old state remains.

The auxiliary class pers_service defines these methods with empty method
bodies. The real behaviour is achieved by binding the auxiliary class to a
metaobject class implementing persistence. The “empty” class pers_service
is available to any end user working with Reflective Java. However, for using
the “real” persistence service an appropriate persistence metaobject class has
to be obtained.

1. This approach does not correspond to the basic Reflective Java paradigm,
since the auxiliary class and not the application class is made reflective.

2. This approach is not completely transparent to the end user, since s/he
has to use the auxiliary class pers_service in order to use the persistence
service.

Since options one and two are not suitable for implementing the persistence
service, this approach has been taken. Despite of the problems mentioned
above, the service is easy to use and causes only little overhead to the end
user.

3.5 The Activation and Deactivation Processes

When the end user wants to utilise the persistence service (implemented
regarding option three), s/he can use the following commands:

auxiliary class

reflection class

metaobject class

user class

inherits has instance

uses persistence
daemon

contacts

application class uses

ANSA Phase III The Implementation

APM.1940.02 Design and Implementation of a Persistence Service for Java 9

3.5.1 Activation

• <object> = pers_service.activate(<name>, <read_only>)

— <read_only> = true? reads the object named <name> from the POS
and returns it to the end user for read access only

— <read_only> = false? reads the object named <name> from the POS
if it is not currently activated, activates it, and returns it to the end
user for write access

3.5.2 Deactivation

• pers_service.write(<object>, <name>)
writes <object> to the POS and stores it under <name>

• pers_service.deactivate(<object>, <name>)
writes <object> to the POS, stores it under <name>, and deactivates it

3.5.3 Cancellation

• pers_service.cancel_activation(<name>)
cancels the current activation for <name> (necessary, if an exception is
raised in the end user program)

3.6 The Persistence Metaobject

When a persistence metaobject is created, it links to the local persistence
daemon. Hence, the services of the persistence daemon are made available to
the end user. Calls to the persistence service are then passed from the end
user program via the persistence metaobject to the persistence daemon. In
each case, the persistence metaobject adds the identifier of the current
application to the other parameters, in order to identify where the request
originates.

3.7 The Persistence Daemon

When a persistence daemon is created, it registers with the rmi registry
[RMI96] and creates an empty POT. Applications can then use the services of
the persistence daemon.

• Activation:
The persistence daemon receives a unique name (i.e. the name of an
object), a boolean (indicating read or write access), and an application
identifier from some persistence metaobject. Its reaction depends on
whether the object is to be retrieved for read or write access. In the first
case, the persistence daemon locates the corresponding persistent object,
decrypts it, and returns it to the metaobject. Therefore, no update is made
to the POT. In the latter case, the persistence daemon evaluates the
information in the POT before taking any further action. If the persistent
object is currently activated by some other application, the evaluation
blocks until it becomes available. Otherwise, the corresponding persistent
object is located, decrypted, and the entry in the POT is updated, that is,
the persistent object is activated for this specific application. Then it is
returned to the metaobject.

The Implementation ANSA Phase III

10 Design and Implementation of a Persistence Service for Java APM.1940.02

• Deactivation:
The persistence daemon receives a unique name (i.e. the name of an
object), an object reference, and an application identifier from some
persistence metaobject. First, it checks whether the application is
authorised to deactivate the object, comparing the application identifier
with the one stored in the POT. If the application is authorised, the object
is encrypted and a shadow copy is written to the POS before the main copy
is written. Finally, the POT is updated, that is, the object is deactivated.

Writing an object is similar to deactivating it, except that the object’s entry in
the POT is kept active. Cancelling an object’s activation means deactivating
the object without writing a new version to the POS.

ANSA Phase III Examples

APM.1940.02 Design and Implementation of a Persistence Service for Java 11

4 Examples

Two examples have been investigated for demonstrating the persistence
service for Java, one regarding the storage of simple person objects, and one
regarding the storage of more complex data structures, namely crosswords.
These examples are sketched in the following two sections.

4.1 The Person Demonstration

The purpose of this example is to demonstrate the basic use of the persistence
service, keeping in mind that the service can be used concurrently by different
applications. Simple person objects, consisting of a name and an age attribute,
are to be stored in the POS. These objects can be retrieved for read or write
access. The persistence service has been tested extensively with several
applications running concurrently, manipulating the same or different Java
objects in the POS.

4.2 The Crossword Demonstration

The crossword demonstration constitutes a more complex example of using the
persistence service. A crossword server runs at the local site and displays a
crossword (Times Two Crossword No 955) together with the clues. The client
consists of two player windows for manipulating the crossword. RMI [RMI96]
is used to propagate updates from one of the player windows to the crossword
server.

The persistence service for Java is employed in order to make the crossword
persistent. A partially solved crossword is written to the POS whenever a new
update is made, and deactivated when the crossword server is closed down. It
will then be reloaded when the crossword server restarts.

The purpose of this demonstration is to illustrate how the persistence service
deals with more complex data structures, depending on numerous other
objects.

Summary ANSA Phase III

12 Design and Implementation of a Persistence Service for Java APM.1940.02

5 Summary

This document described the design and the implementation of a persistence
service for the Java programming language. The purpose of this persistence
service is twofold; first, to provide a powerful mechanism for making
applications persistent, tackling problems such as the concurrent access to
persistent objects, security, and consistency, and second and most importantly,
to show and assess the use of Reflective Java.

By using Reflective Java, we have achieved a number of positive features.
First, we are able to provide a persistence service to Java applications with
causing only little overhead to end users. The end user can exploit the
persistence service with adding as few as three commands (two for read only
applications) to his application program (one for creating the persistence
service, one for activating an object, and one for deactivating it), keeping in
mind that all persistent objects must implement the java.io.Serializable
interface. Therefore, no specific knowledge on persistence is required for the
end user. Second, we have achieved great flexibility. The end user can bind to
any persistence service implemented according to the MOP approach and even
change that binding dynamically at runtime. The current binding will depend
on the execution environment and other, application-specific requirements.
Third, a persistence service implemented according to the MOP approach is
generic, that is, can be used by any application. Finally, it is to mention that
the work on the persistence service has given valuable feedback to the work on
the Reflective Java preprocessor.

On the other hand, we have encountered some problems with implementing
the persistence service according to the MOP approach. It was not possible to
implement the persistence service exactly as in the original model (see Figure
3.2); the model had to be slightly adapted (see Figure 3.3). As a result, the
persistence service is not completely transparent to the end user. Although, as
mentioned above, the overhead could be kept to a minimum. Some problems
are due to our basic reflection model, providing only behavioural reflection and
not structural reflection. However, persistence affects the structural aspects of
an object (that is, the state) and its behavioural aspects. Also, the
implementation is based on Sun’s Object Serialization API. Some problems
occurred because of the limitedness of the provided methods. For example, it
was not possible to split the serialisation of an object hierarchy up, so that
different objects would be written to different files. Hence, lower-level objects
cannot be reused by different applications, which may result in redundancies/
inconsistencies.

APM.1940.02 Design and Implementation of a Persistence Service for Java 13

References

CRYP96]

Systemics, The Systemics Software Library, http://www.systemics.com/.

[LINDEN93]

van der Linden R. J., The ANSA Naming Model; AR.003.01, APM Ltd.,
Cambridge U.K., February 1993.

[OS96]

JavaSoft, JavaTM Object Serialization Specification; JavaSoft, November
1996.

[RMI96]

JavaSoft, JavaTM Remote Method Invocation Specification; JavaSoft,
November 1996.

[WS96]

Wu Z. and Schwiderski, S., Design of Reflective Java; APM.1911, APM Ltd.,
Cambridge U.K., December 1996.

References ANSA Phase III

14 Design and Implementation of a Persistence Service for Java APM.1940.02

