
1 © 1997 ANSA Consortium

Introduction to Reflective Java

Zhixue Wu & Scarlet Schwiderski
APM Ltd.

12 Nov. 1997

2 © 1997 ANSA Consortium

Observations
l Requirements

n The one size fits all design strategy becomes obsolete
n mobile computing, internet programming, and mutimedia applications
n different considerations and requirements

n System software must be flexible and customisable at runtime
n many attributes of the application environment vary from time to time,

and from place to place
l Technologies

n Object-oriented programming has suggested methods for
building flexible system software components
n Java, Java Beans
n reflection and metaobject protocol (MOP)

n It’s time to transfer these ideas to mature technology

3 © 1997 ANSA Consortium

Java Advantages
l A simple, object oriented, distributed, interpreted, robust,

safe, architecture neutral, portable, high performance,
multithreaded, dynamic language

l Important ones
n object oriented

n separate interface from implementation

n Portable
n write once, run anywhere

n Dynamic
n dynamic loading and linking

4 © 1997 ANSA Consortium

Functional and Non-functional
Capabilities

l Functional capabilities are primarily concerned with the

purpose of an application, that is, the business logic

l Non-functional capabilities are more concerned with the

fitness of the application to the run time environment, that

is, the system issues

5 © 1997 ANSA Consortium

Java Problems: Not Flexible Enough
l Approach

n Java takes the API approach to provide non-functional
capabilities

n API only implements a fixed, single point in the whole design
space

n Application cannot be decoupled from the choice of non-
functional capabilities

n Changing non-functional capabilities requires changing the
source code of the application

l Result
n A program is not portable to every infrastructure
n A system cannot adjust its behaviour according to conditions
n The execution side cannot control the choice of non-functional

capabilities of an applet

6 © 1997 ANSA Consortium

Reflective Java
l Enable Java-powered system to be customised according

to particular requirements of applications and run-time
environment
n statically at compile time and dynamically at run-time
n flexibly
n transparently

l Make Java reflective
n without any change to the language itself
n without any change to its compiler
n without any change to its virtual machine

7 © 1997 ANSA Consortium

Reflection and Metaobject Protocol
l Reflection

n the capability of a system to reason about and act upon itself and adjust itself
to changing conditions

n opens up a system’s implementation in a principled way
n provides an abstraction of the system's behaviour and internal state at the meta

level
l Metaobject protocol = reflection + object-oriented programming

n represents the system at the meta level in a family of meta objects
n allows the system’s behaviour to be locally and incrementally adjusted

application
data

persistent
metaobject

transaction
metaobject

meta
interface

application
interface

8 © 1997 ANSA Consortium

Core Idea
l Functional requirements are satisfied by application objects
l Non-functional requirements are satisfied by metaobjects
l Non-functional capabilities are added to an application object by

binding it to an appropriate metaobject
l actual behaviour of an object can be changed by meta binding

persistent
metaobject

atomic
metaobject

replication
metaobject

binding
switch

application
object

9 © 1997 ANSA Consortium

Reflective Method Invocation
l Method invocations are interceptable and changeable by users

n metaBefore operation
n metaAfter operation

l Meta data for classes, objects, and parameters is accessible at meta
level

l Values of parameters can be manipulated at meta level

set_lock;

back_up;

release_lock

free_back_up

void credit(double amount)
{balance = balance+amount}

10 © 1997 ANSA Consortium

Building Process
l Application classes are implemented by application developers
l Metaobject classes are implemented by system developers
l End-users describe which non-functional capability should be added

to an application object through a simple script language
l A preprocessor generates a reflection class
l End-user application performs functions through the reflection class

application class metaobject class

reflection class

user class binding specification

preprocessorinherit
has instance
use
data flow

11 © 1997 ANSA Consortium

Binding Specification
l Binding specification describes the association between an

application class and a metaobject class
l When being created, an application object will be bound to an

metaobject automatically
l The binding can be changed dynamically at run-time

import transaction.*;

refl_class Account: Meta_Lock{
 public Account(String nm):201;
 public void init(String nm, double mm):201;
 public void credie(double mm):201
 public void debit(double mm) throws OverdrawException:201;
 public double balance():202;
}

12 © 1997 ANSA Consortium

Metaobject Implementation

class Account{

 public void credit(double mm)
 {balance = balance + mm;}

 public void debit(double mm)
 throws Overdraw{
 if(balance < mm)

throw new Overdraw();
 balance = balance - mm;
}

public double check()
 { return balance;}

private double balance;
}

class Meta_Lock extends Metaobject{
 public void MetaBefore(MID mid,
 CID cid, Arg arg) {
 if(cid==201) //read operation

set_read_lock();
 else set_write_lock();
 }

 public void MetaAfter(MID mid,
 CID cid, Arg arg) {
 if(cid==201)

release_read_lock();
 else relese_write_lock();
 }

}

An Application Class A Meta Class

13 © 1997 ANSA Consortium

Benefits
l Easy to upgrade a product to adapt to changes and new

services, either in hardware or application requirements
l Flexibility to customise policies dynamically to suit the

run-time environment
l High level transparency to applications
l Write an application once, run it any time, anywhere, in

any environment
l Free choice of components and flexible configurations
l Better services for your customers, provided faster and at

lower cost

14 © 1997 ANSA Consortium

Deliverable
l Preprocessor

n generating reflection classes from binding specifications
l Metaobject package

n Metaobject class
n classes used by Metaobject class

l Demos
n simple bank demo
n data display demo
n other test demos

l A prototyping persistent system
n a persistent service implementation using Reflective Java

l A prototyping transaction system
n a transaction service implementation using Reflective Java

