
1  © 1998 ANSA Consortium
                                

An Introduction to Reflective Java

Zhixue Wu
APM Ltd.

18 Oct. 1998



2  © 1998 ANSA Consortium
                                

Motivation
l Java Advantages

n object oriented
n separate interface from implementation

n Portable
n write once, run anywhere

n Dynamic
n dynamic loading and linking

l Issues
n Make a program portable to every infrastructure
n Enable a system to adjust its behaviour according to environment
n Allow application deployers to configure system capabilities



3  © 1998 ANSA Consortium
                                

Reflective Java
l Enable Java-powered system to be customised according

to particular requirements of applications and run-time
environment
n statically at compile time and dynamically at run-time
n flexibly
n transparently

l Make Java reflective
n without any change to the language itself
n without any change to its compiler
n without any change to its virtual machine



4  © 1998 ANSA Consortium
                                

Reflective Method Invocation
l Method invocation is intercepted by a metaobject
l Extra processing can be done before and after method execution
l Meta information for classes, objects, and parameters is accessible
l Values of parameters can be manipulated at meta level

set_lock;

back_up;

release_lock

free_back_up

void credit(double amount)
{balance = balance+amount}

Object metaMethod(Method appMtd, int cId, Objects args[]) throws Throwable



5  © 1998 ANSA Consortium
                                

Building Process
l Application classes are implemented by application developers
l Metaobject classes are implemented by system developers
l End-users specify metaobject binding via a simple script language
l A preprocessor is used to generates reflection classes
l End-user application performs functions through the reflection class

application class metaobject class

reflection class

user class binding specification

preprocessorinherit
has instance
use
data flow



6  © 1998 ANSA Consortium
                                

Binding Specification
l Binding specification describes the association between an

application class and a metaobject class
l When being created, an application object will be bound to an

metaobject automatically
l The binding can be changed dynamically at run-time

import transaction.*;

refl_class Account: Meta_Lock{
 public Account(String nm):WRITELOCK;
 public void init(String nm, double mm):WRITELOCK;
 public void credit(double mm):WRITELOCK;
 public void debit(double mm) throws OverdrawException:WRITELOCK;
 public double balance():READLOCK;
}



7  © 1998 ANSA Consortium
                                

Metaobject Implementation
public ConcurrencyMetaobject extend Metaobject {
  public ConcurrencyMetaobject(Object appObject)
  {
    super(appObject);
    lock = new Lock();
  }

  public Object metaMethod(Method appMtd, int cId, Object[] args)
throws Throwable

  {
    if(cId==READLOCK) lock.set_read_lock(); else set_write_lock();

    Object rslt = appMtd.invoke(appObject, mArgs);

    if(cId==READLOCK) lock.release_read_lock(); else release_write_lock();

    return rslt;
  }

  protected Lock lock;
}



8  © 1998 ANSA Consortium
                                

Dynamic Binding
l Java allows loading class and constructing objects dynamically
l Reflective Java provides a pair of operations to check and set the

metaobject of an object
l Application program thus can change metaobject binding

dynamically via these operations

public Metaobject getMetaobject( ){
return metaobject;

}

public void setMetaobject(String clsName) throws ClassNotFoundException
{
   metaobject = (Metaobject)Class.forName(clsName).newInstance();
   metaobject.init(this);
}



9  © 1998 ANSA Consortium
                                

Practical Issues
l Better development environment

n dislike a separate binding specification
n dislike an extra preprocessing step

l Hard to provide multiple capabilities
n multiple metaobject binding
n metaobject reuse

l Consistency concerns in dynamic binding
n between old and new metaobjects
n system states

l Difficulty of implementing metaobjects
n generic programming

l Performance
n normal story



10  © 1998 ANSA Consortium
                                

Building Toolbox
l A graphical developer environment
l Interactive input: selecting instead of retyping
l Integrated preprocessor and compiler: byte code output



11  © 1998 ANSA Consortium
                                

Two-Layer Approach for Metaobjects
l First-layer metaobject:

n interception method invocation
n coordinator second-layer metaobjects

l Second-layer metaobjects:
n provide a particular capability

l Contract interface between first and second layer metaobjects
n ensure a second layer metaobject reusable
n ensure consistence between new and old metaobject

persistent
metaobject

concurrency
metaobject

security
metaobject

transactional
metaobject

application
object



12  © 1998 ANSA Consortium
                                

A Reflective Transaction Architecture
l Container provides a first layer

metaobject: transactionalMetaobejct
l Three second-layer metaobject

interfaces: persistency, concurrency,
recovery

l Each interface may have multiple
implementations

l Application deployer choose
metaobjects for a application

l “Off-the-shelf” metaobjects can be
used

concurrency
policy component

recovery policy
component

persistency policy
component

Underlying Transaction Service

client
component

client
component

server
 component

application
information

Container

binding &
configration
information



13  © 1998 ANSA Consortium
                                

Summary
l Pure Java
l Simple, but powerful
l Dynamic binding
l User friendly development environment
l Ensure compatibility between metaobjects
l Two-layer approach on constructing metaobjects
l Reasonable performance

l Issue: how to ensure system state consistency


