Naming
and
Binding

Richard Hayton




Context

e FlexiNet a Java middleware framework

It supports Slot-in’components to support
different abstractions

It Is a project in its own right, and has been used
for various other projects and investigations
FollowMe - mobile and persistent objects
Secure Sessions - exploring security mechanisms
Java Engineering - how to build with components

e It is now almost 2 years since its conception
I In trying to tie up lots of loose ends
... and write an architecture report

—A © 1998 ANSA Consortium —




Recent Developments...

e In the last few months....
Transaction Integration with FlexiNet (Wu)

SSL Integration with FlexiNet (Laurence)
FlexiNet blueprints for binders (Peter)
Multicast in FlexiNet (Dave)

e Four people using and extending parts of
FlexiNet they were previously unfamiliar with
Real Power’Users!

e This has lead to some useful feedback

A © 1998 ANSA Consortium




Multiple Binding Protocols

e There Is a requirement to manage different types
of binding for use in different circumstances

Transactional .v. NonTransactional References

Insecure .v. Authenticated .v. Encrypted References
Multicast .v. Unicast References

e FlexiNet is capable of supporting types of binding

but up until now there were only ad-hoc mechanisms for
manage the additional complexity

very steep learning curve

— A

© 1998 ANSA Consortium




Green

Rose

Blue
Magenta
Crimson
Burgundy
Purple
Black

Binders we have built

R
R
R

Q
Q

R

P over
P over |

REX over UDP with

P over |

REX over UDP
REX over -
REX over |

cp
"CP with SSL
REX over TCP with SSL & mobility
mobility
CP (mobility)
"CP with SSL  (mobility)
"CP using Blueprints

Same domain binder
RMP over UDP for multicast

© 1998 ANSA Consortium —




Too Many Binders?

e There are a lot of binders!
=« Lots of potential complexity
« Adding an extra dimension doubles the number

e There is a lot of common functionality

=« Extra binder classes can be avoided by configuration
= Recently the degree of configuration has increased

Problem:

Solution:

- ‘ © 1998 ANSA Consortium —




Rationalized Naming: Aims

support multiple binders per protocol
course grain QoS

support multiple protocol per binder class
configure rather than re-implement

allow runtime protocol definition
support for negotiation and generics

allow runtime resolution of foreign’names
load the appropriate code and go

support smart proxies?
Application specific binders

A © 1998 ANSA Consortium —




Back to basics..

e When are names generated?

e When are they used?

e Might we use them for anything else?

— A



FlexiNet Naming

e Names are generated to be passed in place of
objects

r
#12345678 9012 3456
—A © 1998 ANSA Consortium —



FlexiNet Naming

e On the client, a proxy Is created to represent the
original object
= usually, the proxy is a Stub’object

(

-

—A © 1998 ANSA Consortium —




FlexiNet Naming

e The proxy acts 1ike’the original object
= e.g. by implementing remote method invocation

© 1998 ANSA Consortium




Other uses of Names

e Names for groups

y

—>—>—>—>—>— > — >

e Names for managed objects (e.g. Persistent)
| | 1




Other uses of Names

e Different names for the same object
(different Qo0S)

>—>——>—p—p——>




Names as Objects

e FlexiNet names have always been

constructed in an object oriented fashion

naming class hierarchy
TrivName,GreenName,MobileName all subclass of Name

Component class hierarchy

TrivName contains an Address
UDPEnNdpoint, TCPEndpoint are both subclasses of Address

Generic use of Names
binders, caches, explicit binding etc. all in terms of superclass

e Can names be real objects?
Add code as well as data

e.g. name.resolve()

— A

© 1998 ANSA Consortium




Generating Names

e Cache of previously
j Generated Names

e Generates a name

« IT it can meet Qo0S
requirements

e Generates a hame

« IT it can meet Qo0S
requirements

E— A © 1998 ANSA Consortium




Resolving Names

( Smart
(Choicef <&

e Cache of previously
Generated Names

e Calls Name.Resolve(..)

A.N.Other
#12345678 9012 3456

e The name may make use of
an existing Resolver

e It may create a new Resolver
e It may resolve itself unaided




Benefits

e A Name may choose which resolver to use
not tied to one resolver per name class

e A name may store QoS requirements
allows names to be used for explicit binding

e A name may resolve itself
a Smart’name
allows server code to execute on the client

—A © 1998 ANSA Consortium —




Smart Proxies

e What are they?

A piece of code supplied by the server to run on the
client and locally manage calls to the server

e What might they do?

Anything that is better done at the client side
Caching
Add client contextual information (1D, Thread etc)
Rebinding to one of a number of replica servers
Rebinding to a mobile server

Smart proxies are application specific resolvers

They can do exactly the same things as a resolver
But are easier to write

© 1998 ANSA Consortium —




Using Smart Proxies

e What is required

A generator that generates names for Smart Proxies
A resolver that resolves names to Smart Proxies

e Approach

We arrange that a SmartProxy is also a Name
dont need to generate names - the application does it

We implement Name.resolve() to return this’
don need a resolver to resolve names

—A © 1998 ANSA Consortium —




An example smart proxy

e Class Aproxy extends SmartProxy implements A

1

private A remoteA;

public Int add(int a,iInt b)

1
System.out.printin(“Call add());

return remoteA. add(a,b);

}
}

—A © 1998 ANSA Consortium —




Using the Smart Proxies

(

e Isnt a smart proxy just pass by value?

« Yes EXCEPT that like a normal proxy, there is only
one proxy to a particular interface per-client

« l.e. IT Pis passed to the client a second time, a
reference to the first copy is passed instead

— A

© 1998 ANSA Consortium




Generic Smart Proxies

e Smart proxies are great for simple application
reflection
but they are type specific
so you have to write one for each class proxied

e What about generic smart proxies?

l.e. a proxy that performs a type independent
operations.

Useful for high level’reflection

transactions = auditing
replication caching

—A © 1998 ANSA Consortium —




Generic Smart Proxies

e What is required
A way of generating names for generic proxies
A name that creates a generic proxy on resolution

e Approach

We arrange that a GenericProxy is also a Name
we also need a generator to create them as required

We implement Name.resolve() to return stub+this’
don need a resolver to resolve names

We define an 1nvocation’class
and a generic call interface

—A © 1998 ANSA Consortium —




Using Generic Proxies and Skeletons

(

A

. [ 3

 ————p—>

e Generic Proxies work like an extra layer of a binder

= The overhead is low

= the second stub is effectively bypassed
= The invocation object allows additional data to be passed

— A

© 1998 ANSA Consortium




Example GenericProxy

class FooProxy extends SimpleGenericProxy

{
FooProxy(Name n) { super(n);}

FooProxy() {}

void i1nvoke(lnvocation 1)
{
1.push(““Using proxy”’);
super.invoke(l);
}
by

A © 1998 ANSA Consortium —




Example Generic Skeleton

class FooSkeleton mmplements GenericCall
{

Object obj;

FooSkeleton(Object o) {obj = o;}

void i1nvoke(Invocation 1)

{
String msg = (String)i.pop();
System.out.printIn(““msg ”+msg);
1.1nvoke(obj);

¥

} - A © 1998 ANSA Consortium




Example Generic Proxy Generator

class FooGen extends GenericProxyGenerator

1

Name generateName(Object,obj,Class cls)

1

GenericCall skeleton = new FooSkeleton(obj);
Name name = generateBaseName(skeleton,cls);
return new FooProxy(name);

}
}

—A © 1998 ANSA Consortium




Summary

e “Names as objects” is a flexible abstraction

Ease management of a large number of protocols
Allow smart proxies

e Smart Proxies are easy to use
at least, a lot easier that writing binders
provide a friendlier’ API for reflection

e Explicit Binding fits well
Available since MOW vO0.1
More useful when combined with Smart Proxies

© 1998 ANSA Consortium




