Blueprint

Flexible specification and
construction of FlexiNet binders

Peter Bagnall

—A 1 ©1998 ANSA Consortium ~ [———————

Purpose

e To provide a generic way of specifying binders
e Allow a “default” binder to be easily adapted

e Examples may be changing buffer sizes, low-
level protocols, serializers

e Builds object graphs in a well defined manner,
so could be used for other elements which
need to be flexibly constructed

e Ultimately, to simplify writing binders

—A 2 ©1998 ANSA Consortium [

Brief Overview (1)

e Evolved from FlexiProps

e Blueprints are hierarchical structures (plus
symbolic links)

e Each node has multiple suggestions
e Each node has multiple constraints

e Resolution decides which suggestions to take
to meet the constraints, or reports failure If
not possible

—A 3 ©1998 ANSA Consortium [——————

Brief Overview (2)

e Resolved Blueprint may be recorded for later
use

e It can then be “constructed” which builds any
Instances required and initialises all objects,
using the Blueprint as the source of the
Initialisation parameters

e Finally the constructed object(s) can be
obtained for use

- A 4 ©1998 ANSA Consortium [

A Blueprint for Burgundy

nuly S Burgundy.class;

C: Burgundy.class,

V%

S MagicSerialLayer.class;
C:;

S MagicOutputBuffer Factory.class;
C:;

—A 5 ©1998 ANSA Consortium [

Implied Specifications

nuly S Burgundy.class;

C: Burgundy.class,

%
S MagicSerialLayer.class;
o SerialLayer.class;
%@cr% Outputbufferfactory C: SrialLayer.class;

S MagicOutputBuffer Factory.class;
C: OutputBuffer Factory.class;

—A 6 © 1998 ANSA Consortium [—————

Example - Building a Burgundy

Bl ueprint bp=new Bl ueprint();
bp. requi re(nul |, Burgundy. d ass);
bp. suggest (“serial ”, Magi cSeri al Layer. cl ass);
bp. suggest (“buffer. outputfactory”,
MVagi cQut put Buf f er Fact ory. cl ass);
bp. construct () ;
Bi nder bi nder =(Bi nder) bp. get (nul |);

And then bi nder Is usable

- A 7 © 1998 ANSA Consortium [

A Blueprint for Burgundy

nuly S Burgundy.class;

C: Burgundy.class,

V%

S MagicSerialLayer.class;
C:;

S MagicOutputBuffer Factory.class;
C:;

—A 8 ©1998 ANSA Consortium [

Inside Burgundy

set Requi renent s(Bl ueprint b) {
b.require("serial", Seri al Layer. d ass);
b.link(“. outputbufferfactory”,”buffer.outputfactory”);

b. constrai n(”buffer.outputfactory",
Qut put Buf f er Fact ory. d ass) ;

—A 9 ©1998 ANSA Consortium [——————

Implied Specifications

nuly S Burgundy.class;

C: Burgundy.class,

i N
.
(%
S MagicSerialLayer.class;
U, outp SerialLayer.class;
%@cr% o lactory, C: SrialLayer.class;

S MagicOutputBuffer Factory.class;
C: OutputBuffer Factory.class;

—A 10 ©1998 ANSA Consortium [———————

Construction - Resolution

e Starting at the root the tree is walked. At
each node..

a suggestion is selected, (in the order they were
set)

If Is conflicts with any constraints then next
suggestion is tried

If the suggestion is a “Resolving class” it is asked
to specify any suggestions or constraints on its
children.

To do this the class must implement the static method
setRequirements(Blueprint bp)

c.f. - Java Beans properties - set methods.

—A 11 ©1998 ANSA Consortium [————————

Construction - Resolution

It then attempts to resolve its first child node.

When the child completes it calls its parent’s

“complete” method if successful, or returns with a
failure flag 1T unsuccessful.

I successful the parent then calls the next child,
and so on.

Eventually the root receives a complete call, and
has no more work to do, in which case the call
returns, which causes the stack to unwind.

—A 12 © 1998 ANSA Consortium

Construction - Resolution

N\

Starting position Current state

O m >
o on

1
2
4

Mmoo W >
L L O O T I N I

~~NoO B~ DN -

ol w

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 13 © 1998 ANSA Consortium [————————

Construction - Resolution

N\

Starting position Current state

A=1 A=1

Efilz B=2but4 — B# 2 fail
D=6 C=4

E=7

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 14 © 1998 ANSA Consortium [————————

Construction - Resolution

N\

Starting position Current state

A=1 A=1

B=2 | 3 B=2

C=4]5 ~

D=6 €=5

E=7 D=6

F= E=7
F=8but2 — F# 8fail

Implied constraints

4—-B#2

2—F#8

7suggests F=8

resolve
_>

complete
—p

—A 15 ©1998 ANSA Consortium [————————

Construction - Resolution

N\

Starting position Current state

Mmoo W >
L L O O T I N I
~~NoO B~ DN -

ol w
m o O T >
[O 1 A B
~N o o1 N -

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 16 © 1998 ANSA Consortium [————————

Construction - Resolution

N\

Starting position Current state
A=1 A=1

B=2 | 3 B=2
C=4]5 ~

D=6 €=5

E=7 D=6

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 17 © 1998 ANSA Consortium [————————

Construction - Resolution

N\

Starting position Current state
A=1 A=1

B=2 | 3 B=2
C=4]5 ~

D=6 €=5

E=7 D=6

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 18 © 1998 ANSA Consortium [—————————

Construction - Resolution

N\

Starting position Current state
A=1 A=1

B=2 | 3 B=2
C=4]5 ~

D=6 €=5

E=7 D=6

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 19 © 1998 ANSA Consortium [—————————

Construction - Resolution

N\

Starting position Current state
A=1 A=1

B=2 | 3 B=2
C=4]5 ~

D=6 €=5

E=7

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 20 ©1998 ANSA Consortium [

Construction - Resolution

N\

Starting position Current state
A=1 A=1

B=2 | 3 B=2
C=4]5 ~

D=6 €=5

E=7

F=

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 21 ©1998 ANSA Consortium [

Construction - Resolution

N\

Starting position Current state

O m >
o on

1
3
4

Mmoo W >
L L O O T I N I

~~NoO B~ DN -

ol w

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 22 © 1998 ANSA Consortium [~

Construction - Resolution

N\

Starting position Current state
A=1 A=1
B:2|3 B=3
C=4]5 ~
D=6 C=4
E=7 D=6
F= E=7

F=8

Implied constraints

4—-B#2
2—F#8
7suggests F=8

resolve
_>

complete
—p

—A 23 ©1998 ANSA Consortium [

Construction - Resolution

e In the case of contention

the current suggestion is removed, including any
constraints it applied (but not suggestions).

The next suggestion is then tried.

When the node runs out of suggestions it rolls
back the previous node, and tries its next
suggestion.

Rollback continues until the suggestion works,

(success), or the root node runs out of suggestions
(failure).

—A 24 ©1998 ANSA Consortium [

Construction - Resolution

e |If contention reaches the root, and the root
runs out of suggestions the construction fails

and the Blueprint throws an exception.

e In this case the programmer may switch on
debugging to trace the various decisions that
are being made, to try and find the conflicts.

—A 25 ©1998 ANSA Consortium [

Recording a Blueprint

e Once resolution is complete the Blueprint may
be recorded to an OutputStream.

e Potentially a database or cache of Blueprints
could be maintained which could be used to
speed up resolution.

—A 26 ©1998 ANSA Consortium [

Instantiation

e Having resolved which classes are to be used
each ‘Resolving class” is instantiated and
replaced by the instance.

Instantiation is equivalent to the null constructor

Resolvable classes must implement “createUninitialised()”
which returns an instance.

c.f. - Java Beans - must implement null constructor

—A 27 ©1998 ANSA Consortium [

Initialisation

e Once all resolving classes are instantiated the
tree is walked leaf-root initialising instances.

e At each node

the instance must implement initialise(Blueprint
bp);
It may return three states, “‘complete”,

“progressed”, “no progress”.

e This is repeated until all nodes are satisfied
they have completed or stalemate occurs.

Stalemate occurs when no nodes are progressed

—A 28 ©1998 ANSA Consortium [

public
public
public
public
public
public

public

public

Interface - creating (1)

Bl ueprint ()
Bl ueprint(File file)
Bl ueprint (CObject o, Constraints con)

void nerge(String nanme, Blueprint bp)
voi d suggest (String nane, (bject val ue)
voi d suggest(String nane, int i)

voi d suggest (String nane, d ass cls)

void link(String from String to) {}

—A 29 © 1998 ANSA Consortium

public
public
public
public
public

Interface - creating (2)

voi d

voi d

voi d

voi d

voi d

constrain(String nane, Constraints c)
t hrows Constrai nt Cont enti onExcepti on

constrain(String nane, Cass c)

t hrows Constrai nt Cont enti onExcepti on

requi re(String nane, (bject val ue)

t hrows Constrai nt Contenti onExcepti on
require(String nanme, int i)

t hrows Constrai nt Cont enti onExcepti on
require(String nane, dass cls)

t hrows Constrai nt Cont enti onExcepti on

30 © 1998 ANSA Consortium

Interface - shorthand

e The Blueprint records the last name set, and
uses it as a default for the next call, e.g.

suggest(“serial”,SerialLayer.class);
suggest(“.serializer”,Serializer.class);
e Is exactly equivalent to

suggest(“serial”,SerialLayer.class);
suggest(“serial.serializer”,Serializer.class);

e Either may be used. Note that In the first the
order of calls matters, but typo’ are less

A 31 ©1998 ANSA Consortium [

Interface - reading

public Object get(String nane)
public int getlnteger(String nane) throws d assCastException

publ i ¢ Enuneration suggestions(String nane)
public Enuneration constraints(String nane)

public Bl ueprint getSubBlueprint(String nane)

—A 32 ©1998 ANSA Consortium [

Interface - construction

public
public
public
public

voi d
voi d
voi d
voi d

resol ve()

I nstanti at e()
initialise()
construct ()

33 © 1998 ANSA Consortium

Interface - miscellaneous

publ i c voi d addChangelLi st ener (ChangelLi st ener cl)
public voi d renoveChangeli st ener (ChangelLi stener cl)

public void toString()
public void wite(QutputStream o0s)

public Cbject copy()
publ i c Enuneration propertyNanes()
publ ic Enuneration children()

—A 34 ©1998 ANSA Consortium [

Possible Further Work

e Beanification

components should be beans

use “bean properties’” via introspection to
determine what the children of a node should be,
allows better error detection

build a visual tool for creating Blueprints

e More flexible constraint classes
boolean combinations etc.

—A 35 ©1998 ANSA Consortium ~ [————————

Burgundy Is
complex

datasize

binder Top

A

A

datasegment

classSerializerFactory serializerfactory -
A

y

sessionmanager n

./

factory

—A 36 © 1998 ANSA Consortium

classDeSerializerFactory pa deserializerfactory

Blueprint

Thats all folks.

Peter Bagnall

