APM

POSEIDON HOUSE « CASTLE PARK « CAMBRIDGE CB3 ORD UNITED KINGDOM
+44 1223 568930 * Fax +44 1223 359779 » Email: Zhixue.Wu@ansa.co.uk ¢« URL: http://www.ansa.co.uk

ANSA Phase lll

A Reflective Component-Based Transaction
Architecture
(A Full Paper for Middleware '98)

Zhixue Wu

Abstract
The trend in Internet applications is to move from browsing to real-time transactions with
business critical information. The characteristics of Internet applications requires system
architectures that are scaleable, flexible and adaptable, whilst still easy to use, to develop and
to deploy. The “three-tier” architecture is now emerging to address the needs of Internet
applications in terms of scaleability and dynamic access. In a three-tier architecture, most of
an application’s logic is moved from the client to one or more servers in the middle tier. This
makes the middle tier the single most critical component of the emerging Internet application
architecture from a developer’s point of view.
In this paper we advocate a reflective component-based transaction architecture. Using
components enables users to assemble portable, customisable components into applications.
Reflection provides two additional features that are important for supporting Internet
transaction processing. First, it enables the transaction infrastructure to be easily adapted to
new application requirements and changing environments. Secondly, it allows programmers to
provide application-specific information declaratively and separately from application code.
This information can be used either at deployment time for configuring the transaction
infrastructure to best suit the application component, or at execution time for improving
system performance. The architecture supports implicit transactions, thus removes from the
developers any concern for transaction management details.

APM.2118.00.01 Draft / Approved 02 March 1998
External
Distribution:
Supersedes:

Superseded by:

Copyright © 1999 APM Limited on behalf of sponsors for the time being of the ANSA Programme

17-Mar-98 A Reflective Component-Based Transaction Architecture

TABLE OF CONTENTS

1 INTRODUCTION

2 A REFLECTIVE COMPONENT-BASED TRANSACTION ARCHITECTURE

2 .1 Component-based software

.5 The architecture

3 DEVELOPMENT, ASSMBLY AND CUSTOMISATION OF SERVER

COMPONENTS

.2 Reflection and metaobject protocol
.3 The computation model

.4 Concurrency semantics

.6 Structure of the server component container

.7 The transaction model

3 .1 Component development

3 .2 Assembling and customising a component

3 .3 Selecting concurrency method and providing concurrency semantics

4 RELATED WORK

5 SUMMARY

6 REFERENCE

12
12
13
13

15

17

18

17-Mar-98

A Reflective Component-Based Transaction Architecture

1 INTRODUCTION

The trend in Internet applications is to move from browsing to real-time
transactions with business critical information. Examples include online
banking, order/entry, and customer service. Transactions have been used in
online processing on mainframe systems for many years. However, there are
some distinguishing characteristics of Internet applications, which change
the way in which transactional applications are constructed and deployed.

Thin clients. In traditional client/server computing, an application-specific
client needs to be pre-installed on the user machine to run an application. In
Web-based Internet applications, the runtime components are downloaded
from the Web site. Such a thin client model delivers two key benefits:
universal access, and reduced installation and management costs.

Scale. Unlike traditional applications, Internet user communities can extend
well beyond department or company. With these new "self-service"
applications, access to a server becomes open to thousands of users all
executing transactions simultaneously. This requires highly scaleable server
architectures to support transactional applications.

Rapid development. Many corporations have started using Internet for
publishing and collecting information, and intend to doing business over the
Internet. Therefore, the technology for building Internet application systems
must be very easy to use, develop and deploy.

All these characteristics of Internet applications requires system
architectures that are scaleable, flexible and adaptable, whilst still easy to
use, to develop and to deploy. “Three-tier” or “multi-tier” architectures are
now emerging to address the needs of Internet applications in terms of
scalability and dynamic access. In a three-tier architecture, most of an
application’s logic is moved from the client to one or more servers in the
middle tier. This provides a number of benefits. Server components can be
replicated and distributed across many servers, to boost system availability.
Server components can be easily modified to adapt to changing business
rules and economic conditions, thus providing flexibility. Server components
are also location independent, if they are built using distributed objects (e.g.
CORBA), therefore system administrators can easily reconfigure system load.

In this new model, users find and launch applications on HTML pages at
Web servers. Instead of simply loading a static page, a dynamic "applet" is
downloaded to the individual’s browser. The applet bring with it protocols
that allow the applet to communicate directly to application servers running

17-Mar-98

A Reflective Component-Based Transaction Architecture 1

in the middle tier. These servers access data from one or more databases,
apply business rules, and return results to the client applet for display. This
makes the middle tier the single most critical component of the emerging
Internet application architecture from a developer’s point of view.

There are three popular architectures for building middle tier components:
CORBA-style Object Request Brokers (ORBs), Transaction Processing
Monitors, Web Application Servers. Although each has its strengths, none of
them is ideally suited for the middle tier requirement of Internet transaction
processing.

CORBA ORBs [1] have excellent multi-tier capabilities with strong
distributed object invocation and related infrastructure services such as
transactions and security. Unfortunately, the complexity of the overall
solution and a lack of strong tool support limits their appeal to sophisticated
developers. Additionally, most ORBs also have primitive server-side
execution engines, limiting performance and scaleability.

TP monitors, on the other hand, have robust and mature execution engines
that deliver excellent performance and scaleability. However, like ORBs,
their overall complexity and proprietary APIs often make them difficult to
use and expensive to install, administer, and maintain.

Web Application Server technology emerged in an attempt to transform Web
servers to application servers. Web Application Servers are generally
customer generated from one of several Web or site development tools. This
strong tools focus leads to high developer productivity. On the flip side,
scaleability is severely limited by the application server’s direct tie to Web
servers and the lack of non-HTTP protocols for application-to-application
communication.

To address the need for a scaleable and easy-to-use middle tier, component-
based transaction servers are emerging, such as Sybase’s Jaguar CTS [2],
and Microsoft Transaction Server [3]. They combine the best features of
ORBs and TP monitors with component-based develop tools. This enables
quick creation of scaleable applications. Component-based transaction
servers offer built-in transaction management capabilities, and support
distributed object invocation for multi-tier application communication. They
also support rapid middle tier development and provide an execution
environment for server components.

In this paper we advocate a reflective component-based transaction
architecture. Like Jaguar CTS and MTS, it is component-based, thus enables
users to develop portable, customisable components, and assemble them into
applications. It enables rapid application development and deployment using
standard components and off-the-shelf tools. The architecture supports
implicit transactions, removing from developers any concern for transaction
management details. Any component installed in the server is a candidate for
participation in a transaction. More importantly, no component in a
transaction need concern itself with the behaviour of other components in
regards to their effect on the transaction.

A Reflective Component-Based Transaction Architecture 17-Mar-98

Unlike Jaguar CTS or MTS, the architecture is also reflective, providing two
additional features that are important for supporting Internet transaction
processing. First, it enables the transaction infrastructure to be easily
adapted to new application requirements and changing environments.
Secondly, it allows programmers to provide application-specific information
declaratively and separately from application code. This information can be
used either at deployment time for configuring the transaction infrastructure
to best suit the application component, or at execution time for improving
system performance. Our architecture tracks closely the Enterprise
JavaBeans specification [4], and can be used to execute Enterprise
JavaBeans.

17-Mar-98

A Reflective Component-Based Transaction Architecture 3

2

A REFLECTIVE COMPONENT-BASED
TRANSACTION ARCHITECTURE

2.1

In this section, we present our reflective component-based transaction
architecture after a brief introduction to the component model and the
reflection technology.

Component-based software

In recent years, constructing applications through the assembly
of re-usable software components has emerged as a highly productive way to
develop custom applications.

The term component-based software is used to describe a software model,
which specifies how to develop reusable software components and how these
component objects can communicate with each other. A component is an
encapsulated piece of code that can be combined with other components and
with handwritten code to rapidly produce a custom application. A component
is designed to be used within another application, called a container, and
designed to be reused and customised without access to its source code. A
container provides an application context for components and provides
management and control services to the component it stores.

In order to qualify as a component, the application code must provide a
standard interface that enables other parts of the application to invoke its
functions and to access and manipulate the data within the component. This
is often termed “introspection” and enable the application developer to make
full use of the component without requiring access to its source code.
Components can be customised to suit the specific requirements of an
application through a set of external property values, often called
“reflection”.

Server components are application components that run on a server. As we
discussed in Section 1, in a three-tier architecture, most of an application’s
logic is partitioned into separate server components to be deployed on a
server system. A server component container provides a runtime
environment to support the execution of server components. In our case we
combine the robust runtime features of a traditional transaction processing
(TP) monitor with the flexibility and reusability features of distributed
components. The container provides the complex management services that
are required to support high-volume business transactions, including

A Reflective Component-Based Transaction Architecture 17-Mar-98

2.2

multithreading, resource-pooling, and transaction co-ordination. The
introspection and reflection facilities allow the container to take design time
and runtime policy on how to couple its servers to application components.

Reflection and metaobject protocol

Reflection [5] is the capability of a computational system to reason about and
act upon itself. Unlike conventional system, a reflective system allows users
to perform computation on the system itself in the same manner as in the
application, thus providing users with the ability to adjust the behaviour of
the system to suit their particular needs.

In an object-oriented programming environment, reflection can be realised in
the form of metaobjects that represent some internal information and
implementation of the system. The interfaces of these metaobjects are called
metaobject protocols (MOPs) [6], because they allow application objects to
communicate with metaobjects. Through MOPs, users can modify the
systems' behaviour and implementation incrementally.

Using metaobject protocols, the actual behaviour of an application object is
determined not only by itself, but also by the metaobject which it is
associated with. The association can be thought of in terms of a binding
between the application object and the metaobject. An application object can
obtain the capability of a metaobject by binding to it. In this way, the
functionality of an application is determined by its application objects, whilst
the quality of application delivery is determined by the associated
metaobjects. The quality of application delivery can be changed through
alternative metaobjects without making changes to application objects. This
makes it possible to provide system capabilities to an application program
transparently and flexibly.

optimistic hybrid pessmistic
concurrency control concurrency control concurrency control

metaobject metaobject metaobject

A4

binding switch

A

application
object

Figure 2.1 The metaobject protocol approach

For example as illustrated in Figure 2.1, an application object can become
usable in a concurrent environment by binding to one of the concurrency
control metaobjects. There is no need to make any change to the application
object. A binding between an application object and a metaobject can be

17-Mar-98

A Reflective Component-Based Transaction Architecture 5

2.3

changed dynamically according to the run-time conditions. For example,
when the conflict rate of concurrently accessing an application object is low,
it would be better to bind it to an optimistic concurrency control metaobject.
However, when the conflict rate becomes high, the binding can be switched to
a pessimistic concurrency control metaobject. By monitoring its components
and applications, the system can perform this switching automatically
without disturbing application programs.

The computation model

The characteristics of Internet applications requires system architectures
that must be scaleable, flexible and adaptive, whilst still be easy to use, to
develop and to deploy. Our reflective component-based architecture meets
the rigors of Internet applications by taking advantage of both the reflection
technology and the component model.

To achieve the most benefits from the multi-tier architecture, server
components should be implemented as shared servers. However, building a
shared server is not an easy task. It is much harder than building a single-
user application. Usually, shared servers need to support concurrent users,
and they need to share system resources, such as threads, memory, and
network connections. They also need to participant distributed transactions
and enforce security policies.

It would be very hard for application developers, who are experts in business
logic, but not necessarily in transaction monitor engineering, to address all
these system issues. To solve this problem and to provide portability to
application programs, our computation model allows a clear separation to be
made between business logic and system issues. This enables application
program to focus on application requirements without concern about the
system issues. The separation also makes it possible for an application
program to be executed in different system environment without making
changes to its source code.

Because of the wide range of potential applications, with varying needs, it is
impossible to provide a single monolithic application server infrastructure
suitable for all applications. The implementation of an application server’s
infrastructure must be flexible and adaptive so that it can be customised
easily to cater for a particular application. To achieve this aim, our
infrastructure represents alternative infrastructure choices as alternative
metaobjects, as shown in Figure 2.2. Thus at deployment time, an application
assembler can choose the most suitable infrastructure for his application by
selecting the corresponding metaobject. The selected metaobject is then
integrated with the application object to form a server component.

A Reflective Component-Based Transaction Architecture 17-Mar-98

2.4

concurrency

concurrency
semantics script

server
ompone

access

pusiness
logic
application

ate
pessimistic
strateg

optimistic
metaobje

implement

Figure 2.2 A reflective computation model

A clear separation between the application program and the implementation
of system issues is essential for making application component portable.
However, without any information about the application, it would be hard for
a system to provide a good quality of service to that application. Only when
detailed knowledge about an application is available such as ordering
constraints for consistency, it is possible for a system to optimise its
behaviour and to improve its performance. We solve this dilemma by
allowing application developers to specify application-specific information
declaratively and separately from application programs. In such a way, we
enable application information available to a system, but without increasing
the burden of an application developer, nor losing the portability of an
application program.

For a transaction system, the concurrency semantics of an application can be
used to reduce delay due to blocking. Thus, we allow concurrency semantics
to be represented in our model, but it is represented declaratively and
separated from the sequential behaviour of an application. The sequential
behaviour is implemented in application code; whilst the concurrency
semantics are represented as a concurrency script. At runtime, the
concurrency semantics would be used by the transaction strategies to
schedule operations.

Concurrency semantics

By taking into consideration type-specific semantics of operations, a
transaction system can allow concurrent executions that would otherwise be
forbidden if operations were simply characterised as reads and writes. The
concurrent semantics of operations are usually represented by relationships
between operations, such as commutativity[7]. Given two operations on the

17-Mar-98

A Reflective Component-Based Transaction Architecture 7

2.5

same type, p and q, we say that they are commute if the result of executing p
and then q on d is the same as the result of executing q and then p on d.

Consider, for example, a bank account class, Account. It has an associated set
of operations: credit money to an account, debit money from an account, and
check the balance of an account. In this example, two credit operations are
commute, so do two check operations. Therefore, it is possible for two credit
operations to be executed concurrently. However, this execution would not
be permitted in a system that classified operations into reads and writes
only. This shows a general phenomenon: by taking into consideration type-
specific information, a system can permit greater concurrency than would
otherwise be possible.

However, utilising concurrency semantics is not an easy task. It would
makes the application program complicated, if the concurrency code is
intertwined with the implementation of business logic. In order to avoid this,
we allow application users to expressing concurrency semantics decaratively
and separately from the implementation of the objects.

The concurrency semantics can be represented easily in pairs of operation
names. For example, a pair (p, q) means that operation p and g are
commutative. In judging whether two operations are commutative, one needs
only to consider the logical relationship of the two operations, not the
implementation of the operations. Our transaction system will ensure the
atomicity of individual operations.

The architecture

There are six kinds of entities in our architecture (see Figure 2.3): the server
component, application information script, server component container,
client component, metaobjets, and underlying supporting system. The server
components implement the business logic for an application.

A server component container provides certain system capabilities, such as
multithreading, transaction and security. It also provides an application
context, management and control service to the encapsulated server
components. To provide flexibility and adaptability, a server component
container represents implementation strategies in the form of metaobjects. A
metaobject can be replaced by a new metaobject that implements the same
functionality, but with a different strategy. In each server component
container there are a number of “sockets” for plugging in metaobjects. Users
can choose “off-the-shelf” metaobjects that are best suited to their
applications at deploy time. They can also supply their own metaobjects, if
they like. Metaobjects can also been changed dynamically at runtime to cater
for changing environment conditions.

A Reflective Component-Based Transaction Architecture 17-Mar-98

application
information

server
component
f
client)
component

— concurrency
— policy component

:I_I

Server = [persistency policy
CO m onent OOO g = component
o o/ Fm | L —
Container
i 1 [—1 recovery policy
(® a2 155

| —

Underlying Supporting System

Figure 2.3 The reflective component-based transaction ar chitecture

A server component container insulates server components from the
underlying supporting system. The container automatically allocates system
resources on behalf of the components and manages all interactions between
the components and the underlying system. This ensures that the server
components can be run in any system as long as it supports a compatible
sever component container.

A server component container maintains control over a server component
through a wrapper. A container provides an external representation of a
server component. Client components do not directly interact with a server
component, but with the external representation. This allows the container
to intercept all operations made on the inside server components. Each time
a client component invokes a method on a server component, the request goes
through the container before being delegated to the target server component.
The container can thereby implements system capabilities, such as
concurrency control, security and transaction management transparently.
The behaviour of the server component container are decided partly by the
associated metaobjects.

Server components are built by using a component builder. Through the
builder, users can manipulate and customise a server component through its
property tables and customisation methods. Users can also assemble a server
component with other components to create a new application. Furthermore,
they can also attach some component-specific information with the
component, such as concurrency semantics, deploying policy, and
concurrency policy. These information are understandable and usable by the
server component container.

17-Mar-98

A Reflective Component-Based Transaction Architecture 9

2.6

Structure of the server component container

2.7

In this section, we present the structure of the server component container.
As we described in the last section, a server component container manages a
server component via intercepting invocations to the component. The
interception is implemented through our reflection system. For each server
component, a reflection object is generated which provides a client view of
the server component. Clients access a server component through interacting
with the corresponding reflection object.

Server component
Container

Deployment
Descriptor

Server
Component

Context
Object

Reflection
Object

security
etaobjec

Concurrency Security
Semantics Semantics

Figure 2.4 Server component container

For each active server component, the server component container generates
a context object to maintain its information, and a number of metaobjects to
implement corresponding functionality, such as concurrency control and
security checking. The reflection object will interact with the context object
that in turn will interact with the corresponding metaobjects at particular
points to enforce transaction and security rules.

To enable containers to utilising component-specific information to improve
system performance, users can provide these information through scripts at
assembly time (see Section 3 for detail). The container will ensure these
information to be used by corresponding metaobjects. For example, the
concurrency control metaobject would use the concurrency semantics of a
component to increase concurrency degree.

The transaction model

Our transaction model is based on the OMG's Object Transaction Service
(OTS) specification [8]. It is a well-defined transaction model, bringing the
transaction paradigm and the object paradigm together. A major advantage
of the model is that it enables every object to provide its own concurrency
control and recovery, thus providing the possibility for an object to apply an
individual concurrency control and recovery policy to cater for its specific
requirements. However, this advantage is not exploited fully in the OMG's

10

A Reflective Component-Based Transaction Architecture 17-Mar-98

specification. The reflection functionality of our architecture provides the
right tool for exploiting this advantage.

OTS supports distributed transactions that can span multiple databases on
multiple systems co-ordinated by multiple transaction managers via a
distributed two-phase-commitment protocol. Therefore, by using OTS our
architecture ensures that a transaction of a server component can inter-
operate with other server component servers.

Database Object

oriented oriented concurrency
concurrency control

Client A % control Client A

Client B % Client B

Figure 2.5 Database oriented and object oriented transactions

Our transaction model is object-oriented, rather than database-oriented. In a
database-oriented model, the system component container focuses mainly on
robust messaging. It is the database system that is responsible for
concurrency control, recovery and persistence. This approach makes it easy
to leverage existing database systems and transaction processing monitors to
Internet applications. However, most database systems deal with
concurrency based on file or records rather than objects. This makes
impossible for them to utilise application semantics to improve concurrency
control, and hence system performance. It also means that all components
stored in a database system can only use the concurrency control method
provided by the database system, whenever whether or not it is suitable for
their applications.

Another drawback of the database-oriented model is that it keeps
unnecessary copies of components in memory. For example, if two clients
access a component C through a server concurrently, there would be two
copies of C inside a container, each for one client. This wastes system
resources and increases interactions to the database system.

By taking the object-oriented transaction approach, our architecture enables
users to choose the best suitable concurrency control method for their
application. The server component container automatically uses the selected
concurrency control method to implement the transaction services. We also
enable users to change the concurrency control method of a server component
dynamically at runtime to cater for environment changes.

17-Mar-98

A Reflective Component-Based Transaction Architecture 11

3

DEVELOPMENT, ASSMBLY AND
CUSTOMISATION OF SERVER COMPONENTS

3.1

In this section, we present the development, deployment and assembly of
server components. Particularly, we focus on the aspects of supporting
component-specific concurrency control and free choice of concurrency control
methods, which are unique to our work.

Component development

As described earlier, by taking a reflective component-based approach for
implementing application servers, our architecture enable a clear separation
to be made between the code to implement business logic and the code to
implement system issues. Thus the server components need only focus on
implementing the business logic without any concern about the environment
where the components will be deployed. This makes the server component
much easier to implement. Users can programming based on the assumption
that the components would be used only by a single user and that there is no
system failures. The pure responsibility of the components is to ensure the
correctness of the business logic in a sequential and reliable environment.
The server component container will provide functionality of concurrency
control, transactions and security implicitly.

We follow the design pattern of Java Beans so that a server component can
be customised via any building tool supporting the Java Beans specification.
We are not going to discuss this issue here. Interested readers can refer to
the specification of Java Beans [9] for details.

Although our server component container provides additional features
beyond those defined in the Enterprise JavaBeans (EJB) specification. We
do not imply any special requirements on the implementation code of a
server component. As long as it fulfil the requirements of the EJB
specification, it can be deployed in our specialised container. However, we do
require application users to provide the concurrency semantics of a
component at deployment time in order for it to enjoy the benefits of type-
specific concurrency control.

12

A Reflective Component-Based Transaction Architecture 17-Mar-98

3.2

Assembling and customising a component

3.3

A server component can be manipulated in our visual build tool, an extension
of the BeanBox from the BDK [10]. It maintains all the original functionality,
but gains some new features to meet our special requirements.

We have build a general container (Reflection Frame) and a specialised
container (Transaction Frame). When starting the Extended BeanBox, the
Transaction Frame will appear on the ToolBox as well as all the registered
components. Instantiating a Transaction Frame in the BeanBox can be done
by clicking on it and then on the BeanBox area. A component can be
instantiated in the same way. For an instantiated frame or component, there
will be a box with its name appearing on the BeanBox area.

A server component is put inside a Transaction Frame, by first selecting the
Transaction Frame and then clicking the reflection item in the edit menu.
When a red line from the frame appears, a click on the server component will
connect it to the Transaction Frame.

To provide flexibility, we make it possible for a component to expose only a
subset of its operations for the outside world. This provides the component
assembler with the power to remove from the external interface some
operations who thinks are improper or unnecessary to be exposed. To support
this feature, the extended BeanBox displays a list of the public operations of
a component when it is selected. The assembler then can choose the
operations to be exposed by clicking on the corresponding items. Other
components can only access this component via these chosen operations.

After the decision has been made on what operations are to be exposed, a
reflection class will be automatically generated for the component. The
reflection class provides an interface which includes those chosen operations.
Each of these operations will have the same signature as the corresponding
operation of the component. The reflection class provides a client’s view to
the server component.

At this stage, the component assembler can also, as in a normal BeanBox,
customise other properties of a component to cater for the particular
application. The assembler can also use the event properties of a component
to establish connections with other components to form a service.

Selecting concurrency method and providing concurrency semantics

As we described earlier, we enable an application to choose a concurrency
control method that is most suitable for its requirements. This is done by
providing multiple concurrency control methods via a set of concurrency
metaobjects. To ensure a seamless connection between a concurrency
metaobject and the container, both of them need to confirm to a contract. A
concurrency metaobject must implement the ConcurrencyMetaobject
interface. This ensures that a concurrency metaobject provides all the
necessary operations for concurrency control. On the other hand, the

17-Mar-98

A Reflective Component-Based Transaction Architecture 13

container must invoke these operations at proper time to enforce concurrency
control.

A concurrency metaobject needs to describe its concurrency strategy in a
special property. When it is instantiated in the BeanBox, that property will
be displayed, so that an assembler can understand the strategy and to decide
whether it is suitable for a particular application. After choosing a particular
concurrency control method, an assembler connects it to the container. This
will ensure both the BeanBox and the container can find the necessary
information about the concurrency control method.

Now, it is time to provide the concurrency semantics of a component to the
container. As we discussed earlier, the concurrency semantics can be
represented by relationships between operations. The default one is the
commutativity relationship, but a metaobject can use other kinds of
relationship for this purpose. In the case a relationship rather than the
commutativity is used, the concurrency metaobject is required to provide the
definition of the relationship in a special property. When the concurrency
metaobject, is selected, this information will be displayed so that the
assembler can understand the relationship and represent the concurrency
semantics accordingly.

When the commutativity relationship is used, the container will interpret the
specification provided by an assembler, translate it into a standard form, and
store it into a place the metaobject can access. In the case that an other
relationship is used for representing concurrency semantics, it will be the
metaobject that is responsible for interpreting and translating the
specification. The metaobject must provide a method for this purpose for the
container to invoke.

14

A Reflective Component-Based Transaction Architecture 17-Mar-98

4 RELATED WORK

Our work is related to three research fields: component-based software,
reflection and transaction server systems. Reflection has been used in many
application areas: flexible programming [6, 11], concurrent programming
[12], distributed systems[13, 14], and fault tolerant applications [15]. Using
reflection as a general approach to implementing non-functional
requirements has been discussed in [16]. Some research results [17] have
also shown the feasibility of using reflection to implement system
middleware. However, the lack of a common framework for integrating
metaobjects created by different parties into one application make it
impossible for them to be used in multiple applications. Therefore, the
potential of the reflection technology to provide flexibility and portability for
system middleware is not fully exploited.

Component-based software techniques have become popular because of their
emphasis on modularity, re-usability, reliability, and their ability to function
in a network environment. One of the most successful component product has
been Borland’s Delphi [18]; however, the first one to become widespread use
was Microsoft’'s Visual Basic [19]. JavaSoft came into the field with a
component architecture called JavaBeans [9]. The distinguishing feature of
Java Beans as reusable components is that they interoperate across all
platforms supported by Java. Since the Java Virtual Machine runs on a
variety of platforms, a Java component, affectionately called a “bean” can be
used on any platform.

To address the requirements of middle-tier development, component-based
server systems have emerged. Microsoft has retooled its existing component
model into ActiveX [20]. ActiveX provides the glue for components to
communicate with each other, regardless of their implementation language
and platform. The server side ActiveX components are executed under
Microsoft Transaction Server (MTS) [3] that performs any application
processing. MTS handles all the management of sharing, processes, and
threads. All the components that make up an application can share these
resources. Consequently, using MTS may actually improve performance
compared to stand-alone execution, in both time and memory. MTS also
automatically manages the transactional behaviour of server components. A
programmer can make an ActiveX component transactional by setting a
transactional property.

Another component-based transaction server is Sybase’s dJaguar CTS
(Component Transaction Server) [2]. The Jaguar CTS Transaction Manager
hides virtually all the complexity of transaction management and

17-Mar-98

A Reflective Component-Based Transaction Architecture 15

coordination from application developers with "implicit transactions." With
implicit transactions management, developers at deployment time simply
specify whether or not a component is transactional. At runtime, the Jaguar
CTS Transaction Manager automatically manages transaction boundaries
and ensures transactional consistency across all transactional components
and the underlying DBMS.

The Enterprise JavaBeans (EJB) [4] from JavaSoft is an extension of
JavaBeans for handling middle-tier/server side transactional business
applications. The EJB architecture places EJB components on top of the EJB
Executive. The Executive, in turn, gives EJB beans access to APIs, remote
objects, and transaction services. Part of the attraction of the EJB
architecture is that the developer does not need to know about Java interface
definition language, multithreading, or security, the Executive runtime
abstracts APIs and remote object calls. EJB does not support a full
transaction-server environment, thus needs some kinds of transactionally
aware execution environment, such as a transaction processing server or
database engine.

Although there are some differences between these work, they are all
component-based software, thus provide portability, scaleability and
flexibility to the server components. However, a common weakness of them
is the lack of addressing the issue about how to make the container itself
flexible and customisable. We believe that reflection can play an important
role here. The architecture we presented at this paper combines the
advantages of the reflection and component-based software.

Like the above transaction servers and Enterprise JavaBeans, our work aims
to meet the requirements of transactional business applications by providing
a component architecture for the middle-tier/server side. Moreover, our
architecture also defines a standard structure for the server component,
which enables a container to change its functionality by plugging/unplugging
its metaobjects. This makes it easy for a container to be customised to meet
new application requirements or changing environment conditions.
Moreover, our architecture allows application developers to provide
component-specific information, like concurrency semantics, to containers so
that the information can be used at runtime to improve server performance.
We enable the information to be specified declaretively and separately from
application code.

Our work started before the emerging of the Enterprise JavaBeans and we
are now aligning some of our design and implementation to it so that our
server component container can be used as a specialised Enterprise
JavaBeans container. This ensures all EJB beans can be executed in our
container. However, we provide the flexibility for customising containers to
cater for application requirements and the power for using application
information to improve system performance. Therefore, our work is an
extension to Enterprise JavaBeans, rather than a competitor. Or in the
terms of EJB, a specialised container.

16

A Reflective Component-Based Transaction Architecture 17-Mar-98

5 SUMMARY

The characteristics of Internet applications requires system architectures
that are scaleable, flexible and adaptive, whilst still easy to use, to develop
and to deploy. In this paper we have presented a reflective component-based
transaction architecture that takes advantage of the reflection and
component technologies. Like most component models, it enables users to
develop portable, customisable components, and assemble them into
applications. It enables rapid application development and deployment using
standard components and off-the-shelf tools. Moreover, unique to our
architecture, by supporting reflection it allows a server component container
to be easily customised, for example, in order to cater for new application
demands, or to adapt to a new environment. We also allow application
developers to provide application-specific information, declaritively and
separately from application code, to the container so that the latter can make
use of the information to improve system performance.

The work on component-based software is now more focus on how to make
server components on the middle-tier easy to develop, to deploy and to
manage. We think it is also very important to make the execution
environment of the components, i.e. the container, flexible and customisable.
In the other front, although we believe that a clear separation between
business logic and system issues is a key to the success of component-based
software, we also believe that application-specific information could play an
important role for improving system performance. Our work has contributed
some ideas in these aspects.

We have completed our design stage, and a builder tool is available for
developers to assemble and customise server components, and to specify and
provide concurrency semantics. The implementation of the server component
container has been underway and the first prototyping should be completed
before the end of this year.

17-Mar-98

A Reflective Component-Based Transaction Architecture 17

6 REFERENCE

10.

11.

12.

13.

OMG: CORBA 2.2/IIOP Specification. OMG Technical Document
formal/98-02-01.

Jaguar: Java Components and Transactions. Byte, February 1998

Microsoft Transaction Server White Paper.
<http://www.microsoft.com/transaction/learn/mtswp.htm>

Enterprise JavaBeans™,
<http://www.javasoft.com:80/products/ejb/docs.html>

P. Maes: Concepts and experiments in computational reflection. In
OOPSLA '87 Proceedings, pages 147--155, October 1987.

G. Kiczales, J. des Rivieres, and D. G. Bobrow: The Art of the Metaobject
Proto- col. MIT Press, 1991.

W. E. Weihl and B. Liskov: Implementation of resilient, atomic data
types. ACM Transactions on Programming Languages and Systems,
7(2):244--269, April 1985.

OMG: Object Transaction Service. OMG document 94.8.4, August 1994.

The JavaBeans™ Specification
<http://java.sun.com/beans/docs/spec.html

The Beans Development Kit
<http://java.sun.com/beans/software/bdk_download.html>

S. Chiba: A Metaobject Protocol for C++. In Proceedings of the 10th
Conference on Object-oriented Programming, pages 483-501, 1993.

S. Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid group reflective
architecture for object-oriented concurrent reflective programming. In
Proceedings of the FEuropean Conference on Object-Oriented
Programming '91, pages 213--250, July 1991.

S. Chiba and T. Masuda: Designing an extensible distributed language
with meta-level architecture. In Proceedings of the 7t KEuropean
Conference on Object-Oriented Programming, pages 482--501, 1993.

18

A Reflective Component-Based Transaction Architecture 17-Mar-98

14.

15.

16.

17.

18.

19.

20.

J. McAffer: Meta-Level Programming with CodA. In proceedings of the 9th
European Conference on Object-Oriented Programming, pages 190-214,
1995.

J. Fabre, V. Nicornette, T. Perennou, R. J. Stroud, and Z. Wu:
Implementing Falut Tolerant Applications using Reflective Object-
Oriented Programming. Proceedings of the 25t [EEE Symposium on
Fault Tolerant Computing Systems, 1995.

R. J. Stroud: Transparency and reflection in distributed systems. ACM
Operating Systems Review, 27(2):99--103, April 1993.

R. J. Stroud, and Z. Wu: Using Metaobject Protocol to Implement Atomic
Data Types; In proceedings of the 9% European Conference on Object-
Oriented Programming, pages 168-189, 1995.

Delphi: <http://www.borland.com/delphi/papers>
Visual Basic: <http://www.microsoft.com/vbasic/controls>

ActiveX Tutorial <http:/www.microsoft.com/intdev/activex/tutorial>

17-Mar-98

A Reflective Component-Based Transaction Architecture 19

