
 © 1998 ANSA Consortium

Naming
and

Binding
Richard Hayton

 © 1998 ANSA Consortium

Context
l FlexiNet a Java middleware framework

n It supports ‘slot-in’ components to support
different abstractions

n It is a project in its own right, and has been used
for various other projects and investigations
n FollowMe - mobile and persistent objects
n Secure Sessions - exploring security mechanisms
n Java Engineering - how to build with components

l It is now almost 2 years since its conception
n I’m trying to tie up lots of loose ends
n ... and write an architecture report

 © 1998 ANSA Consortium

Recent Developments...
l In the last few months… .

n Transaction Integration with FlexiNet (Wu)
n SSL Integration with FlexiNet (Laurence)
n FlexiNet blueprints for binders (Peter)
n Multicast in FlexiNet (Dave)

l Four people using and extending parts of
FlexiNet they were previously unfamiliar with
n Real ‘Power’ Users!

l This has lead to some useful feedback

 © 1998 ANSA Consortium

Multiple Binding Protocols
l There is a requirement to manage different types

of binding for use in different circumstances
n Transactional .v. NonTransactional References
n Insecure .v. Authenticated .v. Encrypted References
n Multicast .v. Unicast References

l FlexiNet is capable of supporting types of binding
n but up until now there were only ad-hoc mechanisms for

manage the additional complexity
n very steep learning curve

 © 1998 ANSA Consortium

Binders we have built
ll GreenGreen REX over UDP
ll YellowYellow REX over TCP
l Rose REX over TCP with SSL
l Lemon REX over TCP with SSL & mobility
ll BlueBlue REX over UDP with mobility
ll MagentaMagenta RRP over TCP (mobility)
ll CrimsonCrimson RRP over TCP with SSL (mobility)
l Burgundy RRP over TCP using Blueprints
ll PurplePurple Same domain binder
ll BlackBlack RMP over UDP for multicast

 © 1998 ANSA Consortium

Too Many Binders?
l There are a lot of binders!

n Lots of potential complexity
n Adding an extra dimension doubles the number

l There is a lot of common functionality
n Extra binder classes can be avoided by configuration
n Recently the degree of configuration has increased

A binder may be configured to define a new protocol
l Problem:
l Solution:

This won’t be wire compatible with the old one
Relate protocols to binder instances not binder
classes

 © 1998 ANSA Consortium

Rationalized Naming: Aims
l support multiple binders per protocol

n course grain QoS
l support multiple protocol per binder class

n configure rather than re-implement
l allow runtime protocol definition

n support for negotiation and generics
l allow runtime resolution of ‘foreign’ names

n load the appropriate code and go
l support smart proxies?

n Application specific binders

 © 1998 ANSA Consortium

Back to basics…

l When are names generated?

l When are they used?

l Might we use them for anything else?

 © 1998 ANSA Consortium

FlexiNet Naming
l Names are generated to be passed in place of

objects

A
B

A A.N.Other

#1234 5678 9012 3456

 © 1998 ANSA Consortium

FlexiNet Naming
l On the client, a proxy is created to represent the

original object
n usually, the proxy is a ‘stub’ object

AA
B B

 © 1998 ANSA Consortium

FlexiNet Naming
l The proxy acts ‘like’ the original object

n e.g. by implementing remote method invocation

AA
B B

 © 1998 ANSA Consortium

Other uses of Names
l Names for groups

l Names for managed objects (e.g. Persistent)

B B1 B2

B B
B

 © 1998 ANSA Consortium

Other uses of Names
l Different names for the same object

(different QoS)

B
B B

 © 1998 ANSA Consortium

Names as Objects
l FlexiNet names have always been

constructed in an object oriented fashion
n naming class hierarchy

n TrivName,GreenName,MobileName all subclass of Name
n Component class hierarchy

n TrivName contains an Address
n UDPEndpoint,TCPEndpoint are both subclasses of Address

n Generic use of Names
n binders, caches, explicit binding etc. all in terms of superclass

l Can names be real objects?
n Add code as well as data

n e.g. name.resolve()

 © 1998 ANSA Consortium

Generating Names

l Cache of previously
Generated Names

Green

Cache

Red

l Generates a name
n if it can meet QoS

requirements

l Generates a name
n if it can meet QoS

requirements

 © 1998 ANSA Consortium

Resolving Names
l Cache of previously

Generated Names

Red

Cache

GreenRedBlue

Smart
Choice

A.N.Other

#1234 5678 9012 3456

l Calls Name.Resolve (…)

l The name may make use of
an existing Resolver

l It may create a new Resolver
l It may resolve itself unaided

 © 1998 ANSA Consortium

Benefits
l A Name may choose which resolver to use

n not tied to one resolver per name class

l A name may store QoS requirements
n allows names to be used for explicit binding

l A name may resolve itself
n a ‘smart’ name
n allows server code to execute on the client

 © 1998 ANSA Consortium

Smart Proxies
l What are they?

n A piece of code supplied by the server to run on the
client and locally manage calls to the server

l What might they do?
n Anything that is better done at the client side

n Caching
n Add client contextual information (ID, Thread etc)
n Rebinding to one of a number of replica servers
n Rebinding to a mobile server

n Smart proxies are application specific resolvers
n They can do exactly the same things as a resolver
n But are easier to write

 © 1998 ANSA Consortium

Using Smart Proxies
l What is required

n A generator that generates names for Smart Proxies
n A resolver that resolves names to Smart Proxies

l Approach
n We arrange that a SmartProxy is also a Name

n don’t need to generate names - the application does it

n We implement Name.resolve() to return ‘this’
n don’t need a resolver to resolve names

 © 1998 ANSA Consortium

An example smart proxy

l Class Aproxy extends SmartProxy implements A
{

private A remoteA;

public int add(int a,int b)
{
 System.out.println(“Call add()”);
 return remoteA.add(a,b);
}

}

 © 1998 ANSA Consortium

Using the Smart Proxies

A
B

A
BP

A
B BP

A
P

A
B BP

A
P

l Isn’t a smart proxy just pass by value?
n Yes EXCEPT that like a normal proxy, there is only

one proxy to a particular interface per-client
n I.e. If P is passed to the client a second time, a

reference to the first copy is passed instead

 © 1998 ANSA Consortium

Generic Smart Proxies
l Smart proxies are great for simple application

reflection
n but they are type specific
n so you have to write one for each class proxied

l What about generic smart proxies?
n I.e. a proxy that performs a type independent

operations.
n Useful for ‘high level’ reflection

n auditing
n caching

n transactions
n replication

 © 1998 ANSA Consortium

Generic Smart Proxies
l What is required

n A way of generating names for generic proxies
n A name that creates a generic proxy on resolution

l Approach
n We arrange that a GenericProxy is also a Name

n we also need a generator to create them as required
n We implement Name.resolve() to return stub+‘this’

n don’t need a resolver to resolve names
n We define an ‘Invocation’ class

n and a generic call interface

 © 1998 ANSA Consortium

A BA GP

B

Using Generic Proxies and Skeletons

l Generic Proxies work like an extra layer of a binder
n The overhead is low

n the second stub is effectively bypassed
n The invocation object allows additional data to be passed

A BA GP

B
B

A BA GP

B
B

GS

 © 1998 ANSA Consortium

Example GenericProxy
class FooProxy extends SimpleGenericProxy
{
 FooProxy(Name n) { super(n);}
 FooProxy() {}

 void invoke(Invocation i)
 {
 i.push(“Using proxy”);
 super.invoke(i);
 }
}

 © 1998 ANSA Consortium

Example Generic Skeleton
class FooSkeleton implements GenericCall
{
 Object obj;
 FooSkeleton(Object o) {obj = o;}

 void invoke(Invocation i)
 {
 String msg = (String)i.pop();
 System.out.println(“msg ”+msg);
 i.invoke(obj);
 }
}

 © 1998 ANSA Consortium

Example Generic Proxy Generator
class FooGen extends GenericProxyGenerator
{
 Name generateName(Object,obj,Class cls)
 {
 GenericCall skeleton = new FooSkeleton(obj);
 Name name = generateBaseName(skeleton,cls);
 return new FooProxy(name);
 }
} FooGen

Cache

Red

 © 1998 ANSA Consortium

Summary
l “Names as objects” is a flexible abstraction

n Ease management of a large number of protocols
n Allow smart proxies

l Smart Proxies are easy to use
n at least, a lot easier that writing binders
n provide a ‘friendlier’ API for reflection

l Explicit Binding fits well
n Available since MOW v0.1
n More useful when combined with Smart Proxies

