
1 © 1998 ANSA Consortium

Make Reflection Practical to Use

Zhixue Wu
APM Ltd.

28 Oct. 1998

2 © 1998 ANSA Consortium

Transaction Framework
l Goal: a transactional architecture with

n high transparency to application developers
n high performance
n flexibility and scaleablility
n fast application development

l Approach
n three-tier architecture
n component technology
n reflection and introspection

3 © 1998 ANSA Consortium

Deliverables & Current Status
l A visual component builder tool (beta) ---> (1.0) ---> (2.0)
l A compiler for generating reflection class (beta) --->(1.0) ---> (2.0)
l A system component container (alpha)--->(beta) --->(1.0) --->(2.0)
l A set of concurrency control metaobjects (TPL)
l An object transaction service (75%)--->(beta) --->(1.0b) --->(2.0b)
l A demonstration example ()--->(alpha) --->(1.0a) --->(2.0a)
l An architecture report (beta)
l Integration with FlexiNet --->(alpha)
l Packaging to EJB Jar --->(1.0b) --->(2.0b)
l Programming guide

4 © 1998 ANSA Consortium

Problem

Reflection
is a powerful tool for providing system

flexibility and adaptability
however

some practical issues make it
difficult to use

5 © 1998 ANSA Consortium

Behavioural Reflection
l The behaviour of method invocation can be customised by

programmers via metaobjects
n method invocation is intercepted by a metaobject
n extra processing can be done before and after method execution
n meta information for classes, objects, and parameters is accessible
n values of parameters can be manipulated at meta level

set_lock;

back_up;

release_lock

free_back_up

void credit(double amount)
{balance = balance+amount}

Object metaMethod(Method appMtd, int cId, Objects args[]) throws Throwable

6 © 1998 ANSA Consortium

Add System Capability via Reflection
l Business logic is implemented in application objects
l System capabilities are implemented in meta objects
l Integration through metaobject binding (static or dynamic)
l New strategy can be applied through changing metaobject binding

optimistic
CC method

pessimistic
CC method

hybrid
CC method

binding
switch

application
object

7 © 1998 ANSA Consortium

Challenges in Programming
Metaobjects

l Generic programming
l Obscure way for accessing meta information
l Difficult to provide multiple capabilities
l Hard for metaobject reuse
l Impossible to use third-party products
l Consistency concerns for dynamic binding

n between old and new metaobjects
n system states

8 © 1998 ANSA Consortium

Provide Multiple Capabilities
l Multiple inheritance
l Multiple binding
l Multilevel reflection
l Metaobject chain
l Construct a new metaobject

persistent
metaobject

concurrency
metaobject

security
metaobject

HOW?

application
object

9 © 1998 ANSA Consortium

Multiple Inheritance
l Name collision
l Multiple inheritance not supported in Java

public MetaPersistence {
 public MetaMethod(Method mtd, CID cid,
 Objects args[]) throws Throwable
 {

.............
 }
}

public MetaConcurrency {
 public MetaMethod(Method mtd, CID cid,
 Objects args[]) throws Throwable
 {

.............
 }
}

public MetaPersistenceConcurrency {
 public MetaMethod(Method mtd, CID cid,
 Objects args[]) throws Throwable
 {

.............
 }
}

10 © 1998 ANSA Consortium

Multiple Metaobject Binding
l The application objects will be called multiple times

n cannot ensure the correct functionality of the application object

application object

metaobject1 metaobject3metaobject2

11 © 1998 ANSA Consortium

Multilevel Reflection
l Each level shifts an

invocation to a higher
level

l Poor performance
n multiple packaging and

unpackaging
n multiple interceptions

l Order
n in which order

l Integration is more
complex than stacking

l Semantics
application object

metaobject1

metaobject2

metaobject3

12 © 1998 ANSA Consortium

Metaobject Chain
l Performance: better than multilevel reflection
l Need to make changes to some metaobjects
l Order problem
l Integration is more complex than stacking

application object

metaobject1 metaobject3metaobject2

13 © 1998 ANSA Consortium

A Two-Layer Approach
l Separate composition and control from functionality implementation
l First-layer metaobject:

n interception method invocation
n coordinate second-layer metaobjects

l Second-layer metaobjects:
n provide a particular capability

l Contract interface between first and second layer metaobjects
n ensure a second layer metaobject reusable
n ensure consistency between new and old metaobject

persistent
metaobject

concurrency
metaobject

security
metaobject

transactional
metaobject

application
object

14 © 1998 ANSA Consortium

Metaobject Structure

TransactionalMetaobject

ConcurrencyControl

TplCC

TmStmpCC

PersistencyControl

LazyPersist

BusyPersist

RecoveryControl

MethodBased

StateBased

DepositAccount
Base Level Objects

Meta Space

Meta Regions

15 © 1998 ANSA Consortium

Dynamic Binding
l Change metaobject binding at runtime

n to cater for environment changes
n to improve performance by making use runtime information

l When to make change
n the rules
n how to ensure the rules

l How to ensure consistency
n new and old metaobject
n system states

16 © 1998 ANSA Consortium

Selector
l A dedicated active object within a first-layer metaobject
l Define the rules for changing metaobjects
l Register to relevant events
l Make decision on when to change metaobject binding
l Perform binding changes if required
l Events

n environment events, user interception events, runtime statistics events

TransactionalMetaobject

ConcurrencyControl

TplCC

TmStmpCC
PersistencyControl

LazyPersist

BusyPersist
RecoveryControl

MethodBased

StateBased

DepositAccount
Base Level Objects

Meta Space

Meta Regions

selector

event
sources

17 © 1998 ANSA Consortium

A Reflective Transaction Architecture
l Container provides a first layer

metaobject: transactionalMetaobejct
l Three second-layer metaobject

interfaces: persistency, concurrency,
recovery

l Each interface may have multiple
implementations

l Application deployer choose
metaobjects for a application

l “Off-the-shelf” metaobjects can be
used

concurrency
policy component

recovery policy
component

persistency policy
component

Underlying Transaction Service

client
component

client
component

server
 component

application
information

Container

binding &
configration
information

18 © 1998 ANSA Consortium

Summary of the Two-Layer Approach
l Separate composition, interception and control from

implementations of subtasks
n enable easy integration of multiple metaobjects
n make second-layer metaobject much easier to implement
n enable metaobject reuse
n the contract interface ensures compatibility between metaobjects

l First-layer metaobject is responsible for composition,
interception and control

l Construct first-layer metaobjects as components
n easy composition
n easy customisation

