Make Reflection Practical to Use

Zhixue Wu
APM Ltd.
28 Oct. 1998

1 © 1998 ANSA Consortium

Transaction Framework

e Goal: atransactional architecture with
high transparency to application developers
high performance
flexibility and scaleablility
fast application development

e Approach
three-tier architecture

component technology
reflection and introspection

A 2 © 1998 ANSA Consortium

Deliverables & Current Status

A visual component builder tool (beta) ---> (1.0) ---> (2.0)
A compiler for generating reflection class (beta) --->(1.0) ---> (2.0)
A system component container (alpha)--->(beta) --->(1.0) --->(2.0)
A set of concurrency control metaobjects (TPL)

An object transaction service (75%)--->(beta) --->(1.0b) --->(2.0b)
A demonstration example ()--->(apha) --->(1.0a) --->(2.0a)
An architecture report (beta)

Integration with FlexiNet --->(alpha)
Packaging to EJB Jar --->(1.0b) --->(2.0b)

Programming guide

A 3 © 1998 ANSA Consortium —

Problem

Reflection

IS a powerful tool for provid r)P system
flexibility and adaptability

however
some practical 1ssues make it

difficult to use

Behavioural Reflection

e The behaviour of method invocation can be customised by
programmers via metaobjects
method invocation is intercepted by a metaobject
extra processing can be done before and after method execution
meta information for classes, objects, and parametersis accessible
values of parameters can be manipulated at meta level

Object metaMethod(Method appMtd, int cld, Objects argg[]) throws Throwable
st lock: release_lock

free_back up

back up;

‘ A

// ¢
> void credit(double amount)
/ balance = balance+amount

<
Y
A 5 © 1998 ANSA Consortium —

Add System Capability via Reflection

Business logic is implemented in application objects

System capabilities are implemented in meta objects

Integration through metaobject binding (static or dynamic)

New strategy can be applied through changing metaobject binding

optimistic pessimistic hybrid
CC method CC method CC method
binding
switch

application
objec

A 6 © 1998 ANSA Consortium —

Challenges in Programming
M etaobjects

e (eneric programming
Obscure way for accessing meta information
Difficult to provide multiple capabilities

®
®
e Hard for metaobject reuse
®
®

mpossible to use third-party products

Consistency concerns for dynamic binding
between old and new metaobjects
system states

A 7 © 1998 ANSA Consortium

Provide Multiple Capabilities

Multiple inheritance
Multiple binding
Multilevel reflection
M etaobject chain

Construct a new metaobject

persistent
metaobject

concurrency
metaobject

l

HOW?

A

application
object

|

security
metaobject

A

8 © 1998 ANSA Consortium

Multiple Inheritance

e Name collision
e Multiple inheritance not supported in Java

public MetaPersistence {
public MetaMethod(Method mtd, CID cid,
Objects args[]) throws Throwable

public MetaConcurrency {
public MetaMethod(Method mtd, CID cid,
Objects args[]) throws Throwable

{ {
oo oo
} }

public MetaPersistenceConcurrency {
public MetaMethod(Method mtd, CID cid,
Objects args[]) throws Throwable

9 © 1998 ANSA Consortium

Multiple Metaobject Binding

e The application objects will be called multiple times
cannot ensure the correct functionality of the application object

metaobjectl metaobjethJ/(metaobjectBJ

<>
/
Z

10 © 1998 ANSA Consortium

Multileval Reflection

Each leve shiftsan
Invocation to a higher
level

Poor performance

multiple packaging and

unpackaging
multiple interceptions

Order
In which order

Integration is more
complex than stacking

Semantics

metaobject@

| |

metaobjethJ

|]

[metaobjectl]

A

11 © 1998 ANSA Consortium —

Metaobject Chain

Performance: better than multilevel reflection
Need to make changes to some metaobjects
Order problem

Integration is more complex than stacking

4 A 4
metaobjectl metaobject2 metaobject?}
J o / .

/ :alpplication object

12 © 1998 ANSA Consortium —

A Two-Layer Approach

Separate composition and control from functionality implementation
First-layer metaobject:
= Interception method invocation
= coordinate second-layer metaobjects
Second-layer metaobjects:
= provide a particular capability
Contract interface between first and second layer metaobjects

= ensure asecond layer metaobject reusable _
= ensure consistency between new and old metaobject

persistent concurrency security
metaobject metaobject metaobject

transactional
metaobject

13 © 1998 ANSA Consortium —

application
ﬁ object

Metaobject Structure

MethodBased <
BusyPersist StateBased
ConcurrencyControl PersistencyControl RecoveryControl

V4

TransactionalMetaobject

Meta Regions

Meta Space

|

DepositAccount

Base Level Objects

14 © 1998 ANSA Consortium

Dynamic Binding

e Change metaobject binding at runtime
to cater for environment changes
to improve performance by making use runtime information

e When to make change
the rules
how to ensure the rules

e How to ensure consistency
new and old metaobject
system states

A 15 © 1998 ANSA Consortium —

Selector

A dedicated active object within afirst-layer metaobject
Define the rules for changing metaobjects
Register to relevant events
Make decision on when to change metaobject binding
Perform binding changes if required
Events

environment events, user interception events, runtime statistics events

=~

« eta Regions

selector { Meta Space
C TransactionalMetaobject P
event v
Base L evel Objects

A 16 © 1998 ANSA Consortium —

A Reflective Transaction Architecture

| —)
applicatio
information

e Contaner provides afirst layer
metaobject: transactional Metaobejct

e Three second-layer metaobject

binding &
configration
information

|- (Container 9 e W Interfaces: persistency, concurrency,
client 1
— recovery
e N _=z=2= "= e Eachinterface may have multiple
Implementations
client N _|_| B — reccgr\:”ejgynzgllicy . .
component (8) 592 e Application deployer choose

metaobjects for a application
JU e “ Off-the-sndf” metapbjects can be

used
Underlying Transaction Service

A 17 © 1998 ANSA Consorium [—————————

Summary of the Two-Layer Approach

e Separate composition, interception and control from
Implementations of subtasks

enable easy integration of multiple metaobjects

make second-layer metaobject much easier to implement

enable metaobject reuse

the contract interface ensures compatibility between metaobjects

e First-layer metaobject is responsible for composition,
Interception and control
e Construct first-layer metaobjects as components
easy composition
easy customisation

A 18 © 1998 ANSA Consortium —

