
1 © 1998 ANSA Consortium

Blueprint
Flexible specification and
construction of FlexiNet binders

Peter Bagnall

2 © 1998 ANSA Consortium

Purpose
l To provide a generic way of specifying binders
l Allow a “default” binder to be easily adapted
l Examples may be changing buffer sizes, low-

level protocols, serializers
l Builds object graphs in a well defined manner,

so could be used for other elements which
need to be flexibly constructed

l Ultimately, to simplify writing binders

3 © 1998 ANSA Consortium

Brief Overview (1)
l Evolved from FlexiProps
l Blueprints are hierarchical structures (plus

symbolic links)
l Each node has multiple suggestions
l Each node has multiple constraints
l Resolution decides which suggestions to take

to meet the constraints, or reports failure if
not possible

4 © 1998 ANSA Consortium

Brief Overview (2)
l Resolved Blueprint may be recorded for later

use
l It can then be “constructed” which builds any

instances required and initialises all objects,
using the Blueprint as the source of the
initialisation parameters

l Finally the constructed object(s) can be
obtained for use

5 © 1998 ANSA Consortium

A Blueprint for Burgundy
null

no
de S: Burgundy.class;

C: Burgundy.class;

no
de S:;

C:;

no
de S: MagicSerialLayer.class;

C:;

no
de S: MagicOutputBufferFactory.class;

C:;

buffer

outputfactory

serial

6 © 1998 ANSA Consortium

Implied Specifications
null

no
de S: Burgundy.class;

C: Burgundy.class;

no
de S: MagicSerialLayer.class;

 SerialLayer.class;
C: SerialLayer.class;

no
de S: MagicOutputBufferFactory.class;

C: OutputBufferFactory.class;

no
de S:;

C:;

buffer

outputfactory

serial

outputbufferfactory

7 © 1998 ANSA Consortium

Blueprint bp=new Blueprint();
bp.require(null,Burgundy.Class);
bp.suggest(“serial”,MagicSerialLayer.class);
bp.suggest(“buffer.outputfactory”,

MagicOutputBufferFactory.class);
bp.construct();
Binder binder=(Binder)bp.get(null);

And then binder is usable

Example - Building a Burgundy

8 © 1998 ANSA Consortium

A Blueprint for Burgundy
null

no
de S: Burgundy.class;

C: Burgundy.class;

no
de S:;

C:;

no
de S: MagicSerialLayer.class;

C:;

no
de S: MagicOutputBufferFactory.class;

C:;

buffer

outputfactory

serial

9 © 1998 ANSA Consortium

Inside Burgundy
setRequirements(Blueprint b) {

b.require("serial", SerialLayer.Class);
b.link(“.outputbufferfactory”,”buffer.outputfactory”);
...
b.constrain(”buffer.outputfactory",

OutputBufferFactory.Class);
...

}

10 © 1998 ANSA Consortium

Implied Specifications
null

no
de S: Burgundy.class;

C: Burgundy.class;

no
de S: MagicSerialLayer.class;

 SerialLayer.class;
C: SerialLayer.class;

no
de S: MagicOutputBufferFactory.class;

C: OutputBufferFactory.class;

no
de S:;

C:;

buffer

outputfactory

serial

outputbufferfactory

11 © 1998 ANSA Consortium

Construction - Resolution
l Starting at the root the tree is walked. At

each node…
n a suggestion is selected, (in the order they were

set)
n if is conflicts with any constraints then next

suggestion is tried
n if the suggestion is a “Resolving class” it is asked

to specify any suggestions or constraints on its
children.
n To do this the class must implement the static method

setRequirements(Blueprint bp)
n c.f. - Java Beans properties - set methods.

12 © 1998 ANSA Consortium

Construction - Resolution
n It then attempts to resolve its first child node.
n When the child completes it calls its parent’s

“complete” method if successful, or returns with a
failure flag if unsuccessful.

n If successful the parent then calls the next child,
and so on.

n Eventually the root receives a complete call, and
has no more work to do, in which case the call
returns, which causes the stack to unwind.

13 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

2

B = 2

4

C = 4

1

A = 1

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

resolve

complete

Current state

14 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1
B = 2 but 4 → B ≠ 2 fail

4

C = 4

15 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

6

D = 6

7

E = 7
F = 8 but 2 → F ≠ 8 fail

16 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

6

D = 6

7

E = 7

17 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

6

D = 6

18 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

6

D = 6

19 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

6

D = 6

20 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

21 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

2

resolve

complete

1

A = 1

5

C = 5
B = 2

22 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

3

B = 3

4

C = 4

1

A = 1

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

resolve

complete

Current state

23 © 1998 ANSA Consortium

Construction - Resolution

A

B

C D

E

F

Starting position

A = 1
B = 2 | 3
C = 4 | 5
D = 6
E = 7
F =

Implied constraints

4 → B ≠ 2
2 → F ≠ 8
7 suggests F = 8

Current state

3

resolve

complete

1

A = 1

4

C = 4
B = 3

6

D = 6

7

E = 7
F = 8

8

24 © 1998 ANSA Consortium

Construction - Resolution
l In the case of contention

n the current suggestion is removed, including any
constraints it applied (but not suggestions).

n The next suggestion is then tried.
n When the node runs out of suggestions it rolls

back the previous node, and tries its next
suggestion.

n Rollback continues until the suggestion works,
(success), or the root node runs out of suggestions
(failure).

25 © 1998 ANSA Consortium

Construction - Resolution
l If contention reaches the root, and the root

runs out of suggestions the construction fails
and the Blueprint throws an exception.

l In this case the programmer may switch on
debugging to trace the various decisions that
are being made, to try and find the conflicts.

26 © 1998 ANSA Consortium

Recording a Blueprint
l Once resolution is complete the Blueprint may

be recorded to an OutputStream.
l Potentially a database or cache of Blueprints

could be maintained which could be used to
speed up resolution.

27 © 1998 ANSA Consortium

Instantiation
l Having resolved which classes are to be used

each “Resolving class” is instantiated and
replaced by the instance.
n Instantiation is equivalent to the null constructor

n Resolvable classes must implement “createUninitialised()”
which returns an instance.

n c.f. - Java Beans - must implement null constructor

28 © 1998 ANSA Consortium

Initialisation
l Once all resolving classes are instantiated the

tree is walked leaf-root initialising instances.
l At each node

n the instance must implement initialise(Blueprint
bp);

n it may return three states, “complete”,
“progressed”, “no progress”.

l This is repeated until all nodes are satisfied
they have completed or stalemate occurs.
n Stalemate occurs when no nodes are progressed

29 © 1998 ANSA Consortium

Interface - creating (1)
public Blueprint()
public Blueprint(File file)
public Blueprint(Object o, Constraints con)

public void merge(String name, Blueprint bp)

public void suggest(String name, Object value)
public void suggest(String name, int i)
public void suggest(String name, Class cls)

public void link(String from, String to) {}

30 © 1998 ANSA Consortium

Interface - creating (2)
public void constrain(String name, Constraints c)

throws ConstraintContentionException

public void constrain(String name, Class c)
throws ConstraintContentionException

public void require(String name, Object value)
throws ConstraintContentionException

public void require(String name, int i)
throws ConstraintContentionException

public void require(String name, Class cls)
throws ConstraintContentionException

31 © 1998 ANSA Consortium

Interface - shorthand
l The Blueprint records the last name set, and

uses it as a default for the next call, e.g.
n suggest(“serial”,SerialLayer.class);
n suggest(“.serializer”,Serializer.class);

l Is exactly equivalent to
n suggest(“serial”,SerialLayer.class);
n suggest(“serial.serializer”,Serializer.class);

l Either may be used. Note that in the first the
order of calls matters, but typo’s are less
likely

32 © 1998 ANSA Consortium

Interface - reading

public Object get(String name)
public int getInteger(String name) throws ClassCastException

public Enumeration suggestions(String name)
public Enumeration constraints(String name)

public Blueprint getSubBlueprint(String name)

33 © 1998 ANSA Consortium

Interface - construction

public void resolve()
public void instantiate()
public void initialise()
public void construct()

34 © 1998 ANSA Consortium

Interface - miscellaneous

public void addChangeListener(ChangeListener cl)
public void removeChangeListener(ChangeListener cl)

public void toString()
public void write(OutputStream os)

public Object copy()
public Enumeration propertyNames()
public Enumeration children()

35 © 1998 ANSA Consortium

Possible Further Work
l Beanification

n components should be beans
n use “bean properties” via introspection to

determine what the children of a node should be,
allows better error detection

n build a visual tool for creating Blueprints
l More flexible constraint classes

n boolean combinations etc.

36 © 1998 ANSA Consortium

Burgundy is
complex

NAMESEGMENT

Burgundy

buffer

locatelayer clientcalllayer

outputfactory

namelayerserialservercalllayer

inputfactory

sessionmanager

factory

manager

datasegment

datasize

serializerfactory generatorclassSerializerFactory

deserializerfactoryclassDeSerializerFactory resolver

binderTop

namesegment

downdown

clusternamelayer rpclayer

down
up

down

up

down

RRSEGMENTDATASEGMENT

up

clusternamesegment

up

outputbufferfactory

outputbufferfactory outputbufferfactory

datasegment

outputbufferfactory inputbufferfactory

sessionmanager

CLUSTERNAMESEGMENT

37 © 1998 ANSA Consortium

Blueprint
That’s all folks.

Peter Bagnall

