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Abstract
In this paper we discuss the engineering requirements for adding object mobility to
the Java programming language, and give an overview of the design and
implementation of our mobile object system. We show that it is helpful to cluster
objects for mobility, and that if these clusters represent untrusted pieces of code
(for example Agents) then they must be encapsulated both to control their access
and to control access to them. We show that managing large numbers of mobile
objects in an open environment is a difficult problem, but has its roots in the
management of large distributed name spaces. We propose an architecture for re-
locating moved objects that is both scaleable and tuneable.
       The mobile object system we describe has been implemented, and is currently
in use as part of an ESPRIT agent project. We are currently evolving the design
and implementation to provide additional security and distribution facilities.
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1 INTRODUCTION

Java is an ideal language for developing distributed applications. It provides both
object and interface abstractions, which gives a useful distinction between an
object’s interface and implementation. It also provides language level
introspection, and allows for dynamic code creation. These features make it
particularly suited to the design of middleware systems.

With the design of our middleware platform, FlexiNet, we took the approach of
extending Java language concepts by adding selectively transparent remote
invocation to calls on any interface. We used Java’s strong typing support and
runtime introspection to allow us to build a strongly typed reflexive binding
framework. We further used Java’s support for runtime code loading to allow us to
create stubs transparently on the fly during program execution. This gives a
middleware system that is both extremely flexible and a natural extension of Java’s
features.

When we turned our attention to mobility, we took the view that this too should
be a natural extension of the Java language. We designed a system in which we
maintained the FlexiNet view of a “sea of objects” but which allowed objects to
move between hosts. Clients of mobile objects need not be aware if a service object
is mobile, nor if it has actually moved; they simply continue to use Java references
to exported interfaces.

This approach has several advantages. As well as providing a straightforward
and familiar programming paradigm, we remain within the well-understood domain
of distributed systems. This allows us to leverage existing research when tackling
issues of scalability, robustness and security.

2 RELATED WORK

There are an ever-increasing number of “agent” systems available, either
commercially or as academic projects. Although some provide high level
abstractions that might be considered as support for intelligent behaviour, the
majority of these systems are basically mobile code platforms. They allow applet-
like pieces of code to move through a distributed system, and allow varying
degrees of communication between different agents and between agents and hosts
or other resources. Examples of these systems include Telescript (GenMagic 1995)
and Aglets (Lange 1996).

In general, communications in these systems takes place using messages sent
between the various parties. We believe that the advantages of object oriented
computing, and in particular distributed object computing, are well accepted, and it
is equally advantageous to build mobile systems using objects. Until the advent of
the Java programming language, it was difficult to create “deployable” objects so
most mobile code systems relied on scripting technology. It is only recently that
the possibility of combining mobility and object orientation has emerged.
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Existing Java systems that claim some degree of object mobility, do so either by
abandoning Java’s method invocation abstraction (and taking the message passing
route) or by utilising Sun’s remote method invocation (Sun 1996). Unfortunately
when designing RMI, Sun dictated that each object must be explicitly tagged as a
server object or as a data object. Only data objects may be passed by value on a
remote invocation. This precludes the possibility of moving server objects, and is a
showstopper for most mobile object systems.

Voyager (ObjectSpace 1997) is an exception to this. This Java middleware
platform supports mobile services by wrapping them with pre-processor generated
classes. However, objects are moved individually and there is no notion of
clustering. Although Voyager is closest system to ours, we believe we have a more
flexible and scaleable approach. In FlexiNet, an introspection based serialization
engine is used, which does not have the limitations of RMI’s serializer, and is more
portable as it is written using 100% Java.

FlexiNet embraces ODP principles (ODP 1995), and by adding mobile objects to
FlexiNet we are providing the ODP relocation and migration transparencies that
most other middleware platforms lack.

3 FLEXINET

The FlexiNet Platform is a Java middleware system built as part of a larger project to
address some of the issues of configurable middleware and application
deployment. Its key feature is a component based ‘white-box’ approach with strong
emphasis placed on reflection and introspection. This allows programmers to tailor
the platform for a particular application domain or deployment scenario.

Interfaces on remote objects are represented by proxies. Proxies enforce the
typing of the remote interface, and perform remote access by utilising binders. Each
binder is an object capable of creating a generic binding between a local proxy
object and the remote object it represents. Different binders embody different
application requirements or engineering strategies such as choice of protocols and
the imposition of security policies or atomicity. Binders may make use of other
binders in a recursive way. This keeps individual binders small, and allows
application domain-specific binders to be easily created. To manage the flexibility,
FlexiNet supports the notion of multiple name spaces for interfaces. Names are
both strongly typed and structured. Names may be constructed out of other names,
or arbitrary data, making the management of aggregate and indirected names
straightforward.

3.1 Generic Communications

Rather than using stubs to convert an invocation directly into a byte array
representation, we leverage Java’s runtime typing support to represent the
invocation in a generic (but fully typed) form. This is a reflexive technique central
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to the design of FlexiNet. The layers of the FlexiNet communication stack may then
be viewed as reflexive meta-objects that manipulate the invocation before it is
ultimately invoked on the destination object using Java core reflection.

This approach allows middleware (or application) components to examine and
modify the parameters and semantics of the invocation using the full Java language
typing support. Third part meta-objects can be fully general and are fully type-safe.
When designing the Mobile Object Workbench, we decided to implement it as a set
of FlexiNet binders, binding protocols and services. In particular the mechanism for
communication with a mobile object is essentially communication with a static
object together with two reflective layers: a server side layer, which raises an
exception if an object has moved, and a client side layer, which relocates and
rebinds to the object.

4 REQUIREMENTS FOR MOBILE OBJECTS

4.1 Unbinding

The key feature of a mobile object is that it must be able to move. When we move
an object, we effectively copy it to a new location, and then arrange that all
references to the old object are replaced with references to the new object. This
requires a mechanism for unbinding a previous binding to an object. If objects
were referenced directly using language level pointers, unbinding would require
changes to the implementation of the Java virtual machine, reducing the
advantages of Java as a portable language. Instead, we arrange that mobile objects
(or more correctly interfaces on mobile objects) are referred to indirectly, using
FlexiNet stubs as proxies. This level of indirection allows us to rebind references
dynamically whenever objects move.

In addition, to avoid the need to track distributed references, we only perform
this rebinding when a reference to a moved object is first de-referenced. The use of
stubs and the rebind is transparent to the application programmer, although they
may reflect the process, for example to deal with errors.

4.2 Consistency  and  Threads

At any point in time, an object may be active or passive. An active object is one
that has a thread of control currently executing in it, or passing through it. A
passive object is one that is not currently being executed, and hence has no
threads active in it. When we move an object, we must ensure that the move is
atomic. To do this the object must be passivated - i.e. all processing of the object
must be suspended. One approach to this would be to pause any threads running
in an object, move the object, and then restart the object and the threads at the new
location. This, unfortunately, is impractical, as Java does not allow us to determine
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the complete state of an active thread at an arbitrary point of execution.
We have chosen to encapsulate the object and enforce a locking strategy that

ensures that no threads are executing the object at the point of movement. This
does not prevent the existence of active mobile objects, or those that contain
completely internal threads, but it does require a degree of co-operation with such
objects, so that they can be ‘shut down’ prior to movement, and then ‘restarted’ at
the new location.

The encapsulation mechanism is integrated with the mechanism for transparent
re-binding, so that external threads that have blocked pending an object’s
movement restart and relocate the newly moved object.

4.3 Grouping

In the discussion so far, we have been describing the migration of single Java
objects. However, there is little utility in moving a single Java object, as they are
typically very small (for example, a linked list will consist of many objects). A more
useful unit for mobility is a set of related objects, and we need a mechanism for
deciding which parts of a program should move together.

We introduce the notion of a cluster as both a grouping and encapsulating
construct. References that pass across a cluster boundary are treated differently
from those entirely internal or external to it. In particular, when resolving an external
reference, the system may have to locate a cluster on a remote machine (possibly
after it has moved). References entirely within a cluster can be ordinary Java
language references, as no special action needs to be taken when they are de-
referenced.

To a programmer, clusters are a straightforward concept. A special function is
used to create the initial object populating a cluster, and after this, any new object
is created in the same cluster as its creator. Generally, clusters are completely
transparent to the programmer.

4.4 Failure Modes

When designing distributed systems, there is always the possibility of host or
network failure. In particular network partition can result in hosts incorrectly
assuming that other hosts have failed. When designing a mobile object system, an
important decision is the semantics in the worst case scenario of a network
partition during object migration. There are three possibilities. We could allow the
possibility of the object existing on both sides of the partition - this was rejected as
it introduces an unwanted degree of complexity. The second possibility is to
ensure that an object is destroyed if it cannot be uniquely determined which side of
a partition it exists in. This is the default semantics chosen in the Mobile Object
Workbench. The third possibility is to suspend use of the object until the network
is restored. Long term suspension requires transaction-like logging and recovery.
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This will be considered once transactional mechanisms have been integrated into
FlexiNet. Section 6.4 gives a fuller description of the state transitions required to
ensure consistent movement.

4.5 Scalability

There are two issues relating to the scalability of a mobile object system. Firstly,
some design choices would require the registration either of all objects, or worse, of
all references to all objects. We rejected these approaches as we wish to use the
mobile object workbench in an Internet environment, which is both open and has
no central administration. The second issue relates to the rebinding to interfaces on
an object once it has moved. We would like this to be possible, even if the original
host has since failed. This issue is discussed in detail in section 8.

5 REQUIREMENTS FOR MOBILE AGENTS

The mobile object workbench is not a mobile agent system, however it was
developed as part of an ESPRIT agent project called FollowMe (FAST 1997), and
one of the other partners is developing an agent system on top of it. As mobile
agents are an obvious application of mobile objects, it is worthwhile to consider
their specific requirements.

5.1 Autonomy

Mobile agents are generally considered to be ‘autonomous’. That is to say, that it
is the agent itself that determines the actions it takes, and in particular controls its
movement. In terms of mobile objects and clusters, this gives a requirement for
cluster mobility to be initiated only by the cluster itself. The encapsulation
mechanism gives provision for this; only threads within a cluster have access to
the objects within it, and by giving one of these objects a handle to the
infrastructure which controls mobility, this is effectively hidden from the outside
world. There are two exceptions to this. Firstly, a malicious implementation of the
infrastructure can overcome the FlexiNet encapsulation mechanisms; this is a
necessary evil of distributed computing - you have to trust the host. The second
exception is that a host may ‘legally’ destroy an object and reclaim the resources it
is using. This is necessary to allow hosts to manage their own resources. The
normal procedure is for a host to inform a cluster that destruction is imminent, in
order to allow it to move or shut down cleanly, but a host must always be able to
perform a ‘dirty’ shutdown in order to protect itself from malicious or erroneous
agents.
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5.2 Security

We have found that the approach of designing and engineering from the point of
view of a mobile object system has allowed us build on established security
principles. In particular we identify six basic areas of security concern within the
Mobile Object Workbench:

1. Host integrity - protecting the integrity of a hosting machine and data it
contains from possible malicious acts by visiting clusters.

2. Cluster integrity - it should be possible to determine if a cluster has been
tampered with, either in transit or by a host at which it was previously located.
We may wish to allow hosts to modify parts of a cluster (e.g. data) but not
others (e.g. code).

3. Cluster confidentiality - a cluster may wish to carry with it information that
should not be readable by other clusters, or by (some) of the hosts which it
visits.

4. Cluster authority - a cluster should be able to carry authority with it, for
example a user’s privileges, or credit card details. To provide this we need both
cluster integrity and cluster confidentiality.

5. Access control - a host should be able to impose different access privileges on
different clusters that move to it. Clusters and hosts should also be able to
enforce access control on exported methods.

6. Secure communications - clusters and hosts should be able to communicate
using confidential and/or authenticated communication. Some applications may
also require other security communication features, such as non-repudiation.

We believe that unless all of these aspects of security are addressed, any mobile
object system will not prove secure enough for real-world applications. We have
therefore adopted the principle of including security issues from the outset, rather
than as an “add-on”, bolted on at a later date. Section 7 discusses our approach to
these issues.

5.3 Thread Encapsulation

As clusters representing agents are mutually distrustful pieces of code, it is
important that one cluster cannot adversely affect another. In particular one cluster
must not be able to invoke a method on a second cluster, and then destroy the
thread performing the call, so as to leave the second cluster in an inconsistent
state. Equally, if a cluster crashes or intentionally blocks whilst servicing a request,
the client must be able to recover, and must not also fail or block indefinitely.

In order to achieve this degree of strong encapsulation, we de-couple all
threads that enter or leave a cluster, by spawning and rendezvous, so that the
failure of the caller and callee are independent. This thread de-coupling is
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integrated with the binding system and is transparent to the application
programmer.
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Figure 1 Objects, Clusters and Mobile Objects.

6 THE MOBILE OBJECT WORKBENCH

6.1 Clusters

Figure 1 shows the relationship between (Java) Objects, Clusters and Mobile
Objects. A Cluster is a Java object containing a grouping of objects that are
managed together. A Mobile Object is a specialisation of this that is able to move
between Places. Places are themselves objects which abstract execution
environments, typically with one place per JVM. Protection, movement,
destruction, charging and other management functions are considered in terms of
the lifecycle of clusters and the interaction between them. It is sometimes useful to
consider a cluster and its contents as a virtual process, and the encapsulation and
security concerns around clusters encourage this view.

An object is the basic building block out of which applications may be built.
Objects may contain references to interfaces on other objects anywhere in the
system. Objects may directly create other objects, but only within the same cluster.
They may be able to arrange the creation of objects in other clusters via
communication with a place. Within a cluster, access to methods/data on objects is
determined by standard Java language protection means and takes place using
standard Java method invocation. Between clusters, encapsulation is enforced so
that object in one cluster may only access methods on objects in other clusters if
these methods form part of an interface passed between the clusters.
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As communication between mobile (and non mobile) objects takes place using
application-level exported interfaces, the Mobile Object Workbench API is entirely
concerned with the lifecycle of mobile objects, and is analogous to the Applet or
Bean API. The main classes and methods are illustrated in Figure 2.

public class Cluster

public synchronized void lock()
public synchronized void unlock()

public void init()

init(...)

public void stop()

public void restart(Exception e)

public class MobileObject extends Cluster

public void syncMove(Place dest)
Request a move to the identified place. The current thread will attempt to perform the move.
If successful it will exit. The move will not take place until there are no other threads within
the cluster.

public interface Place

public Tagged newCluster(Class cls,Object[] args)
Create a new cluster at this place. Once created, init(arg0,arg1,...) will be called
on the new object. The init method may return an interface, which is passed to the creator

Figure 2 Mobile Object Workbench API.

6.2 Binding architecture

Communication between clusters takes place by remote method invocation using a
‘standard’ FlexiNet binder, together with two additional reflexive layers. On the
client side is a “cluster location” layer. This examines the internal name used to
represent the interface being accessed, and determines the host on which it resides.
The procedure adopted is to try the last known location, and only contact the
relocation service upon failure.
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On the server side of the communication, there is a reflexive “encapsulation
layer”. This processes incoming calls, checks that they refer to clusters that are
(still) located on the host, and performs the synchronisation required to ensure that
the cluster is not in the process of moving. Part of the encapsulation process is to
de-couple the calling thread, so that client and sever clusters cannot affect each
other by killing or otherwise manipulating the thread. This is illustrated in Figure 3.
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Figure 3 Implementation of inter-cluster calls.

6.3 Orchestrating Mobility

Figure 4 illustrates the states that an instance of a mobile object may be in. The
object is initially created in state A1. This state represents an active object that has
one thread in it (the thread that calls the constructor). When active, the object may
create other threads, and methods on its interface may be invoked by objects in
other clusters. It will therefore move between active states.

In order to move, a mobile object invokes a pendMove or syncMove call. Both
of these request a move ‘as soon as possible’, the difference being whether the
calling thread returns immediately (pendMove) or never returns (syncMove). When
a move call is invoked, the object enters a pending state. These are identical to
active states except that the object will be moved as soon as all executing threads
exit (i.e. when it enters state P0). As a side effect of executing a pendMove or
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syncMove, the cluster becomes locked. When locked, calls from other clusters
block until the cluster is unlocked.

When a mobile object enters the state P0 it will undergo a series of transitions
that may result in the creation of a new mobile object at a different place. The
original mobile object will then be discarded (it enters state X). If an error occurs
during this process and it can be safely inferred that the new object has not been
created, then this object is returned to state A1. If the move was initialised by a call
to syncMove, then the error status is returned as an exception. If the move was
initiated by a call to pendMove, the object is restarted by calling the restart
method, and the exception is passed as a parameter.

The newly moved cluster is an exact replica of the original, and in addition all
references to interfaces exported by the original cluster are re-mapped to the new
one (effectively the original cluster has moved). It is started in state A1 by a call to
restart. The new cluster (or original after failure) will have the same lock status as
the original - apart from the lock automatically taken when pendMove or syncMove
was called, which is released. If a cluster wishes to restart in a locked state, then it
may obtain an additional lock prior to calling pendMove or syncMove. This allows
newly moved clusters to perform start-up cleanly, before allowing external access.
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Figure 4 State transitions of a mobile object instance.

Copying, rather than moving, a cluster follows exactly the same procedure as
syncMove. The copy operation blocks until there are no other threads and the new
cluster has been created, or a failure is detected. After successful synchronisation,
or failure, the original object enters state A1 and the copy operation terminates. The
newly created copy commences operation with a call to copied in state A1.
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6.4 Method Invocation

When an object in one cluster attempts to invoke a method on an object in
another cluster, it must block if the callee cluster is in the process of moving. The
state diagram in Figure 5 indicates the process followed by the infrastructure. It
should be noted that the callee is able to interrupt a thread making a call, but that
this will not affect the caller. This prevents the caller from blocking the callee’s
progress.
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Figure 5 State transitions for an invocation on a remote cluster.

7 SECURITY

Within a mobile object context, issues of trust take on a different slant to non-
mobile systems. In both mobile and non-mobile systems, questions of how much
trust is placed in an object must be based on the provenance of that object - where
it originated, and its history. In a non-mobile object oriented system, such as the
base Java implementation, objects are typically instantiated from class files, having
no other state. In Java, these classes may be signed, and a JVM may assign
policies to their instantiations based on this signing. In a mobile object context, an
object arriving from a remote host has a history that is not captured by the
signature on the class file. Class signatures alone do not provide sufficient
information on which to assign security policy.

For this reason, we have designed and implemented a Security Manager that
extends the Java’s security model by allowing policies to be assigned to instances
of objects, rather than just their class. This has been possible because of the
strong thread encapsulation we have employed within the Mobile Object
Workbench, which gives each cluster its own thread group. As Java allows
checking of the thread performing a particular operation, we may determine the
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cluster from which an invocation originated, and hence enforce the appropriate
policies.

The cluster security manager is illustrated in Figure 6. It has two parts. The
shared portion uses the identity of the calling thread to determine which cluster the
call originated from. It then calls the per-cluster security manager to determine
whether an operation should be allowed.
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Figure 6 Per-Cluster Security Managers

This security scheme allows hosts to restrict operations allowed by particular
clusters, thereby protecting their own integrity. It also provides a good base from
which to extend cluster-to-cluster access restrictions.

Cluster integrity and confidentially are enforced by encrypting and/or signing
certain objects within a cluster. This prevents a host without sufficient access
privileges from examining a cluster’s state, and allows one host to detect if a cluster
has been modified by a host that it visited earlier. In addition to this, we must
ensure that clusters are not dissected - or a malicious host could ‘steal’ parts of the
cluster that represented encrypted passwords and use them to build its own
clusters. To do this, we require a mechanism for specifying, and validating,
integrity statements. For example, we may annotate a cluster’s definition to indicate
that a particular field may only be modified by certain hosts. We may then use
digital signature techniques to ensure that whenever the field is modified it obtains
a signature from the current host, and when other hosts attempt to read this field
we can throw an exception if the signature is incorrect. We call a collection of
objects within a cluster that are protected in this way a ‘secure inner cluster’.
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7.1 Secure Inner Clusters

A “secure inner cluster” is a cluster of objects within another cluster such as a
mobile cluster. The secure cluster uses a security management interface on the host
that it currently resides on and is accessed via an access interface by the
containing cluster (Figure 7).
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?
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Figure 7 A secure inner cluster

The secure inner cluster is treated as an object by the outer cluster and therefore
moves when the outer cluster moves.

The inner cluster does not share any objects with the outer cluster and the
semantics of calls on its interfaces are call by value (i.e. copies are made of all
arguments passed in and all results passed out).

Inner clusters are implemented as a specialisation of a standard management
class that has specialised serialisation methods for serialising and deserialising the
inner cluster’s state. These perform cryptographic encoding and decoding of the
state.

The inner clusters are used to create secure carrier objects. A secure carrier
object contains a collection of named objects, referred to as the secured objects in
the carrier, together a cryptographic access control matrix, a policy object and a
signing matrix. The policy defines a state integrity check on the contained objects
and the top-level cluster. The signing matrix is a table of principals against
signatures. The carrier object supports the methods:
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• void initialize(Cluster context)
Initialise the secure carrier object and inform it of its current context (the
cluster within which it resides). This method is called by the infrastructure
when the secure carrier object is first created/deserialised. The carrier object
may perform an integrity check on its context, for example to ensure that it has
not been removed from its original cluster and associated with a new one.

• void put(String name,Object object)
Put an object into the carrier and performs encryption and signing using the
host’s security infrastructure and the keys from the cryptographic access
control matrix and, if required, the hosts signing key. (The actual encryption
may be delayed until the carrier is serialised).

• Object get(String name)
Return a secured object from the carrier using keys obtained from the
cryptographic access control matrix.

• void sign(String objectName)
Perform signing on the secured object in the carrier.

• void dependantSign(SignatureReferenceList l,
                  String objectName)
Takes a list of signature references, l (see below), and a secured object
reference, s, and produces a signature on s that is valid if and only if the
signatures in l remain unaltered (see below).

• boolean check(String objectName, Principle p)
Check whether a specified principal has signed the current value of the
secured object in the carrier.

The signing matrix is a mapping from object names to principles to signature forms.
It contains details of the object values that different principles are willing to commit
to, together with digital signatures to prevent tampering. The signing matrix
contains two different signature forms, simple signatures and compound
signatures.

Simple signatures are constructed by signing a digest of the name and value of
the object being signed. They are used to indicate that a particular principle has set
(or agrees with) the value of a signed object. Compound signatures are used in
dependant signing. This is where a principle makes a statement of the form “I will
commit to this value if x remains committed to this value”. A compound signature is
a signing of the digest of an object name and value together with the list of
dependant values – i.e. a list of (object names, principles) which represents which
principles must remain committed to which values. This is illustrated in Figure 8.
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Sig. Form = Signature  Compound Sig.
Compount Sig. = Sig. Reference List × Sig.
Sig. Reference List = Null  (Object Name × Principle) × Sig. Reference List

Figure 8 Definition of a Signature Form

Signature checking for compound signatures is recursive in that to check a
compound signature is valid requires recursively checking the signatures in the
signature reference list.

The basic operation of a secure carrier object is illustrated in Figure 9.
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Figure 9 Operation of a secure carrier object

The security model requires that the code of a secure object, the Cryptographic
Access Control Matrix (CACM) and the Policy (specification of movement itinerary
and signing behaviour associated with a secure object) are signed by an accepted
source. They must be mutually signed, so that the code, CACM and Policy cannot
be detached from one another. This requires that the tuple

(secure carrier object class, CACM, policy)

is signed by an accepted authority. This is equivalent to applet signing. The class
may be referenced by a Java Class object serialised by a FlexiNet serialiser that
uses the FlexiNet Class Repository. The serialised object will actually be a secure
reference to a class stored in the repository.
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Figure 10 shows component interactions.
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Figure 10 Interaction of Security Components

We are currently developing a system to allow integrity policy statements to be
specified. Once specified, the use of secure fields or objects can be made almost
transparent to the programmer. All that is required is that they use accessor
functions to access the protected fields.
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Figure 11 Clusters with Secrets.

Secure carrier objects can be used to provide cluster authority. They allow a
cluster to carry with it a password or other secret information, without the concern
that this secret can be read at any host that is visited. Clearly, once the secret is
revealed to a host, there is nothing that can be done to prevent the host from
misusing it. For this reason, we have a model that the mobile object moves into a
secure environment before revealing a secret. Figure 11 gives an example; a cluster
may move between several hosts before eventually arriving at a ‘Bank’ host. At
this host, it may reveal a password to allow it access to a bank account. However,
as the Bank host already knew the password, revealing it has not given the bank
any additional privileges, and the security of the password has not been weakened.

Access control and secure communications may be implemented using
standard techniques. We use FlexiNet’s reflective binding system to allow a cluster
to receive notification of an invocation immediately prior to it’s execution, so that it
may implement its own security policy, and throw an access control exception if
appropriate. Secure communication between places may take place using a FlexiNet
binder that supports SSL (Netscape 1996). Secure communication between mobile
clusters may also take place using SSL, but requires that clusters reveal the
information use to prove their identity to the host from which they are
communicating. This is reasonable in some circumstances, but should be used with
caution.

8 NAME RELOCATION SERVICE

When a call is made on a mobile cluster, the encapsulation layer at the called host
will determine whether the cluster (still) exists at this host. If it does not, then the
host will raise an exception which is passed back to the callee and caught in the
callee’s locate layer. This then contacts the name relocation service to determine
the new location of the object. The relocation service is a federation of a number of
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directories. Each directory contains a mapping from old to new cluster addresses.
Our naming service was developed with six key properties:

1. We arrange that a client can locate the appropriate directory for a cluster
rapidly, without having to search.

2. We allow naming records to be moved between directories so that an optimal
location can be chosen for the record (e.g. following the movement of a cluster
around the network).

3. Different instances of the service may be implemented in different ways, or
turned for different performance/robustness/scalability trade-offs.

4. We control what entities are able to update the records - only hosts from which
a cluster is moving may update the record for the cluster. This prevents
fraudulent changing of naming records by “spoof” hosts or clusters.

5. We detect and handle all potential ‘identifier clashes’, whether accidental or
malicious. This closes the security loophole, removes the reliance on a
statistical probability (that randomly chosen numbers are unique), and therefore
allows us to use smaller identifiers, as the possibility of a clash is no longer
fatal.

6. We ensure that records relating to deleted clusters, or those that have been
moved to a different directory can be archived and never need updating. We
allow these records to be ultimately deleted.

The basic function of the relocation service is straightforward. It stores a simple
table of mappings from old to new cluster addresses. There may be more than one
instance of the service and each holds a portion of the mapping table. This spreads
the load is spread between them. As each mobile name explicitly contains a
reference to an instance of the relocation service (directory) this partitioning incurs
no extra cost, and has dual advantages of scalability and decentralised
management.

When resolving a mobile name in order to make a call; an optimistic client will
first try the last known address, whereas a pessimistic client will first contact the
relocation service. The relocation service cannot promise accurate information –
the named interface may be moving faster than it can be resolved – and it is up to a
particular client to decide if and when to give up.

To ease the burden of the relocation service, each cluster is given an identifier.
A directory need only store a mapping from each identifier to the corresponding
cluster’s current address, rather than a complete history of the cluster’s
movements. Generally, the identity assigned to a cluster will not change over its
lifetime. However, the possibility of renaming is introduced to prevent security
attacks whereby two or more clusters with the same identity are created in logically
remote servers, and then moved to the same location. There is also a (slight)
possibility of two clusters accidentally been given the same identifier.
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8.1 A Toy Relocation Service

The current implementation of the Mobile Object Workbench relies on a ‘toy’
relocation service. This is insecure, and cannot cope with accidental or malicious
‘clashing’ of cluster identifiers.

The implementation is based on a simple hashtable, which maps cluster
identifiers to addresses. For clusters which have never been assigned a new
identifier, and that still use the original directory, then this requires exactly one
entry per cluster, regardless of the number of moves. It takes exactly two additional
(remote) method lookup for a client to access a cluster that has moved. The first call
is the failed invocation using the old address; the second call is the lookup at the
relocation service.

For a cluster that has moved to a different directory, but has not changed
identity, then one entry is stored in each directory. At worst, clients will have to
contact each of these in turn before correctly locating a cluster. However, if moving
between directories is rare (as is expected) then clients will normally have a
reference to the most recent directory.

Clusters are rarely assigned a new identity. This is only done when two
identifiers for different clusters are found to ‘clash’. In the toy implementation, this
is only detected if a cluster is moved/recreated at a location where a cluster of the
same identity already resides. If the relocation service is asked to store two
different mappings from identifier to address, then it will discard the first one. This
is clearly incorrect behaviour and is the primary security attack against this
implementation.

A directory therefore only ever has knowledge of one cluster with a particular
identifier. If this cluster changes identifier, the toy relocation service simply stores
a record within the hashtable that maps from the original cluster identifier to the
new identifier. On resolution, this leads to an extra (local) lookup to determine the
cluster’s address.

The toy implementation has many advantages over some schemes, such as
tombstones. However it also has a number of failings when used in a large
distributed system.

• It is insecure. An attacker could arbitrarily add, remove or change information
to disrupt normal activity. In addition, accidental or malicious clashing of
identifiers will lead to errors.

• It is not robust. Even if the records were stored persistently, an instance of the
relocation service is a single point of failure for clusters it manages. This is
mitigated somewhat by optimistic strategies and the use of many instances of
the relocation service.

The use of many instances of the relocation service partitions the object
population, and each instance is only responsible for a proportion of the whole. By
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using an appropriate number of instances, the effect of failure can be reduced. In
addition, as the relocation service is only contacted by clients to locate clusters
that have moved, the effect of a failure will be limited to those cluster that have
moved since last being contacted by their clients.

We have designed a more complete relocation service that is secure, robust and
can recover from malicious or accidental clashing of identifiers. The implementation
of this service is currently in progress.

9 IMPLEMENTATION STATUS

The Mobile Object Workbench version 2.0 is currently in use by the members of
the ESPRIT FollowMe project. The current implementation supports clusters,
mobility and transparent communications as described in this paper. The
implementation of the ‘secure cluster’ abstraction, and the implementation of the
security aspects of the relocation service, are incomplete.

In addition to specific Mobile Object Workbench issues, work on FlexiNet is
continuing. We have recently created added support for secure bindings using SSL
and support for CORBA interoperability using IIOP (OMG 1997). Transactional
support is underway.

10 SUMMARY

The Mobile Object Workbench was designed primarily to add mobility
transparency to the distribution transparencies provided by FlexiNet. In this paper
we have shown that in order to do this we must add clustering and re-binding
mechanisms. If mobile objects are to be used to support autonomous agent
systems, then security requirements lead to the need for encapsulation
mechanisms so that hosts and agents may communicate and co-operate without
the need for complete trust. We have approach the design of the Mobile Object
Workbench as a distributed system problem, as it has all the traditional issues
related to distributed systems; scale, robustness, independent failure modes,
distrust, decentralised administration, multiple name spaces and diverging code
bases. This approach has lead us to design an architecture, and implementation,
that can evolve to meet future needs, and we believe this gives it clear advantages
over the ad-hoc approaches of existing mobile agent systems. In addition, we have
designed the system as a natural extension of the Java language. This makes it
straightforward to use, and allows programmers of mobile objects to use the full
language facilities.
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