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1 INTRODUCTION

1.1 Background

This document is the final ANSA Technical Report. It describes the FlexiNet
Java middleware platform forming the final deliverable of the ANSA Phase
III Work Programme to the ANSA Consortium.

ANSA is an industry sponsored programme of collaborative research,
advanced development, market development and standards generation in the
field of distributed systems. Started in 1985 and completed in 1998 ANSA has
been influential in academic research and ISO, ITU, OMG and W3C
standards. The ANSAware system was an important precursor of Object
Request Broker (CORBA) technology.

Much of the work on FlexiNet was additionally supported by the FollowMe
ESPRIT project [FAST 87].

The aim of the FlexiNet project was to show how the concepts of component-
oriented system could be applied to produce efficient re-configurable,
extensible middleware platforms. FlexiNet provides both a generic binding
framework and a set of engineering components to populate the framework.
By making appropriate choices of which components are assembled within
the framework a variety of different middleware facilities can be achieved
including mobile objects, persistent objects, secure objects and transactional
objects. FlexiNet represents an evolutionary step from contemporary CORBA
[OMG97a] and Java Remote Method Invocation (RMI) [SUN96] and
Enterprise Java Bean (EJB) [SUNc] middleware. It is a full demonstration of
the ANSA architectural principles at work.

FlexiNet is particularly suited to applications that are deployed in a variety
of different contexts (e.g., on the Internet, in Intranets or Extranets) since its
enables the infrastructure to be tailored for the specific needs of each
deployment and for inter-operability between application components in
different environments.

FlexiNet is built in Java because of its portability, object-orientation, facilities
for dynamic linking, reflection and introspection and increasing role as the
language of choice for distributed applications development. Java is the
language that currently comes closest to supporting the ANSA computational
and engineering models.
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1.2 Capabilities

The heart of FlexiNet is a remote procedure call (RPC) system for remote
invocation of services implemented as interfaces on Java objects. In this
respect FlexiNet is similar to CORBA and RMI. FlexiNet allows both object-
by-value and interface-by-reference parameter passing. It uses introspection
and dynamic code generation and linking in place of off-line stub generation.

The implementation of the RPC infrastructure is based in terms of sets of
components called binders, which implement RPC semantics over underlying
transport systems. In addition to FlexiNet specific binders, there is an IIOP
binder that implements the OMG IIOP standard protocol to enable inter-
working with CORBA clients and servers.

A simple Trader is provided to enable FlexiNet clients to locate FlexiNet
servers.

A basic object location service is provided, principally to support the mobile
object workbench (see below). A design for a more advanced version is
presented.

A class repository sub-system is provided which enables classes to be
dynamically linked across networks and locally cached, with advanced
facilities to manage name clashes that might arise in federated environments.

A mobile object workbench sub-system is provided. This allows “clusters” of
Java objects to move from one “place” (computer) to another. This sub-system

was developed to enable an investigation of mobile agents in the FollowMe
project [BURSELL9S].

A persistent information space sub-system is provided. This allows clusters of
Java objects to be removed from the execution environment and placed in
storage until next activated. The persistent information space provides an
“object file system” for the mobile agents of the FollowMe project.

A visual application builder and associated infrastructure components are
provided to enable transactional Enterprise Java Beans to operate in the
FlexiNet environment. These facilities enable transactions to be used to
enable objects to manage concurrent access and recover from failures
transparently. The FlexiNet transaction infrastructure is more powerful than
current EJB implementations because it includes the transaction facilities
within the infrastructure rather than offloading transaction control to a
database management system.

Security is provided primarily in the form of an implementation of the SSL
protocol as an additional binder. This can be used both for secure access
control and secure communication. Strong encapsulation is an intrinsic
feature of the FlexiNet framework. In addition, there is a design for secure
carriage of mobile objects across trust boundaries.

Basic support for high availability is provided as a binder for a reliable
multicast protocol between members of an object group. This implementation
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1.3

is currently unfinished, but includes sufficient components to give a proof of
concept.

Finally a declarative configuration tool for assembling components into
binders using the FlexiNet framework called “Blueprints” is provided.

Structure of this Report

The report consists on nine sections. It is assumed the reader is familiar with
Java, distributed processing concepts and the broad principles of middleware
design. The aim of the document is to give a complete, high level introduction
to FlexiNet, it’s principles and design rationale as a companion to the source
code distribution.

The sections are as follows:

L. Introduction — this section, consisting of background, description of
capabilities and high level overview

II. Technical Overview — an introduction to the FlexiNet framework,
its major components and sub-systems (mobile objects, persistent
objects, transactional objects / EJBs), from an application developers /
system designer’s perspective

III. Architecture — the detailed description of the FlexiNet binding
framework from a binder implementor’s perspective.

IV. Engineering Components — detailed descriptions of individual
binders that fit into the FlexiNet framework including those for basic
RPC, secure communication and object groups

V. Clusters and Capsules — the management architecture for the
FlexiNet mobile object and persistent object sub-systems

VI Managed Objects — detailed description of the three FlexiNet sub-
systems for mobile objects, persistent objects and transactional objects

VII. Services — detailed description of the services supporting FlexiNet —
Trader and Class Repository

VIII. API and Examples — a summary of the principle FlexiNet API's and
simple examples of FlexiNet components

IX. Advanced Topics — the designs for mobile object security and
advanced object relocation.
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2 MOTIVATION

The FlexiNet Platform is a Java middleware system built to address some of
the issues of configurable middleware and application deployment. Its key
feature is a component based ‘white-box’ approach with strong emphasis
placed on reflection and introspection at all levels. This allows programmers
to tailor the platform for a particular application domain or deployment
scenario by assembling strongly typed components. The FlexiNet component
developer operates within the language type system and is saved from having
to conduct the book-keeping that would otherwise been needed to remember
relationships between components.

In the following chapters we give an overview of the FlexiNet architecture,
highlighting how its approach differs from other middleware architectures
and illustrating the benefits that result from our approach. The core of
FlexiNet is the binding mechanism by which components are linked together
and our approach to encapsulating distributed objects.

The FlexiNet platform grew out of dissatisfaction with industrial middleware
platforms. We therefore begin the description of FlexiNet with a review of the
limitations of existing middleware.

Generally, research middleware platforms provide application programmers
with facilities for just one model for distributed programming, for example
remote procedure call, or message passing or process groups. Consequently,
compact, efficient and scalable implementations are often achieved. By
contrast, industrial middleware platforms address the need for a ubiquitous
infrastructure and provide an integrated set of capabilities including, for
example, transactions, replication, authentication, privacy, auditing and
others. The result is typically monolithic, inefficient and complex.

Since different applications require different combinations of middleware
features, a compositional approach in which only the middleware services
needed by an application need be made available is appropriate. In CORBA
[OMG974a], for example, a set of nested choices is offered by the CORBA
Object Services. Each Object Service extends the core Object Request Broker
with additional capabilities such as persistence and transactions. The benefit
of the CORBA framework of Object Services is that it is comprehensive. The
disadvantage is that it is unnecessarily rigid because the order in which
capabilities have to be assembled is fixed and this rules out some
implementation choices. Moreover, the core Object Request Broker is required
to contain support for the data structures and protocols required by each
Object Service whether it is used or not. Thus, in addition to causing bloat
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and inefficiency in the implementation, developers are forced to manage more
capabilities than they necessarily need in any particular situation.

A further aspect of inflexibility comes from the use of stubs in Object Request
Brokers to provide access transparent invocation. A stub converts an
invocation into an untyped byte array representation to be passed on to a
communications layer in the case of a remote service. Discarding language
level typing and introspection facilities in this way, makes it hard to provide
developer-written protocols and mechanisms that can coexist with standard
stubs. Specifically, it can be difficult to tie together application level events,
middleware events and communications events. For example, The Iona
ORBIX Object Request Broker provides filters and transformers [IONA97] as
a means to modify how communication events are handled. However, no
conventions or data structures are defined for relating filter events (i.e., pre-
stub events) to transformer events (i.e., post-stub events). Behaviour at the
filter level is modelled by CORBA type codes and dynamic type checking of
these has to be managed by the developer rather than delegated to the
programming language.

Inherent in the design of distributed systems is the need to make appropriate
trade-offs between the competing goals of abstraction and application control.
Abstraction in middleware is generally associated with distribution
transparency. Abstraction/transparency makes life easier for developers by
hiding the engineering details of interaction models behind a generic
invocation interface (e.g., method invocation). In essence, the infrastructure
manages distribution. Application control, by contrast, allows developers to
optimise the infrastructure when it is beneficial to do so, for example by
providing heuristics for error cases. Control requires that implementation
aspects of a distribution transparency should be exposed. Unfortunately
current systems either impose a ‘one size for all’ transparency or expose the
low level ‘systems’ mechanisms in all their complexity.
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3

RELATED WORK

3.1

There are many research systems offering flexible binding, particular with
respect to performance and resource tradeoffs. Traditionally this work has
been driven either from a quality of service perspective [BLAIR97] or from an
aim to simplify protocol implementation by building complex protocols out of
simpler micro-protocol engines. In these contexts binding can be at the
generic buffer and communication channel level. FlexiNet differs in that it
provides flexibility at a higher level. In addition to controlling protocol level
choices; management of higher level distribution transparency mechanisms
based on transactions, replication, security, persistence, mobility and so forth
can be managed. In providing these capabilities as components we have to
intercept and transform application level invocations and tie together
different protocols, transparency mechanisms and system services in a
consistent and structured manner.

The key advantage that FlexiNet has over other schemes is the Java Virtual
Machine itself. This provides a great deal of the support needed; in particular
for introspection (runtime examination and control of types) and reflection
(generic invocation of methods). It allows FlexiNet to provide a middleware
framework that extends the core language features, and is internally strongly
typed — rather than having to separately manage the infrastructure type
system as with CORBA (i.e., via typecodes). The disadvantage of course is
that effectively FlexiNet is a Java language specific platform. (While there
are mappings of other languages to the Java Virtual Machine, none of then
can be regarded as main stream implementations). However, by way of
mitigation, in distributed Internet applications, Java is a common choice
because of its suitability for network programming and platform
independence. Since this is the focus of our work, we are prepared to trade
the benefits gained against the restriction to a single language.

Computational Model

FlexiNet uses a different computational model for Java than Javasoft’s
Remote Method Invocation (RMI) [SUN96]. It adopts the ODP [ISO95] notion
of interfaces as the access points for objects, and provides transparent
interface proxies. When parameters are passed to a method, references to
interfaces are passed by reference, and object values are passed by copying.
This enables FlexiNet to follow Java language model as closely as possible,
without introducing ‘special’ tag classes to indicate remote interfaces, or
value objects, as is done in RMI. The benefit of determining the parameter
semantics by choosing between an object or an interface (for copy or reference
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semantics respectively) within the context of a particular call can be seen
when mobile objects are considered. Using the tagged object approach, each
object would be statically classified as either a server or a data object. It is
therefore not possible to have the concept of a mobile server object — since it
would be tagged as a ‘server’ and could never be transmitted as data when
moving from one location to another.
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4

SELECTIVE TRANSPARENCY

4.1

Since FlexiNet remote method invocation is has similar semantics to local
method invocation, we have access transparency at the lowest level. This
uniformity helps keep application code separated from ‘systems’ code, making
it easier to move applications from one environment to another. To take
control, the application programmer can inject particular mechanisms, both
at runtime using an explicit binding facility and at design time by controlling
the mixture of protocols and transparency components used. Resources can be
managed by restricting the allocation policies for, and sizes of, resource pools
assigned to selected components. This capability is described as ‘selective
transparency’, since the developer can choose how strongly system
components are tied to (and visible to) application components. Binding
decisions can be taken directly by system components or handed off to third
parties where this is appropriate. The former is appropriate for autonomous
systems, the latter for managed infrastructures (e.g., a trusted computing
base).

Bindings

An interface on a remote object is represented in FlexiNet by a local proxy
object. Typically, this is a simple stub object that turns a typed invocation
into a generic (but fully typed) form and then passes the request to the top
layer of a protocol stack. FlexiNet stubs are very lightweight compared to
other systems, and in particular the stub is not responsible for the ‘on-the-
wire’ representation of the invocation, and embodies no implicit or explicit
policy about how the call will be handled. Since stubs are so simple, stub
classes are generated on demand within client processes, by introspection on
the interface definition, and link them dynamically. A stub class can be
shared by all protocols that treat service objects in a similar way.

FlexiNet protocol stacks are correspondingly more complex than those of a
traditional ‘heavyweight stub’ system, since we make them responsible for all
aspects of call processing. This includes high level features, such as
management of replication, in addition to basic actions such as the
serialisation of invocation parameters and execution of a remote procedure
call protocol.

The layers of a FlexiNet communication stack can be viewed as a set of
reflective meta-objects. Each meta-object in turn manipulates the invocation
as a data structure before it is ultimately invoked on the destination object
using Java Core Reflection [SUNa] (thereby removing the need for a server-
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side stub or skeleton). Using reflection has a number of advantages.
Middleware (or application) components may examine or modify the
parameters to the invocation using, and protected by, the Java language
typing system. Debugging is made straightforward as information is kept ‘in
clear’. Splitting omnibus middleware protocols into components is simplified,
as the language typing support provides the necessary machinery to ensure
consistency of use and to reduce cross dependencies in the code.

Figure 1| illustrates how a communication stack can be assembled as a
number of meta-objects that perform reflective transformations on an
invocation. Meta-objects can be fully general Java objects and are fully type-
safe. For example a replication meta-object might extract replica names from
an interface and then perform invocations on each replica in turn. As this
processing is performed in terms of generic invocations, there is no need for
each of these calls to pass through stubs and so the code can be both
straightforward and efficient.

At the top of the client side stack, an invocation consists of the abstract name
of the destination interface, the method to be invoked, and the parameters to
the method as an array of objects. Interface names are arbitrarily complex
objects that can be resolved by a protocol stack to provide a route from the
client to the destination interface (or interfaces for replicated objects).

Destination
Object

Client Side
Meta Objects

Reflective
Protocol Layers

Typed Communication

Generic Communication

Untyped Communication

Application Code

Middlware Code

ol RS 2

Reflective
Protocol Layers

Figure 1 A Reflective Protocol Stack

As the call proceeds down the stack, each layer can manipulate the
invocation. By the bottom of the stack, the original abstract name will have
been resolved to an appropriate endpoint or connection identifier, and
sufficient information will have been serialised into a buffer to allow
reconstruction of the invocation on the server.

On the server, the reverse process takes place, so that ultimately the
destination object, method and parameters are available.
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Many RPC protocols maintain state across a number of calls, for example a
UDP based protocol may keep a record of unacknowledged replies, and a TCP
based protocol might maintain a connection. FlexiNet provides sessions as an
abstraction for managing this information, so that a stack can retain client-
related information over the duration of a number of calls. Sessions also
provide an in-call mutex for use by the layers to ensure that per-client
resources are cleanly allocated and freed across a number of essentially
independent components. Using this mutex, conflicts between communication
events on the way up the stack, and application events on the way down can
be avoided. Other ANSA work has found that a suitable session structure
greatly eases this kind of post-hoc protocol modification and its omission from
CORBA and RMI is a considerable oversight.

Server

Client

Object<Interface>

transient reference
obtained from
invocation data

CallDown
ClientCallLayer

ServerCallLayer
Callup

~
Ca"DO;V:rialLa er Serialize/Deserialize a call's method,
Y arguments and results
Callup )
|
Callbown On client: store the server interface id
NameLaver in the output buffer
IS ayeCaIIU On server: restore the id and lookup the
p corresponding object.
CaIIDoer: L Maps an RPC calls onto a series of
QALY unreliable messages
MessageUp )
MessageDown . . .
. . Acquire the appropriate session
SessionManger <—— SessionLayer Wth a messggespis received
uses MessageUp )
MessageDown B
UdpLayer send and receive UDP messages

J

Figure 2 The Green Binder and Protocol Stack

4.2 An Example Protocol

Figure 2|gives an overview of the ‘Green’ protocol stack in the FlexiNet
implementation. ‘Green’ provides simple remote method access using the REX
RPC protocol over a UDP transport. It is an interesting example as it shows
how aspects of call based, and message based exchanges are handled.
Following the progress of a call from the client stub to the server object and
back:
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Initially a call is made on a client stub. The nature of this call will depend
on the semantics of the interface, and the stub is responsible for
converting this into a generic representation that may later be executed
using Java Core Reflection. This de-couples the type of the object being
invoked from the implementation of the protocol stack, and enables reuse
of standard reflective components.

The stub will then call the top of the protocol stack. At this stage the
arguments to the call, and the method class are available, and reflective
classes may be called. For example, the arguments may be validated, or
modified. There may be a number of reflective layers, for example to
multiplex the call over a number of replicas, or perform other client-side
processing. In the Green protocol, however, there is no reflective
tinkering, and the call passes directly to the Client Call Layer.

The Client Call Layer acquires an appropriate session on which to
perform the call. Sessions group a number of invocations that share the
same service endpoint, to allow various optimisations. Other layers may
utilise the session structure to cache information relating to a particular
endpoint (for example encryption keys).

There may be additional reflective layers to further manipulate the call.
After this manipulation, the call passes to the Serial Layer, which
serialises (marshals) the method and parameters into an output buffer.

The Name Layer comes next and extracts de-multiplexing information
from the name of the interface being referenced (e.g., an interface id), and
stores this in the output buffer. The subpart of the name used to locate
the peer layer in the server is then passed, together with the other call
parameters, to the next layer down. This separates the different levels of
multiplexing, keeping the system modular.

The REX layer acts as a gateway between reliable call and return method
invocation, and unreliable one way messaging. The REX layer contains
sufficient state to manage lost or duplicate messages, and utilises the
session structure to map a series of message onto a number of invocations.

There may again be a number of additional (per message) layers (for
example to encrypt or compress the outgoing message, before it reaches
the session layer). The session layer stores information to allow the
session to be re-established on the server. Using the mutex, the Green
protocol stack ensures that only one call or message per session will be in
progress above the session layer. This simplifies the coding of session
related functions, and reduces the number of race conditions (such as
duplicate messages or simultaneous messages and timeouts) that the
programmer must deal with.

Finally, the UDP Layer sends the message as a single UDP packet to the
server.

On the server, the message is received in the UDP Layer. A new thread is
started to listen for further messages, and the thread that received the
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4.3

message is sent up the stack to process the request. When it arrives in the
REX layer, it is identified as a new request, and a timeout is set for
acknowledgement (REX piggy-backs acknowledgements on replies). The
message 1s converted to a call, and is passed up to the Name layer, which
reads the interface id, and identifies the object being called. The call
arguments and method are de-serialised in the next layer, and then the
method is invoked on the service object by the Call Layer. The result of
the invocation (normal or exception) unwinds the call stack: in the
serialisation layer, the result is serialised, and in the REX layer, a
message containing the result is constructed. The message is passed down
to the Session Layer and treated in an identical way to any other outgoing
message (whether it represents a request, reply or protocol message).

10. On the client, the REX layer eventually receives a reply message that it
can pair with the original request. The original thread is then woken and
unwinds up the stack. Finally, the result is returned to the client using
standard Java means.

Binders

The discussion so far has described how a binding to a remote interface is
represented, and how an invocation may be processed. In an invocation, it
may be necessary to serialise references to local and remote interfaces.
During deserialisation, proxies must be constructed to represent these
exported references. This is the mechanism by which all bindings (other than
an initial built-in reference to a trader) are constructed.

The object responsible for generating names for interfaces is called a
‘Generator’. The object responsible for resolving names is called a ‘Resolver’.
The more familiar term, Binder, is used to refer to either generators or
resolvers. A typical binder will both generate names and convert names
generated by other (compatible) binders into the (stub, stack) pair previously
described. A FlexiNet binder is therefore a factory for bindings.

In many systems, there is exactly one binder per process, however in FlexiNet
we needed to support multiple binders and binding protocols, with possibly
conflicting use of names. Each protocol stack therefore contains a reference to
the generator and resolver to be used for generating and resolving the names
of interfaces passed as arguments to invocations, or returned as results from
invocations.

Typically, binders are arranged into a hierarchy, in order to factor out
common functionality (such as the caching of previous bindings), and to allow
a dynamic selection of the binder to perform a particular binding. An example
binder graph is illustrated in m This illustrates two ‘basic binders’,
Green, as described above, and Red, which generates bindings using IIOP
over TCP. There are three additional binders. Two are ‘Cache’ binders that
store tables of previously resolved bindings. The third is a ‘Choice’ binder
which dynamically chooses whether to use Green or Red based on the type of
the interface being named, or the type of the name being resolved. For
example, imagine that the choice binder has been initialised to always use
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Green when generating names unless explicit QoS parameters are specified
requesting that Red should be used (perhaps indicating that the interface will
be passed to a CORBA client). When resolving names, Green or Red will be
used as is appropriate.

Generate and
Resolve

Binder

Key: g s
@ Local Object

Figure 3 A Hierarchy of Binders

mgpd) illustrates a possible execution path. In (a), the process has a
single reference to a remote object, resolved using Green. Invocations may be
made on this object, and in the process of this, stubs to additional local objects
may be generated, and additional local objects may be named. By default
Cache One and the Green binder will be used for this (b). If during one of
these calls, a red IOR) name needs to be resolved, Choice will select the Red
binder to perform the resolution (c). When using this newly resolved
interface, any local interfaces referenced will be named using the Red binder
(d). This is essential, as Red uses the CORBA IOR name format, and the
remote CORBA interface may not understand FlexiNet Green names.

An alternative arrangement of binders could lead to all interfaces being
named by a tuple of a Green name and an Red name, allowing another
process to choose which protocol to use. It is even possible to dynamically
decide on the protocol to be used to name a particular interface. To illustrate
this feature a ‘negotiation binder’ has been constructed that generates
placeholder names for remote interfaces. When these are bound, a complex
negotiation process is entered into, at the end of which, a binder is chosen to
perform the actual binding. This approach is invaluable if different protocols
have to be used depending upon the location of the client and the server. For
example, to choose a specific security protocol based on the legalities of
specific encryption technology or key lengths in the client’s domain.

To take this approach to an extreme, the binder graph could be augmented
dynamically whenever a previously unknown protocol was encountered. This
is perfectly feasible given Java’s class loading mechanisms. The real problem
is one of controlling the number of different binders that might be required if
such a scheme were to be adopted.
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5 DISTRIBUTION TRANSPARENCIES

The RM-ODP framework identifies nine distribution transparencies. Of
these, only two, Access and Location relate directly to remote invocation. In
addition to these, FlexiNet protocols may provide varying degrees of Failure,
Replication and Security transparency via meta-objects in the protocol stack.
The remaining RM-ODP transparencies, namely, Migration, Relocation,
Persistence and Transaction, cannot be tackled in this way. Instead, they
require some notion of encapsulation, whereby all interactions with an object,
or group of objects can be monitored and controlled. To achieve this FlexiNet
implements the RM-ODP notion of a cluster. A cluster is the primitive RM-
ODP engineering unit of encapsulation.

Additional

Cluster Reflective Layers

Location
Lookup

FlexiNet Communications Framework

Figure 4 Encapsulation Using FlexiNet

Clusters are illustrated in All externally referenced interfaces in a
cluster are accessed via a FlexiNet protocol stack. We arrange that when a
thread in one cluster invokes a method in another cluster, we de-couple the
threads so that the callee and caller cannot adversely affect one another by
blocking or thread termination. Additionally each cluster is effectively given a
separate Java security manager, and class loader. Thus each cluster becomes
a ‘virtual process’ that is de-coupled from all other clusters in terms of name
spaces privileges, code base and management. Clusters cannot examine the
internals of each other, nor may arbitrary methods on objects in one cluster
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be called from another without mediation by the reflective layers in the
protocol stack. These co-operate with a distinguished cluster management
interface associated with the cluster to provide whatever kind of distribution
transparency is appropriate. In the case of a mobile object the cluster
manager arranges for the atomic transfer of the cluster from one location to
another, and the protocol stacks include some kind of relocation function to
track objects as they move.

Clusters are a container abstraction. By placing objects within a cluster, they
may be given additional ‘non-functional’ behaviour. Cluster implementations
have been built that provide migration, relocation and persistence
transparencies.

Container abstractions are often associated with component-oriented
systems. The core Java component abstraction is Java Beans. In particular
the Enterprise Java Beans specification (EJBs) gives a template for
components designed to run in a transactional container.

The FlexiNet cluster abstraction provides a higher degree of isolation than
(standard) EJB containers, and relaxes some of the constraints placed on a
component programmer. In particular a bean will ‘escape’ from an EJB
container unless the following rules are followed:

* EJB methods must not perform thread operations. The current
container/context is associated with the thread id. Any operations that
change this will lead to erroneous behaviour.

¢ EJB methods must not pass references to (parts of) themselves. EJBs
have a (single) public interface which is must be accessed via a proxy.
If an EJB were to pass a reference to (an object within) itself, then this
proxy would be bypassed.

¢ EJBeans share references to objects passed between each other on a
local machine. This feature must be used with great care. If an EJB
container decides to ‘rollback’ or recreate a bean due to transactional
conflict, then the shared object is likely to be replaced by a copy. The
exact behaviour will depend on the actions of the container.

For FlexiNet clusters, these issues are taken care off by the -cluster
mechanism.

The FlexiNet transactional framework is designed to use the EJB container
model, rather than the cluster model. The motivation for this is primarily
industry conformance. EJBs facilitate the reuse of standard third party
components; if our transactional framework were built on a proprietary
abstraction, then this advantage would be lost. Now that the EJB
specification is more mature, it would be an interesting exercise to construct
an EJB compliant cluster. However, if a bean were to take advantage of the
less restricted environment that this would afford, it would cease to be
portable to other EJB implementations.
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5.1 Transactions

The trend in Internet applications is to move from browsing to real-time
transactions with business critical information. Examples include online
banking, order/entry, and customer service. Transactions have been used in
online processing on mainframe systems for many years. However, there are
some distinguishing characteristics of Internet applications, which change
the way in which transactional applications are constructed and deployed.

Thin clients. In traditional client/server computing, an application-specific
client needs to be pre-installed on the user machine to run an application. In
Web-based Internet applications, the runtime components are downloaded
from the Web site. Such a thin client model delivers two key benefits:
universal access, and reduced installation and management costs.

Scale. Unlike traditional applications, Internet user communities can extend
well beyond department or company. With these new "self-service"
applications, access to a server becomes open to thousands of users all
executing transactions simultaneously. This requires highly scaleable server
architectures to support transactional applications.

Rapid development. Many corporations have started using Internet for
publishing and collecting information, and intend to doing business over the
Internet. Therefore, the technology for building Internet application systems
must be very easy to use, develop and deploy.

All these characteristics of Internet applications requires system
architectures that are scaleable, flexible and adaptable, whilst still easy to
use, to develop and to deploy. “Three-tier” or “multi-tier” architectures are
now emerging to address the needs of Internet applications in terms of
scalability and dynamic access. In a three-tier architecture, most of an
application’s logic is moved from the client to one or more servers in the
middle tier. This provides a number of benefits. Server components can be
replicated and distributed across many servers, to boost system availability.
Server components can be easily modified to adapt to changing business rules
and economic conditions, thus providing flexibility. Server components are
also location independent, if they are built using distributed objects (e.g.
CORBA), therefore system administrators can easily reconfigure system load.

In this new model, users find and launch applications on HTML pages at Web
servers. Instead of simply loading a static page, a dynamic "applet" is
downloaded to the individual’s browser. The applet bring with it protocols
that allow the applet to communicate directly to application servers running
in the middle tier. These servers access data from one or more databases,
apply business rules, and return results to the client applet for display. This
makes the middle tier the single most critical component of the emerging
Internet application architecture from a developer’s point of view.

There are three popular architectures for building middle tier components:
CORBA-style Object Request Brokers (ORBs), Transaction Processing
Monitors, Web Application Servers. Although each has its strengths, none of
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them 1is ideally suited for the middle tier requirement of Internet transaction
processing.

CORBA ORBs [OMG97a] have excellent multi-tier capabilities with strong
distributed object invocation and related infrastructure services such as
transactions and security. Unfortunately, the complexity of the overall
solution and a lack of strong tool support limits their appeal to sophisticated
developers. Additionally, most ORBs also have primitive server-side
execution engines, limiting performance and scaleability.

TP monitors, on the other hand, have robust and mature execution engines
that deliver excellent performance and scaleability. However, like ORBs,
their overall complexity and proprietary APIs often make them difficult to
use and expensive to install, administer, and maintain.

Web Application Server technology emerged in an attempt to transform Web
servers to application servers. Web Application Servers are generally
customer generated from one of several Web or site development tools. This
strong tools focus leads to high developer productivity. On the flip side,
scaleability is severely limited by the application server’s direct tie to Web
servers and the lack of non-HTTP protocols for application-to-application
communication.

To address the need for a scaleable and easy-to-use middle tier, component-
based transaction servers are emerging, such as Sybase’s Jaguar CTS
[SYBASE], and Microsoft Transaction Server [MICROSOFT]. They combine
the best features of ORBs and TP monitors with component-based develop
tools. This enables quick creation of scaleable applications. Component-based
transaction servers offer built-in transaction management capabilities, and
support  distributed object invocation for multi-tier application
communication. They also support rapid middle tier development and provide
an execution environment for server components.

Our transaction architecture also aims to meet the needs of Internet
transaction applications. Like Jaguar CTS and MTS, it is component-based,
thus enables users to develop portable, customisable components, and
assemble them into applications. It enables rapid application development
and deployment using standard components and off-the-shelf tools. The
architecture supports implicit transactions, removing from developers any
concern for transaction management details. Any component installed in the
server is a candidate for participation in a transaction. More importantly, no
component in a transaction need concern itself with the behaviour of other
components in regards to their effect on the transaction.

Unlike Jaguar CTS or MTS, our transaction architecture is also reflective,
providing two additional features that are important for supporting Internet
transaction processing. First, it allows the transaction infrastructure to be
easily adapted to new application requirements and changing environments.
For example, it allows application users to choose a particular concurrency
control protocol for their application. Secondly, it allows programmers to
provide application-specific information declaratively and separately from
application code. This information can be used either at deployment time for
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5.2

configuring the transaction infrastructure to best suit the application
component, or at execution time for improving system performance.

Our work started before any publication of Enterprise JavaBeans (EJB)
[SUNc]. However, it turned out that they have similar goals: to provide
implicit transactions thus removing from the developers any concern for
transaction management details. We adjusted some of our design and
implementation when the draft of EJB’s specification was published to ensure
that our transaction architecture fulfils EJB’s specification. The final
implementation of the architecture can be used as an EJB container to
execute Enterprise JavaBeans.

The results of our work include a runtime execution environment, and a
development toolkit. The execution environment consists of an underlying
transaction system and an EJB container. The development toolkit provides a
visual tool (Ent er pri seBeanBox) for users to customise both the beans and
runtime container. The container insulates the enterprise Bean from the
specifics of an underlying system by providing a simple, standard API
between the bean and container. The Ent er pri seBeanBox is an extension of
the BeanBox from the BDK [SUNd]. It maintains all the original
functionality, but gains some new features to meet our special requirements.

Component-Based Software

In recent years, constructing applications through the assembly
of re-usable software components has emerged as a highly productive way to
develop custom applications.

The term component-based software is used to describe a software model,
which specifies how to develop reusable software components and how these
component objects can communicate with each other. A component is an
encapsulated piece of code that can be combined with other components and
with hand written code to rapidly produce a custom application. A
component is designed to be used within another application, called a
container, and designed to be reused and customised without access to its
source code. A container provides an application context for components and
provides management and control services to the component it stores.

In order to qualify as a component, the application code must provide a
standard interface that enables other parts of the application to invoke its
functions and to access and manipulate the data within the component. This
is often termed “introspection” and enable the application developer to make
full use of the component without requiring access to its source code.
Components can be customised to suit the specific requirements of an
application through a set of external property values. This is often called
“reflection”.

Server components are application components that run on a server. In a
three-tier architecture, most of an application’s logic is partitioned into
separate server components to be deployed on a server system. A server
component container provides a runtime environment to support the
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execution of server components. In our case we combine the robust runtime
features of a traditional transaction processing monitor with the flexibility
and reusability features of distributed components. The container provides
the complex management services that are required to support high-volume
business transactions, including multithreading, resource-pooling, and
transaction co-ordination. The introspection and reflection facilities allow the
container to take design time and runtime policy on how to couple its servers
to application components.

5.3 Reflection and the Metaobject Protocol

Reflection [MAESS87] is the capability of a computational system to reason
about and act upon itself. Unlike conventional system, a reflective system
allows users to perform computation on the system itself in the same manner
as in the application, thus providing users with the ability to adjust the
behaviour of the system to suit their particular needs.

In an object-oriented programming environment, reflection can be realised in
the form of metaobjects that represent some internal information and
implementation of the system. The interfaces of these metaobjects are called
metaobject protocols (MOPs) [KICZALES91], because they allow application
objects to communicate with metaobjects. Through MOPs, users can modify
the systems' behaviour and implementation incrementally.

Using metaobject protocols, the actual behaviour of an application object is
determined not only by itself, but also by the metaobject which it is associated
with. The association can be thought of in terms of a binding between the
application object and the metaobject. An application object can obtain the
capability of a metaobject by binding to it. In this way, the functionality of an
application is determined by its application objects, whilst the quality of
application delivery is determined by the associated metaobjects. The quality
of application delivery can be changed through alternative metaobjects
without making changes to application objects. This makes it possible to
provide system capabilities to an application program transparently and

flexibly.
optimistic hybrid pessmistic
concurrency control concurrency control concurrency control
metaobject metaobject metaobject

binding switch

application
object

Figure 5 The M etaobject Protocol Approach
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For example as illustrated in an application object can become
usable in a concurrent environment by binding to one of the concurrency
control metaobjects. There is no need to make any change to the application
object. A binding between an application object and a metaobject can be
changed dynamically according to the run-time conditions. For example,
when the conflict rate of concurrently accessing an application object is low, it
would be better to bind it to an optimistic concurrency control metaobject.
However, when the conflict rate becomes high, the binding can be switched to
a pessimistic concurrency control metaobject. By monitoring its components
and applications, the system can perform this switching automatically
without disturbing application programs.

The Computation Model

The characteristics of Internet applications requires system architectures
that must be scaleable, flexible and adaptive, whilst still be easy to use, to
develop and to deploy. Our reflective component-based architecture meets the
rigors of Internet applications by taking advantage of both the reflection
technology and the component model.

To achieve the most benefits from the multi-tier architecture, server
components should be implemented as shared servers. However, building a
shared server is not an easy task. It is much harder than building a single-
user application. Usually, shared servers need to support concurrent users,
and they need to share system resources, such as threads, memory, and
network connections. They also need to participant distributed transactions
and enforce security policies.

It would be very hard for application developers, who are experts in business
logic, but not necessarily in transaction monitor engineering, to address all
these system issues. To solve this problem and to provide portability to
application programs, our computation model allows a clear separation to be
made between business logic and system issues. This enables application
program to focus on application requirements without concern about the
system issues. The separation also makes it possible for an application
program to be executed in different system environment without making
changes to its source code.

Because of the wide range of potential applications, with varying needs, it is
impossible to provide a single monolithic application server infrastructure
suitable for all applications. The implementation of an application server’s
infrastructure must be flexible and adaptive so that it can be customised
easily to cater for a particular application. To achieve this aim, our
infrastructure represents alternative infrastructure choices as alternative
metaobjects, as shown in Thus at deployment time, an application
assembler can choose the most suitable infrastructure for his application by
selecting the corresponding metaobject. The selected metaobject is then
integrated with the application object to form a server component.
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Figure 6 A Reflective Computational Model

A clear separation between the application program and the implementation
of system issues is essential for making application component portable.
However, without any information about the application, it would be hard for
a system to provide a good quality of service to that application. Only when
detailed knowledge about an application is available such as ordering
constraints for consistency, it is possible for a system to optimise its
behaviour and to improve its performance. We solve this dilemma by allowing
application  developers to specify application-specific information
declaratively and separately from application programs. In such a way, we
enable application information available to a system, but without increasing
the burden of an application developer, nor losing the portability of an
application program.

For a transaction system, the concurrency semantics of an application can be
used to reduce delay due to blocking. Thus, we allow concurrency semantics
to be represented in our model, but it is represented declaratively and
separated from the sequential behaviour of an application. The sequential
behaviour is implemented in application code; whilst the concurrency
semantics are represented as a concurrency script. At runtime, the
concurrency semantics would be used by the transaction strategies to
schedule operations.

Concurrency Semantics

By taking into consideration type-specific semantics of operations, a
transaction system can allow concurrent executions that would otherwise be
forbidden if operations were simply characterised as reads and writes. The
concurrent semantics of operations are usually represented by relationships
between operations, such as commutativity [WEIHLS85]. Given two operations
on the same type, p and g, we say that they are commute if the result of
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executing p and then g on d is the same as the result of executing g and then
pond.

Consider, for example, a bank account class, Account. It has an associated set
of operations: credit money to an account, debit money from an account, and
check the balance of an account. In this example, two credit operations are
commute, so do two check operations. Therefore, it is possible for two credit
operations to be executed concurrently. However, this execution would not be
permitted in a system that classified operations into reads and writes only.
This shows a general phenomenon: by taking into consideration type-specific
information, a system can permit greater concurrency than would otherwise
be possible.

However, utilising concurrency semantics is not an easy task. It would makes
the application program complicated, if the concurrency code is intertwined
with the implementation of business logic. In order to avoid this, we allow
application users to expressing concurrency semantics decaratively and
separately from the implementation of the objects.

The concurrency semantics can be represented easily in pairs of operation
names. For example, a pair (p, q) means that operation p and g are
commutative. In judging whether two operations are commutative, one needs
only to consider the logical relationship of the two operations, not the
implementation of the operations. Our transaction system will ensure the
atomicity of individual operations.

The Architecture

There are six kinds of entities in our architecture : the server
component, application information script, server component container, client
component, metaobjects, and underlying supporting system. The server
components implement the business logic for an application.

A server component container provides certain system capabilities, such as
multithreading, transaction and security. It also provides an application
context, management and control service to the encapsulated server
components. To provide flexibility and adaptability, a server component
container represents implementation strategies in the form of metaobjects. A
metaobject can be replaced by a new metaobject that implements the same
functionality, but with a different strategy. In each server component
container there are a number of “sockets” for plugging in metaobjects. Users
can choose “off-the-shelf” metaobjects that are best suited to their
applications at deploy time. They can also supply their own metaobjects.
Metaobjects can be changed dynamically at runtime to cater for changing
environment conditions.
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Figure 7 The Reflective Component-Based Transactional Architecture

A server component container insulates server components from the
underlying supporting system. The container automatically allocates system
resources on behalf of the components and manages all interactions between
the components and the underlying system. This ensures that the server
components can be run in any system as long as it supports a compatible
sever component container.

A server component container maintains control over a server component
through a wrapper. A container provides an external representation of a
server component. Client components do not directly interact with a server
component, but with the external representation. This allows the container to
intercept all operations made on the inside server components. Each time a
client component invokes a method on a server component, the request goes
through the container before being delegated to the target server component.
The container can thereby implements system capabilities, such as
concurrency control, security and transaction management transparently.
The behaviour of the server component container are decided partly by the
associated metaobjects.

Server components are built by using a component builder. Through the
builder, users can manipulate and customise a server component through its
property tables and customisation methods. Users can also assemble a server
component with other components to create a new application. Furthermore,
they can also attach component-specific information to the component; for
example concurrency semantics, deployment policy or concurrency policy.
This information may be used by the server component container.
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Structure of the Server Component Container

5.8

A server component container manages a server component via intercepting
invocations to the component. The interception is implemented through our
reflection system. For each server component, a reflection object is generated
which provides a client view of the server component. Clients access a server
component through interacting with the corresponding reflection object.

Server component
Container

Deployment
Descriptor

Server
Component

Context
Object

concurrency security
metaobject etaobjec

Concurrency Security
Semantics Semantics

Reflection
Object

Figure 8 A Server Component Container

For each active server component, the server component container generates
a context object to maintain its information, and a number of metaobjects to
implement corresponding functionality, such as concurrency control and
security checking. The reflection object will interact with the context object
that in turn will interact with the corresponding metaobjects at particular
points to enforce transaction and security rules (Figure 8].

To enable containers to utilising component-specific information to improve
system performance, users can provide these information through scripts at
assembly time (see chapter . The container will ensure this information is
available to be used by corresponding metaobjects. For example, the
concurrency control metaobject would use the concurrency semantics of a
component to increase the degree of concurrency.

The Transaction Model

Our transaction model is based on the OMG's Object Transaction Service
(OTS) specification [OMG94]. It is a well-defined transaction model, bringing
the transaction paradigm and the object paradigm together. A major
advantage of the model is that it enables every object to provide its own
concurrency control and recovery, thus providing the possibility for an object
to apply an individual concurrency control and recovery policy to cater for its
specific requirements. However, this advantage is not exploited fully in the
OMG's specification. The reflection functionality of our architecture provides
the right tool for exploiting this advantage.
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OTS supports distributed transactions that can span multiple databases on
multiple systems co-ordinated by multiple transaction managers via a
distributed two-phase-commitment protocol. Therefore, by using OTS our
architecture ensures that a transaction of a server component can inter-
operate with other component servers.

Database Object

oriented oriented concurrency
concurrency control

o G

Figure 9 Database-Oriented and Object-Oriented Transactions

Our transaction model is object-oriented, rather than database-oriented. In a
database-oriented model, the system component container focuses mainly on
robust messaging. It is the database system that is responsible for
concurrency control, recovery and persistence. This approach makes it easy to
leverage existing database systems and transaction processing monitors to
Internet applications. However, most database systems deal with concurrency
based on file or records rather than objects. This makes impossible for them
to utilise application semantics to improve concurrency control, and hence
system performance. It also means that all components stored in a database
system can only use the concurrency control method provided by the database
system, whenever whether or not it is suitable for their applications.

Another drawback of the database-oriented model is that it keeps
unnecessary copies of components in memory. For example, if two clients
access a component X through a server concurrently, there would be two
copies of X inside a container, each for one client . This wastes
system resources and increases interactions to the database system.

By taking the object-oriented transaction approach, our architecture enables
users to choose the most suitable concurrency control method for their
application. The server component container automatically uses the selected
concurrency control method to implement the transaction services. We also
enable users to change the concurrency control method of a server component
dynamically at runtime to cater for environment changes.
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6 PERFORMANCE

FlexiNet is a component based framework, and the protocols and abstractions
that currently populate this framework were designed for modularity and
reuse, rather than performance. For example, all the layers in a typical
remote method invocation stack could be implemented as one module, in
order to increase performance.

However, FlexiNet is fully resource controlled, and uses pools for resources
such as buffers and threads, drawing on our earlier experience in C++ with
DIMMA [HERBERT98]. The modularity is an advantage here, as different
pool management policies may be ‘slotted in’ in order to trade off performance
against resource usage.

Performance is notoriously difficult to measure. Many factors, such as a
protocol’s support for failure and simultaneous access, in addition to the
actual reliability of the connection, and number of simultaneous clients will
all effect the achieved performance. However, to give a simple indication of
the ‘raw’ performance of FlexiNet compared to other protocols we ran a series
of simple tests between two machines. For these tests, four protocols were
used; Sun’s RMI, FlexiNet using a TCP based protocol (RRP), FlexiNet using
a UDP based protocol (REX) and a ‘raw’ TCP protocol. This latter protocol
acts an indication of the inherent costs of a remote call. It uses simple Java
TCP sockets and has a single threaded client and server. For all protocols, an
array of bytes was used as the only argument to an invocation, and the
invocation returned a void result. The results of running the protocols with
different JVMs and different message sizes are shown in For the
record, the machines used were Pentium Pro 200s, running NT Server 4 over
a 10Mbit Ethernet. To reduce the effect of class loading, compiling and TCP
flow control, 100 invocations were made on each connection prior to
measuring the performance.

From the graphs the following points can be noted:

* The network time dominates the total time for all calls. None of the
protocols is appreciably slower than a raw socket connection.

* For large messages, the UDP protocol was slower, this is due to the
need to perform UDP fragmentation. This was particularly pronounced
in the Microsoft JVM/JIT.

® The FlexiNet TCP protocol is around 15-20% slower than RMI on Sun’s
JVM/JIT, but around 10% faster on Microsoft's JVM/JIT. This
suggests that Sun’s RMI and JVM have been optimised to run well
with each other.
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Comparative Performance (SUN JIT)
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Figure 10 Compar ative Protocol Performance
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Unlike RMI, which relies on native methods and stub compilers in order to
function, FlexiNet remains 100% pure Java, with no external tools required.
This makes it highly portable across dJava releases and JVM
implementations. Future JIT or JVM performance increases should be fully
reflected in FlexiNet’s performance.

By tuning the combination of layers that make up a protocol, in addition the
size and nature of thread and buffer pools, the performance tradeoffs can be
tuned to suit the intended environment. Further work is investigating how at
least some of the tradeoffs can be made automatically — by monitoring and
estimating load and reliability factors. The structure of FlexiNet makes it
particularly easy to add orchestration layers to collect this information.
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7 SUMMARY

FlexiNet was designed to provide a platform which to perform code
deployment and binding related experiments. As such, the emphasis was on
modularity and flexible configuration. FlexiNet has made considerable use of
language level introspection and has embraced reflective techniques. Not only
does the resulting system highly modular, but it also performs as efficiently
as other Java middleware offerings. The ability to support all of the ODP
distribution transparencies has been an intellectual goal of many distributed
system platforms, and the ability to construct these using FlexiNet serves as
a powerful example of its extensibility.
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8

FLEXINET TEAM

8.1

Organisation

8.2

FlexiNet was produced as part of Phase III of the ANSA project, between
October 1996 and December 1998. During this time a number of people have
worked on FlexiNet. On average, the team has been four to five people.

People

The following people have been involved with major parts of FlexiNet. In
addition to the areas identified, there has been a great deal of discussion on
general and specific architecture principles and engineering detail.

Andrew Herbert
Director of Advanced Technology for Citrix Systems Inc and Chief
Architect for the ANSA project as a whole.

Richard Hayton
Designer and implementer of FlexiNet. Responsible for the
majority of ‘core’ architecture and code.

Dave Otway
Involved in early design of first binder stack. Worked on security
additions to the ‘Green’ protocol, REX fragmentation, and RMP
based messaging.

Laurence Jordan
Designed and built the Dynamic Stub Generation system. Also
wrote the ‘Crimson’ SSL binder.

Mathew Faupel
Conducted early experiments including the ‘negotiation based’
binder. Wrote the IIOP Binder, and heavily involved with
discussions on how to make FlexiNet amenable to other standard
(badly behaved) protocols.
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Will Harwood
Architect for the FollowMe ESPRIT project under which part of
FlexiNet was designed. Did early work on the formal composition
of components, and involved in the design of the security related
aspects of FlexiNet, in particular security for mobile objects.

Mike Bursell
Worked on Mobile Objects in the FollowMe context.

Zhixue Wu
Designed and built the transactional framework.

Takanori Ugai (secondee from Fujitsu)
Worked on mobile object security, and SSL.

Peter Bagnall (secondee from BT Labs)
Wrote the Blueprints system.

Oyvind Haussen (secondee from Tromso University)

Conducted many early binding experiments. Involved in the early
evolution of the binding system.
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PART TWO:
TECHNICAL OVERVIEW
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9

BASICS

9.1

Introduction

9.2

The foundation of FlexiNet is remote method invocation. This is where a
process running on one host obtains a reference to an object on a different
host, and uses it as if it were a local reference. In particular, to invoke
methods on the object. FlexiNet was designed for Java, and every effort is
made to make remote method invocation similar to normal, local, method
invocation. However remote method invocation does not function identically
to local method invocation, for example there may be network failures, and
there are therefore differences in the semantics of local and remote calls.

A Simple Example

Before considering the formal differences between local and remote
invocation, consider a simple example. [Figure 11| and [Figure 12 define two
runnable classes, which represent a server and client process respectively.
The server is started first; and creates an instance of a Bankl npl object,
which it wishes to make this available to the client. To do this it must give
the client a reference to the interface on the Bankl npl object that the client
should use. In this case, it is the Bank interface . For the moment
we will ignore how this is done (shaded).

When the client obtains a reference to the bank, it may invoke any of methods
in the Bank interface as if they were local. That is essentially all that a
programmer needs to understand to use FlexiNet. For completeness of the
Example, the definition of the Bank service (Bankl npl ) is show in

public class Server
public static void main(String args[])

Bank bank = new Bankl npl ();
Fl exi Net . get Tr ader (). put (" Bank of Toytown", bank) ;
Systemout. println("Server Ready");
Thread. current Thread().suspend(); // wait for calls
..}
}

Figure 11 An Example Server Application
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public class dient

{

public static void main(String args[])

Bank bank = (Bank) Fl exi Net. get Tr ader ()
.get ("Bank of Toytown");

System.out.printin("create an account with £80");
bank.credit("Fred",80);

try

System.out.printin("withdraw 50 pounds");
bank.debit("Fred",50);

catch (InsufficientFundsException e)

System.exit(1);

try

System.out.printin("withdraw another 50 pounds");
bank.debit("Fred",50);

catch (InsufficientFundsException e)

System.out.printin("Overdrawn”);

System.out.printin("check balance (should be 30)");
System.out.printin("balance =" +
bank.getBalance(“Fred"));

Figure 12 A Client of the Bank Service

public interface Bank
{
public void credit(String account,int amount);
public void debit(String account,int amount)
throws InsufficientFundsException;
public int getBalance(String account);

Figure 13 An Example Service I nterface
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public class Banklnmpl inplenments Bank
{

private Hashtabl e accounts = new Hashtabl e();
public synchroni zed void credit(String account,int anount)
i nt bal ance = get Bal ance(account);

account s. put (account, new | nt eger ( bal ance+anount));

}

public synchroni zed void debit(String account,int amount)
throws | nsufficient FundsException
{

i nt bal ance = get Bal ance(account);
i f(bal ance < anount)
t hr ow new | nsuffi ci ent FundsException();
el se
accounts. put (account, new | nt eger ( bal ance-anount));
}

public int getBalance(String account)

{

Integer i = (Integer) accounts. get(account);
if(i==null)

return O;
el se

return i.intValue();

Figure 14 An Example Service Implementation

9.3 Specifying an Interface

As has already been hinted, FlexiNet only allows remote invocation of
methods specified in an interface. We take the ODP [ISO95] view that
interfaces are the natural points of access in a distributed object
environment. This allows a server and client to evolve independently, with a
well-specified ‘contract’ about how they interact.

There is another practical reason as well; clearly FlexiNet must provide some
engineering object on the client that ‘looks like’ the server object, but that
uses remote method invocation to implement the methods. The most natural
way to provide this is to specify the methods in an interface, and have
different implementations for the local and remote case.

FlexiNet currently only supports public interfaces with public methods.
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9.4 Call Semantics

For the most part, a remote call may be considered like a local call. In
particular, FlexiNet supports arbitrary nesting and multi-threading.
However, local and remote calls are semantically different.

When a call is made on a remote interface, an essential decision is whether
parameters should be passed by reference or by value. To retain the local
method invocation semantics, all parameters should be passed by reference.
This means that the callee receives a reference to each parameter object, and
may shared use of this object with the caller.

Although this give clear semantics, this approach is neither possible nor
desirable. It is not possible as FlexiNet can only support remote references to
interfaces — parameters which are not of interface type cannot therefore be
supported in a ‘by reference’ mode. The approach is not desirable for
performance reasons. In general, the cost of a remote call is many times that
of a local call. Better performance therefore results if small objects are copied
onto a remote machine, rather than accessed by remote method invocation. In
Java, most data items are actually objects. In the example of the
‘account’ parameter is an object. It is clearly reasonable to copy this from
client to server, and this is what is done.

Most remote procedural call or remote method invocations systems employ a
‘usually by value’ approach, and FlexiNet is no exception. In Sun’s RMI for
example, all parameters are passed by value unless they are objects that
extend Uni cast Renot eSer ver . This approach was rejected in FlexiNet, as it
does not allow an object to be passed by value in some cases, and by reference
in others. It also does not allow distinct interfaces on objects to be passed,
which was required in FlexiNet in order to follow the ODP architecture as
closely as possible.

How them may be decide when to pass a parameter by reference, and when
by value? Rather than examine the class of the parameter value, we examine
the class of the reference. In Java, references are strongly typed and we can
easily spot the difference between the two types of reference. This is

illustrated in

(class 0) O foo =

public Class 0O
implements A,B

Al 1

(interface A) A bar

(interface B) B baz =

Figure 15 Distinguishing I nterface Refer ences
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9.4.1 Object Graphs

9.4.2

9.5

When passing a parameter by value, we must also deal with references to
other objects and interfaces held in that object. We must therefore recurse
through the graph of objects rooted at each parameter, and decide for each
whether to pass it by reference or value. We use the same criteria in all cases;
references to interfaces are passed by reference, and references to objects are
passed by value. This is illustrated in m If two parameters in a single
call both refer to the same object (directly or indirectly) then only one copy is
passed.

invoke op(Foo®,Baz @)

Key
Passed by Value
Passed by Referenceég
Not Passed

Class Foo

implements Bar

Class Foo

implements Bar

Foo a [ 2 Class Foo
Bar b Foo a [ N implements Bar
Bazc |® Bar b [ X
Baz c Foo a e >
Bar b [ 2 >
Bazc |®

Class Baz
Class Baz

Class Baz

Figure 16 Passing Object Graphsby Value

Error Handling

A remote method invocation may raise any of the exceptions that might be
raised if the call were made locally. In addition there may be a number of
distribution related errors, such as network or server failure, or failure due to
access control or authentication checks. These exceptions will be thrown as
Runt i mreExcepti ons, so that a programmer need not modify an invocation
to catch them specifically. Of course, if the errors occur, and are not caught
elsewhere in the program, them the client process will terminate. This
approach is the same as that for other environment-related errors in Java,
such as running out of memory. Strangely, Sun did not take this approach
with its own remote method invocation system (RMI), and instead remote
invocations must be ‘polluted’ with code to handle these special cases.

The Trivial Trader

The Trivial Trader is a simple name service provided to allow clients to locate
advertised services. When a FlexiNet client or service starts up, it already
has a reference to this service. A server may publish a service by entering a
textual name for it into the trader. A client may then obtain a reference to the
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service by querying the Trader, supplying the same name. This is illustrated
in the shaded portions of Figure 11 and Figure 12. Note that the current
trader is extremely triviaEﬁE_lnot m determine if published
services are still running, and only allows simple naming of them. It is also
not persistent — if it crashes, all entries are lost. In a more complete

environment, the trivial trader would be replaced with something more
robust

To allow flexibility in the set-up of a FlexiNet environment, the trader is not
pre-configured to run at a particular network address. In addition, unlike
systems such as the RMIRegistry, it is only necessary to run one instance of
the FlexiNet trader — not one instance per machine. The price to pay for this
flexibility is that each process must be told the location of the trader. This is
passed as a Java property value — typically by passing an additional
parameter to the j ava program. The trader itself will check for the presence
of this environment variable, and will start at the specified address if
possible.

9.6 The FlexiNet Distribution

FlexiNet is distributed either as a single large zip file, or as a directory
hierarchy on CD. In the following, it is assumed that this 1is
copied/decompressed into a directory called FI exi Net.

The distribution consists of the following:

* A directory hierarchy matching the package hierarchy for FlexiNet.
This is in the directory F/ exi Net/ Packages. It contains source code
and class files. The class files have debugging information compiled in
but disabled (see section [19.1). A description of the package hierarchy
can be found in appendix I.

* A directory containing documentation. In particular, JavaDoc for
FlexiNet classes, and a version of this document designed for on-line
browsing. These may both be accessed using a web browser via
Fl exi Net/ Docunent ati on/ I ndex. htm .

* A Java archive (jar) of FlexiNet classes. These classes were compiled
without debugging for performance. This may be found in
Fl exi Net/1i b/ Fl exi Net.jar.

* A number of examples. These may be found in F/ exi Net/ Test Code.
Chapter gives an overview of these, and each sub-directory contains
a ReadMe. t xt file describing how to run the example it contains.

9.6.1 Installation

FlexiNet does not require ‘installation’ as such. The files should be copied to
hard disc, and the Package directory put on the classpath. i.e.
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9.6.2

set CLASSPATH=%CLASSPATH% Fl exi Net\ Packages (windows)
or
export CLASSPATH=3CLASSPATH: Fl exi Net/ Packages (unix sh)

or
set env CLASSPATH=3CLASSPATH: Fl exi Net / Packages (unix csh)

Alternatively, the FlexiNet jar may be put on the classpath:
set CLASSPATH=%CLASSPATHYG Fl exi Net\|i b\ Fl exi Net . j ar

Note. Either FI exi Net/ Packages or FI exi Net . j ar should be put on the
class path, not both.

In addition to FlexiNet, a JDKI1.1 compatible JVM must be installed.
FlexiNet was developed using Sun’s JVM (1.1.6), although others should
function just as well.

Running the “Simple Bank” Example (Windows)

This may be found in FlexiNet\TestCode\trader\BankExample.
1. Start the FlexiNet trader

java UK co.ansa.flexinet.services.trivtrader. TrivTrader

This will run the trader at an arbitrary address, and print the address to
the screen.

2. Start the Bank Server

In another window/machine, ensure the directory containing the example
is on the classpath, and run the server, telling it where the trader is.

cd Fl exi Net\ Test Code\trader\ BankExanpl e

set CLASSPATH=%CLASSPATHY% .

set FT=-Dfl exi net.trader =xXXXXXx (address from 1.)
java %T% Server

3. Start the Bank Client

In another window/machine, ensure the directory containing the example
is on the classpath, and run the client, telling it where the trader is.

cd Fl exi Net\ Test Code\trader\ BankExanpl e

set CLASSPATH=%CLASSPATHY% .

set FT=-Dfl exi net.trader =xXXXXxXx (address from 1.)
java % T% dient
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9.6.3 Running the “Simple Bank” Example (Unix)

This is analogous to the Windows example above. The only differences are the
different conventions for pathnames and setting environment variables.

1. Start the FlexiNet trader

java UK. co. ansa.flexinet.services.trivtrader. TrivTrader

This will run the trader at an arbitrary address, and print the address to
the screen.

Start the Bank Server

In another window/machine, ensure the directory containing the example
is on the classpath, and run the server, telling it where the trader is.

cd Fl exi Net/ Test Code/ t r ader/ BankExanpl e

export CLASSPATH=$CLASSPATH: . (in csh, use set env)
set FT="-Dflexinet.trader=xxxxxxx" (address from 1.)
java $FT Server

Start the Bank Client

In another window/machine, ensure the directory containing the example
is on the classpath, and run the client, telling it where the trader is.

cd Fl exi Net [TestCode/trader/BankExample

set CLASSPATH=$CLASSPATH.. (in csh, use setenv )
set FT="-Dflexinet.trader=xxxxxxx" (address from 1.)
java $FT Client
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10 MOBILE OBJECTS

10.1 Introduction

Mobile Objects are an abstraction designed to support code and data mobility.
In particular, they allows an executing application to jump’ from one host to
another. Obvious applications of this might be to support agency
[BURSELL9S8], for load balancing or to prepare for network disconnection.
The mobile object abstractions in FlexiNet are largely transparent, however
there are some coding restrictions on mobile objects, and it is not in general
possible to migrate an arbitrary application.

Mobile Objects are supported in FlexiNet as a specialisation of the RM-ODP
cluster abstraction. A cluster is a collection of objects that are managed as a
whole. A mobile cluster is a collection of objects that may be migrated from
one host to another. A cluster may be thought of as a lightweight process and
a mobile cluster as a process with the ability to jump from host to host. In
practice it is a process-like abstraction that we wish to be mobile, not simply
a single object. A detailed description of the Cluster and Mobile Cluster
abstractions is given in part five, “Clusters and Capsules”.

Creates in same
cluster

——Contains—»|
n

Capsule Cluster r—Contains—» Object
manages 1 n

lifecycle

"Normal’ Method
Invocation
{same cluster}

Flexinet RMI
{different cluster}

moves _ | Mobile

Place between Cluster

Figure 17 Clusters and Capsules

12-Feb-99

FlexiNet Architecture 42



10.2

Mobility and Places

10.3

In practice, clusters move between hosts. At the software level, each location
a cluster may reside is called a Capsule, and a Place is a specialisation of this
that supports Mobile Clusters. There may be many different Place
implementations that provide different facilities, or enforce different
management policies. A vanilla Place implementation (Pl acel np) is provided
as part of FlexiNet. summaries the relationship between objects,
cluster and capsules.

Creating a Mobile Cluster

A cluster is in many respects like an applet. There is a distinguished class at
the ‘head’ of the cluster, which is extended in order to specialise it for a
particular implementation. For mobile clusters, this class is Mobi | eQbj ect .
A subclass will normally override three of its methods as follows:

<any interface> init(<any> <any>...))
This method is called upon construction of the first object within a
cluster. The method may take any arguments and may return a
reference to any interface. Typically this is a reference to be used
by the creator to control the mobile object.

void restart(Exception reason)
This method is called upon the restart of a cluster; for example,
after a successful move. The method is passed the reason for the
restart.

<any i nterface> copied()
This method is called on a newly created copy of a cluster after
the copy has been created (init 1s not called). It may return a
reference to an interface, to allow its creator to reference it.

In order to create a new mobile cluster, the createCluster method is called
on an existing Place (which may be remote). This will create a new empty
cluster. A direct call of createObject on this cluster can then be used to
create an application object within the cluster. This call will cause the
construction of a new object of the identified class, and causes the init
method to be called on this object. This may return a reference to an interface
within the cluster. The init method is also free to create any internal
threads required by the application class.

A simple Mobile Object is illustrated in and the construction of a
new instance is shown in As the creation and initialisation of a
Mobile Object is always the same, it is common to provide a static
construction method in each mobile object class.
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public class Robot extends Mbil eCbject inplenments Conmmand

{

public String nane;

/[l Override init in Mobil eQbject

public Command init(String nane)

{
t hi s. nane = nane;
return this;

}

/!l Override restart in MbileCbject

public void restart (Exception e)

{
System out. println("Robot ’'"+nane+"’ restarting");

}

/1 inplenment Conmand. go

public void go(Pl ace p)

{
System out. println("Robot ’'"+nane+"’ noving...");
pendMove(p);

/1 inplenment Conmand.identify

public String identify()

{
System out. println("Robot ’"+name+"’ identifying...");
return nane;

}

}

Figure 18 A Simple M obile Object

/! construct an enpty cluster

Placep=..;
Cluster ¢ = p.createCluster();

/]l create initialization argunents
Object[] arg = new Object[1];
arg[1] = “Metal Micky”;

/! construct a new robot
Command r = (Command) c.createObject(Robot.class,args);

Figure 19 Constructing a New Robot
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10.4

Moving

10.4.1

10.5

Mobile clusters are autonomous in that only a thread within a cluster may
directly cause it to move. In order to move, the cluster must enter a state
where a consistent copy of it can be taken. The majority of this is handled by
the infrastructure, but some co-operation is required by the application code.
There are two versions of the move method.

voi d synchMove(Pl ace p)

This indicates a synchronous (immediate) move. Any further calls
made on interfaces exported by the cluster are blocked until the
move completes. The move does not take place until all threads
running within the cluster have exited. In particular, other calls
made on the cluster that are executing must exit, and the
application code must shutdown any internal threads. Once all
threads and calls have exited, then the move will take place. The
thread that invokes syncMbve will never return — unless the
move fails, in which case it will throw an exception.

pendMove( Pl ace p)
This flags a pending move. It is treated identically to syncMove,
except that the thread calling pendMove returns immediately.
When the move actually takes place, an error will lead to a call to
restart with a MovedFai | edExcepti on as the argument.

Once a move has completed, the restart method is called on the mobile
object. This, like i ni t, is free to create any internal threads.

Copying

Copying a mobile cluster is very similar to moving it. A thread within the
cluster invokes the copy method. Calls into the cluster are blocked, and when
all threads are exited, the cluster is copied to the new location, and the
copi ed method is invoked on the new object. This may return an interface
reference, which is passed to the calling thread as the return value of the
copy operation. By default, the copi ed method calls restart, with a new
Copi ed exception as the only argument. In the default case, it returns a null
result.

Communications

Within a cluster, objects may communicate freely using standard dJava
method invocation. Between clusters, communication takes place using
FlexiNet remote method invocation. No special distinction need be made by a
programmer between communications with a stationary service, and a mobile
object. This conforms to the ‘sea of objects’ abstraction.
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10.6 Constraints on Mobile Objects

Mobile clusters are arbitrary Java programs. However, there are some
stylistic constraints.

Thread Management
A cluster may create or destroy threads and thread groups at will.
However, the application programmer is responsible for shutting
down all threads prior to movement.

Static Fields and Methods
It is possible to configure FlexiNet to give each cluster a separate
view of static state. However in general, static methods should be
used with care by mobile code, as this constitute a backdoor
means by which mobile object may communicate with each other.
This circumvents the mechanisms used to track threads, and can
result in unexpected behaviour.

Serialisation
Classes used to construct a mobile cluster must be serialisable
using the FlexiNet serialiser. In general terms, this means that
they must provide a public no-args constructor, and contain only
public or transient data members. In JDK 1.2 this latter
restriction will be removed. Details of FlexiNet serialisation are
given in Chapter @
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11

PERSISTENT OBJECTS

11.1

Introduction

11.2

Persistent Objects are a cluster-based abstraction that allows clients to access
persistent objects transparently. The persistent object itself implements one
or more application specific interfaces. The client is given a reference to these,
and may access the object as if it were a ‘normal’ object. The infrastructure
actually stores the object on disc, and transparently reads the object in and
writes it back before and after each method invocation.

Like mobile objects, persistent objects are supported by a specialisation of the
cluster abstraction. Persistent clusters are called storables and are stored in
Capsules called Stores. This is analogous to the Mobile Cluster, Place

relationship (Figure 20].

Creates in same
cluster

——Contains—»|

Capsule n Cluster r—Contains—» Object
manages 1 n

lifecycle

e
"Normal’ Method
Invocation
{same cluster}
o o Flexinet RMI
{different cluster}

Store —exists in— Storable

Figure 20 Storable Clusters

Creating a Persistent Object

Unlike mobile objects, persistent objects are given ‘meaningful’ names, to
allow them to be managed (for example deleted), and to allow a client to re-
obtain a reference to them after a crash.
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11.3

The creation of a persistent object (storable) is analogous to the creation of a
mobile cluster — except that the creation interface is on the store’s root

directory object, rather than on the store itself (.
/1 construct an enpty cluster
Stores =...;
Directory root = s.getRootDirectory();
Cluster ¢ = root.newStorable(“example account”);
[/l create initialization argunents
Object[] arg = new Object[1];
arg[1] = “Richard”;

/1 construct a new storable Account
Account a = (Account) c.createObject(Account.class,arg);

Figure 21 Creating a Storable

Managing Persistent Objects

114

In addition to the ‘transparent’ interface to the stored object itself, the store
implementation also provides various management interfaces. The
StoreManager interface provides facilities for the creation and destruction of
Stores themselves. Within a store, the Directory interface provides methods
to enumerate Storables by name, and delete them. It is envisaged that the
StoreManager interface will be extended to set policies on a per-store basis
(for example access rights, or maximum size); and the Directory  interface
will be extended to provide more user-oriented management, for example
facilities to examine the size of each Storable

Communications

11.5

Storable clusters act like mobile clusters. Within a cluster, objects may
communicate freely using standard Java method invocation. Between clusters
communication takes place using FlexiNet remote method invocation. No
special distinction needs to be made by a programmer, that the interface the
are accessing is actually on a remote, stored object.

Constraints on Persistent Objects

Persistent clusters have some stylistic constraints placed upon them. Like
Mobile Clusters, they have the same constraints with respect to thread
management, static fields and methods and serialisation. In addition, each
storable must be read from disc (deserialised) before each invocation and then
written back (serialised) afterwards. Storables should not therefore have any
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internal threads — unless these are extremely short lived. Storables may
invoke nested invocations on other Storables (or other objects) but there are
not facilities to manage unwinding after a nested failure (Incomplete
invocations are simply discarded). For complex scenarios, the transaction
abstraction should be used instead.
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12 TRANSACTIONS

12.1 Introduction

The FlexiNet transactional framework is an implementation and extension of
the Enterprise JavaBeans specification. It was designed in parallel with the
rest of the FlexiNet. It uses the FlexiNet infrastructure to support the
runtime execution environment, and uses a visual component builder
interface for the assembly of applications out of ‘bean’ components.

The FlexiNet Transaction Framework supports standard Enterprise
JavaBeans. A full specification of Enterprise JavaBeans can be found at
[SUNc].

The transaction architecture aims to meet the needs of transactional Java
applications. Our work started before any publication of Enterprise
JavaBeans (EJB). However, it turned out that they have similar goals: to
provide implicit transactions thus removing from the developers any concern
for transaction management details. We adjusted some of our design and
implementation when the draft EJB specification was published to ensure
that our transaction architecture fulfils the EJB specification. The final
implementation of the architecture can be used as an EJB container to
execute Enterprise JavaBeans.

Like EJB, the FlexiNet transactional framework is component-based, thus
enables users to assemble portable, customisable components into a
transactional infrastructure. Moreover, the architecture is also reflective.
Therefore, it provides two additional features that are benefits of supporting
transaction processing in Java.

* It allows the transaction infrastructure to be easily adapted to new
application requirements and changing environments. For example, it
allows application authors to choose a particular concurrency control
protocol for their application.

* It allows programmers to provide application-specific information
declaratively and separately from application code. This information
can be used either at deployment time for configuring the transaction
infrastructure to best suit the application component, or at execution
time for improving system performance.

The results of our work include a runtime execution environment, and a
development toolkit. The execution environment consists of an underlying
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transaction system and an EJB container. The development toolkit provides a
visual tool (Ent er pri seBeanBox) for users to customise both the beans and
runtime container. The container insulates the enterprise bean from the
specifics of an underlying system by providing a simple, standard API
between the bean and container. The Ent er pri seBeanBox is an extension of
the BeanBox from the Bean Development Kit (BDK). It maintains all the
original functionality, but gains some new features to meet our special
requirements.

In this chapter, we describe the process of developing an EJB application,
particularly how to use the Enterpri seBeanBox to deploy a bean in a
container. We also explain how to demarcate the boundaries of a transaction,
and how to implement a concurrency control protocol that can be used by the
container. The description is in terms of a simple transactional bank account
example, and this example is provided in the FlexiNet distribution.

Enterprise Bean Development

The first phase of developing an enterprise application is to program
enterprise beans. An enterprise bean is a portable, reusable, and container-
independent software component. An enterprise bean implements a business
task, or a business entity. Each bean includes its Java classes, its remote and
home interfaces, its deployment descriptor, and its environment properties.
The enterprise Beans must conform to Enterprise JavaBeans component
contract to ensure that they can be installed into any compliant EJB
container.

An example bean, Account Bean, is shown in

The Account Bean class defines three basic operations: credit for putting
money into an account, debi t for withdrawing money from an account, and
bal ance for checking the balance of an account. In addition, the
getlnitial Balance and setlnitial Balance pair define a simple
JavaBean property. A JavaBean property is a single public attribute. A
simple property represents a single value. It can be customised by a user
without accessing the source code.

The activation, deactivation and removal of an enterprise bean are managed
automatically by the bean container. However, if a bean would like to perform
some external actions when these events occur, these actions can be defined
in ej bActivate, ejbPassivate, and ejbRenove respectively. The
container will ensure the corresponding operation will be invoked when such
an event occurs. The set Sessi onCont ext method stores the reference to the
context object to an instance variable. This method is called after the instance
creation.
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public class Account Bean i npl enments Sessi onBean

{
private doubl e currentBal ance;

public AccountBean( ) { }

public AccountBean(String nane)

{
}

public doubl e getlnitial Bal ance()

{
}

public void setlnitial Bal ance(doubl e ibal)

{
}

public void credit(double val ue)

{

this. nane = new String(nane);

return currentBal ance;

current Bal ance = i bal

doubl e bal = currentBal ance;

/! pause to denonstrate race condition
try {Thread. current Thread(). sl eep(5000);
} catch (Throwable thr) {};
current Bal ance = bal +val ue;

}

public void debit(double value) throwsOverdrawException
{
if (currentBal ance < val ue)
t hrow new Over drawExcepti on("No enough noney");
current Bal ance = current Bal ance-val ue;

}

publ i ¢ doubl e bal ance( )

{
}

/1 methods and fields for EJB use
public void ejbActivate(){ }
public void ejbPassivate(){ }
public void ejbRenove(){ }

return currentBal ance;

protect ed Sessi onCont ext sessi onCont ext;

public void set Sessi onCont ext ( Sessi onCont ext ctXx)

{
}

sessi onCont ext = ctx;

Figure 22 An Example Enter prise JavaBean
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12.3 Application Assembly

An application assembler is a domain expert who compose applications that
use enterprise Beans. The application assembler works with the enterprise
bean’s client view contract. Although the application assembler must be
familiar with the functionality provided by the enterprise bean’s remote and
home interfaces, but he does not have to have any knowledge of the
enterprise bean’s implementation.

The output of the application assembler can be new enterprise Beans, or
applications that are not enterprise Beans (for example, servlets, applets, or
scripts). The assembler may also write a GUI for the applications.

In a three-tier architecture, the client is very thin and only responsible for
data presentation and the user interface. Following on from the simple bank
example of chapter EI we define a simple transactional bank service. In this
example, the client program focuses on how to provide a user-friendly
interface for performing following actions: credit money in an account,
withdraw money from an account, and check the balance of the account. The
larger part of the client program is concerned with the GUI. The user
interface is shown in

B ATM 1 ™ J=l P4

BeginTX CommitTX AbortTX

Credit Debit Balance
1000
A
activity log
|

< | Ld

Figure 23 The Ul for the Example Application

Another issue for client program is the declaration of transaction boundaries.
Our transaction framework is a high-level component framework that
attempts to hide system complexity from the application developer. We
assume most application developers and application users do not need to
access transaction management explicitly. The burden of managing
transactions is shifted to the container providers. Our transaction framework
implements the necessary low-level transaction protocols, such as the two-
phase commit protocol between transaction manager and database systems,
transaction context propagation, and distributed two-phase commit.

However, the clients have to control transaction scopes, that is, to tell the
system when a transaction starts and when it ends. Clients use the
javax.jts. UserTransaction interface for this purpose. This package
defines the application-level demarcation interface. The application
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programmer demarcates transaction boundaries with begin and
comm t/rol | back calls. This is illustrated in Figure 24. The transaction
framework ensures that all the actions performeEiEw boundaries are
transactional.

i mport javax.jts.UserTransaction;
UserTransaction tx =
(UserTransaction)new AnsaUserTransaction();

tx.begin();

...... //do wor k
tx.commit( );

tx.begin();

...... [/ do wor k

tx.rollback( );
Figure 24 Demar cating Transactional Boundaries

Application assembly can be performed before or after the deployment of the
bean into an operational environment.

Deployment

A bean deployer is an expert in transactional infrastructure responsible for
deploying enterprise Beans into a container. A deployer typically uses the
EnterpriseBeanBox to adapt enterprise Beans to a specific operational
environment.

First, a deployer can decide the transaction attribute for an enterprise bean.
There are six possible values:

e TX_NOT_SUPPORTED: a container must always invoke an enterprise
bean that has this transaction attribute without a transaction scope.

e TX BEAN_MANAGED: an enterprise bean that has this transaction
attribute can use the UserTransaction interface to demarcate
transaction boundaries.

e TX REQUIRED: if a client invoke an enterprise bean that has this
transaction attribute while the client is associated with a transaction
context, the containers invokes the enterprise bean’s method in the
client’s transaction context. Otherwise, the container automatically
starts a new transaction before delegating the method call to the
enterprise bean.

e TX_SUPPORTS: an enterprise bean that has this transaction attribute
is invoked in the client’s transaction scope. If the client does not have a
transaction scope, the enterprise bean is also invoked without a
transaction scope.

e TX_REQUIRES_NEW: an enterprise bean that has this transaction
attribute is always invoked in the scope of a new transaction.
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e TX_MANDATORY: an enterprise bean that has this transaction
attribute is always invoked in the scope of the client’s transaction. If
the client attempts to invoke the enterprise bean without a transaction
context, the container throws the Tr ansact i onRequi r ed exception to
the client.

Furthermore, we allow a deployer to customise the behaviour of the
container. A deployer can choose which concurrency control protocol should be
used for an enterprise bean. The concurrency control protocol can be provided
by the container provider, or implemented by third-parities. The design of
concurrency control mechanisms is outline in section

Finally, we allow a deployer to specify the concurrency semantics of an
enterprise bean. This information can be used by the container to optimise
the concurrency control decisions.

A deployer uses the EnterpriseBeanBox to input these deployment
decisions. When this is started, the BeanBox, ToolBox, and PropertySheet
windows appear on the screen. To instantiate a bean in click on the desired
bean in the ToolBox and then click in the BeanBox area.

B} ToolBox _olx B BeanBox _1olx|

AccountBean File Edit View Help

Metaobject

ReflectionFrame

TransactionalMetaobject AT

TransactionalMetaobject

& Properties - AccountBean !Iilﬂ

initialBalance | 0.0 ReflectionFrame

Figure 25 EntepriseBeanBox Main Windows

To deploy an enterprise bean, three components must be instantiated: the
application bean, (For example the Account Bean), the reflection frame bean
Ref | ecti onFr ane, and the meta-object bean Tr ansacti onal Met aobj ect .
Figure 25]shows these three beans are instantiated in the BeanBox.

In order to deploy the beans, the following steps must be followed:

* Instantiate the Account Bean, Ref | ecti onFr ane, and
Transact i onal Met aobj ect beans.

* Select the Refl ecti onFr ane bean

¢ Select the Edit>Reflection>Application menu.
The Ent epr i seBeanBox positions a line under the mouse pointer that
can be used to connect to the Account Bean to the Ref | ecti onFr ane
bean.
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When the beans are connected, the Ent epri seBeanBox responds with
a dialog box that displays all the public methods of the Account Bean.
This is shown in

[E3 ReflectionTargetDialog | XI

Please choose the methods that need to be reflective

public apm.beans.SimpleBank.AccountBean()

public apm.beans.SimpleBank.AccountBean(java.lang.String)

public double apm.beans.SimpleBankAccount.AccountBean.balance()

public void apm.beans.SimpleBankAccountBean.credit(double value)

public void apm.beans.SimpleBankAccountBean.debit(double value)

public void apm.beans.SimpleBankAccountBean.ejbActivate()

public void apm.beans.SimpIeBankAccountBean.ejbCreate(java.Iang.Strinll

Bl >

Cancel | OK ‘

Figure 26 Marking M ethods as Reflective

Select all the methods to be exported in the box, and push the OK
button.

Select the ReflectionFrame bean again

Select the Edit 2Reflection 2meta-object pulldown menu. The
EntepriseBeanBox positions a line under the mouse cursor that should
be connected to the TransactionalMetaobject.

Select a transaction property in the property box from the pull-down

menu. (Figure 27)

Input the class name of the desired concurrency control protocol in the
ConcurrencyControlName area.

[E3 Properties - TransactionalMetaObject

concurrencyControlName |apm.concurrency. TPLConcurrency

transactionProperty |TX_MANDATORY

Figure 27 Transactional Meta-Object Properties

Select the ReflectionFrame bean again

Select the Edit2>Customise pulldown menu. The BeanBox responds
with a dialog box. It displays the information input so far. More
importantly, it allows input of the concurrency semantics of the
enterprise bean by giving a category number to each of the operations
chosen earlier. The definitions of categories are displayed in the dialog

box as well.
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[E] apm.reflection.ReflectionFrameCustomizer

packageName: |apm.beans.SimpleBank

MetaclassName: |apm.reflect.transactions

Application Class Name |apm.beans.SimpIeBank

Available Catagories for the current Meta class
Catagory 10: methods that require no action at metaobject
Catagory 20: methods that require applying a read lock
Catagory 30: methods that require applying a write lock

public apm.beans.SimpleBankAccountBean(): |1O
public apm.beans.SimpleBankAccountBean(java.lang.String): | 10
public double apm.beans.SimpleBankAccountBean.balance() |20

public void apm.beans.SimpleBankAccountBean.credit(double value) |30

public void apm.beans.SimpleBankAccountBean.debit(double value) |30

Done |

Figure 28 Customising the Reflection Frame

* Input a category number for each operation in the corresponding text
area according to the category definitions.

® Push the done button

* Select the File>GenerateReflectiondar pull-down menu

The results of the deployment process consist of a number of jars. The
account Bean. j ar represents the customised Account Bean class and its
associated classes. The Ref | ecti on. j ar includes all the classes required to
run the account Bean in the container, namely the two interfaces for the
client to access the bean, and two classes that implement the two interfaces.
These interfaces and classes are generated and compiled by the
Ent epri seBeanBox automatically.

Starting an Application

The results of the deployment process are a number of Java archives (jars). In
order for the class loader of the container can find them, they should be put
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under a same directory. The name of the directory will be passed as a
parameter of the program so that the class loader can find the related jars.

e Start the FlexiNet trader:
j ava
UK. co. ansa. fl exi net.services.trivtrader. Tri vTrader

® Start the transaction server:
java -Dfl exi net.trader =xxx

or g. ong. CosTransacti ons. Apmlr ansacti onFact oryl npl
Note: xxX is the address of the trader.

® Start an application server:
java -Dfl exi net.trader =xxx
UK. co. ansa. transact i on. cont ai ner. NewAnsaCont ai ner
$(JARHOVE) Reflections.jar
beans. Si npl eBank. AnsaAccount BeanHonme TxServer

* Start a client:
java -Dfl exi net.trader =xxx
appl i cati ons. newSi npl eBank. Bank

12.6 Using the Example Application

The simple bank example provides two ATM machines for accessing one bank
account. One can credit money in, withdraw money from the account, or
check the balance of the account via either of them. This example intends to
demonstrate the capability of our transaction framework for providing proper
concurrency control for any enterprise bean transparently.

There 1s no code for dealing with concurrency at all in the Account Bean
implementation. However, as the transaction property for Account Bean was
set to TX_MANDATORY in the deployment stage, then the container will
ensure data consistency of the Account Bean even in a environment where
these is concurrent access. As an example:

® (Credit 1000 pounds into the account via ATM1I: type in 1000 in the
text area, then push the credit button.

® (Check the balance of the account via both ATM1 and ATMZ2: push the
balance button in either of them. The balance will appear on the
display area. It should be 1000 in both machines.

® (Credit another 1000 via ATMI, and immediately withdraw 500 wvia
ATM?2.

® (Check the balance again. The balance should be 1500.

Note that although a credit and debit operation were performed
simultaneously, the container and the transaction system ensure the result is
the same as these two actions are performed sequentially.
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Now, go to the EnterpriseBeanBox and change the transaction property for
Account Bean into TX_NOT_SUPPORT. Repeat the above actions, and the
final balance of the account will not be 1500, but 2000. This is because the
container will not provide any concurrency control for a bean whose
transaction property is TX_NOT_SUPPORT. Actually, this is the original
behaviour defined by the bean. In the previous round of test, it is the
container within which the bean was executed that makes the bean can
maintain its consistence in a concurrent environment.

From this demonstration, it is clear that the FlexiNet transaction framework
can provide transaction properties to application programs transparently.
This allows application developers to totally focus on the business logic
without deep concern about transaction issues.

Concurrency Control Protocol

The transaction framework can wuse third-party protocols to provide
concurrency control so that the application deployer can choose the most
suitable concurrency control protocol for the application.

A class intended to implement a concurrency control protocol must extend the
Concurrency class as shown in m When an invocation to a bean
inside the container is received, the container will call the bef or eAccess
method before delegating the invocation to the target bean. The
bef or eAccess method will decide whether and when the invocation should
allow go ahead, and take action to ensure transaction properties. For
example, in a class implementing the typical 2-phase-locking protocol, the
bef or eAccess method allows the invocation to go ahead only when an
appropriate lock can be granted for the invocation. It will also make some
state backups to ensure the bean can return to the previous consistent state,
if the current transaction is aborted for any reason.

Similarly, the container will call the after Access method after the
invocation finished but before passing the result to the original caller.
Normally, little needs to be done inside the af t er Access because none of the
resources, such as | ocks and backups, can be released until the end of the
transaction.

A concurrency control class also needs to implement methods for
participating in the 2-phase-commit process of the transaction: prepare,
conmmt, conmt_one_phase, and roll back. The prepare method can
respond an invocation in several ways. If no modification has been done by
the transaction on the associated bean, the prepare method can return
Vot eReadOnl y. If all the data needed to commit the transaction can be
written (or have already been written) to stable storage, it can return
Vot eCommi t . It should Vot eRol | back in any other circumstances, even if it
has no knowledge about the transaction.

The commt method should commit all changes made as part of the
transaction to the associated bean. Normally, it also clears up all the
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resources held on behalf of the transaction, such as | ocks and backups.
Similarly, the rol | back method should rollback all the changes made as
part of the transaction to the associated bean.

The commi t _one_phase method is used when there is only one bean is
involved in a transaction, thus there is no need for the first phase.

public class Concurrency inplenments Serializable

{
public Concurrency()
{
this.appObject = null;

}

public Concurrency(Qbject appObject)

{

this.apphj ect = appbj ect;

}

public void beforeAccess(int catld,
Coor di nat or coordi nator)
t hrows LockException, |InterruptedException

{}

public void afterAccess(Method appMet hod,
Coor di nat or coordi nator)

{}

public int prepare(Coordinator coordinator)

{ return 0;}

public synchroni zed void conmit (Coordi nat or coordi nator)
t hrows Not Prepared, HeuristicRoll back
Heuri sti cM xed, Heuri sti cHazard

{}

public void roll back(Coordi nator coordi nator)
throws HeuristicConmmit, HeuristicM xed,
Heuri sti cHazard

{}

public void comrt_one_phase( Coordi nat or coordi nator)

{}

protected Object appObject;

}

Figure 29 Concurrency Interface
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13

INTRODUCTION

13.1

Introduction

13.2

FlexiNet was designed ‘from the ground up’. Whilst we wished to support
interoperability with existing systems, and conform to, or extend, existing
standards, these were secondary goals. FlexiNet grew out of dissatisfaction
with current offerings, and a clean slate provided the opportunity to build a
coherent architecture.

Platform

13.3

FlexiNet was developed to be Java specific. This allowed us to leverage the
facilities provided by Java to provide a clean architecture and straightforward
API. In particular facilities such as objects by value, subclassing of arguments
and dynamic late linking are used in our architecture to simplify many
aspects of the design, and to help make FlexiNet extensible.

FlexiNet also makes considerable use of Java's strong typing and
introspection facilities. FlexiNet could be reengineering on other languages
that did not have these facilities, but it would lose some of its architectural
integrity, and internal type-safety. If FlexiNet were reengineering in, say,
C++, then it is likely that subclassing of arguments and related features
would have to be omitted.

FlexiNet was developed on NT 4.0 and Solaris using Sun’s JDK1.1. Work
started with JDK1.1.1 and by the end of the project JDK1.1.7 was being used.
Some pieces of code are no longer compatible with early version of JDK1.1. In
particular parts of the Information Space will not compile on JDK1.1.3 or
below. Microsoft compilers and JVMs have also been used, but a large
number of inconsistencies were found between the different compiler vendors
and versions (particularly with newer features such as inner classes).
FlexiNet will run under most Microsoft JVMs, although parts of it will not
compile using (some versions of) the Microsoft compiler.

Principles

Where possible we reused existing concepts and principles:
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ODP Reference Model

The computational model from RM-ODP was uses as a basis for
the programmer interface. Additionally, a number of RM-ODP
engineering model concepts were reflected into the computational
model. The ODP notions of interfaces and objects was used, and
ODP clusters were implemented to provide encapsulation. We
strayed from the architecture in many details. In particular, ODP
interfaces are state-full. FlexiNet (and Java) interfaces are not.
ODP clusters provide a fixed set of capabilities, and have strong
requirements on their contents. We weakened these
requirements, and generalised the cluster concept.

Java Language

We attempted to keep the FlexiNet API and remote object
semantics as close to normal Java as possible. In particular, we
use Java interface classes rather than IDL files, as this is more
natural for a Java programmer.

Build for Change

FlexiNet was designed to be constantly upgraded and changed.
We attempted to minimise the amount of ‘global knowledge’ and
interdependencies between components, so that parts could be
replaced, or new components added.

Multiple Everything

FlexiNet was designed to be component based, and to allow more
than one instance of any component to co-exist. This is important,
for example if a client has to speak two versions of a protocol.
FlexiNet make very little use of ‘static’ data, as this is
intrinsically restrictive.

Reflective Implementation

FlexiNet attempts to use its own mechanisms internally wherever
possible. For example a FlexiNet name, passed to identify an
interface, is an ordinary object, and treated as such when
serialised, deserialised or otherwise manipulated. This approach
allows us to change the specification of one component (for
example a name) with minimum impact on other components.

Details of these principles, and others, are described in the following

chapters.
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14 NAMING

14.1 Introduction

The primary purpose of middleware platform such as FlexiNet is to support
the interaction between a client and a service. Names are used in FlexiNet to
identify interface on services, and the resolution of a name provides a client
with a reference to a service that they may use. The generation and
resolution of names is therefore a crucial part of the FlexiNet framework.

A FlexiNet Nane may represent any interface. This might be a concrete
interface on a real object, or a more abstract interface which has zero or more
concrete implementations, for example an interface to a naming service that
is implemented by a number of distributed servers. Although this later case is
useful, the most usual use of names is to represent concrete interfaces.

There are two stages in the establishment of a client’s reference to a
(concrete) interface. First, a generator is used to generate a name for the
interface. By choosing an appropriate generator, a service can make coarse
grain decisions about the protocol used for communication between client and
server. For example, one generator might produce names that relate to a
UDP based protocol that is efficient over unreliable networks, whilst another
might produce names relating to an encrypted TCP based protocol.

Once a client has obtained a name they use a resolver to resolve the name to a
proxy for the original interface. Different resolvers are capable of resolving
name that use different protocols. A proxy is a local object that stands for a
remote one.

For a particular protocol, the information contained in a name may vary. It
must contain sufficient information to allow the resolver to construct a proxy
bound to the original interface. It may also contain hints about how this
binding should be created, for example what performance trade-offs should be
made, or what action should be taken in the case of communication failure.
Taken to an extreme, the name could contain all the code required in order to
create the binding. In this extreme, the resolver is not required at all. This
case is particularly useful, as it allows a client to resolve names for protocols
that it has not previously been configured to understand.
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Multiple Generators and Resolvers

14.3

The majority of interfaces within a particular service are likely to be named
using the same generator, as a ‘general purpose’ generator will usually
suffice. However, there is frequently the need for a service to use more than
one generator; for example a service may wish to use one protocol for ‘normal’
communication and a second protocol when communicating securely. It might
also wish to use special-purpose protocols to aid the debugging of a particular
interface, or for interfaces that lead to poor performance when accessed
remotely using the default protocol. For example, a read-only service may
wish to use a protocol that caches previous requests on the client machine.

Equally, a client may need to resolve names generated by many different
generators. This will typically be because the client has been passed
references to interfaces on services using different default protocols, or
services using special purpose protocols.

To support the use of multiple generators and resolvers, the concept of a
Binder Graph is introduced. The purpose of the binder graph is three fold.

1. During name generator, it provides an ordered list of generators that are
given the opportunity to name the interface in turn. By ordering the
generators within the list, a server can indicate naming policy
preferences.

2. During resolution, a node in the graph chooses the appropriate resolver to
resolve a particular name. The graph may be augmented with additional
resolvers dynamically, as a side effect of resolution.

3. The binder graph performs caching and housekeeping, to allow individual

generators and resolvers to be as simple as possible, and to ensure that
interfaces are consistently named and resolved.

Binder Graphs

Quite complex binder graphs can result from the composition of many
generators and resolvers. A typical graph is shown in This shows
three generators; X and Y are special-purpose generators that only generate
names for a small proportion of possible interfaces. Green is a general-
purpose generator and will generate a name for an arbitrary interface. The

Null Generator terminates the list of generators and is used to raise an
exception if a request is made that is not handled by X, Y or Green.

The graph also shows three resolvers, Smart Choi ce is itself a resolver, this
stores in its database two other resolvers, Green and Magenta, which resolve
names which use particular protocols.
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BinderTop

Figure 30 An Example Binder Graph

The root of the graph is ‘Cache’, which is both a Generator and a Resolver.
This performs caching of names generated and resolved by the other nodes in
the graph. The root of the graph is commonly referred to as ‘BinderTop’ and
many FlexiNet components require a reference to this, as it represents a
single access point for the generation and resolution of names. In particular,
any generator or resolver that needs to pass an interface by reference will use
BinderTop to generate and resolver names for those interfaces.

More Complex Binder Graphs

Some protocols have special requirements on the range of other protocols that
may be used to name interfaces that they pass by reference. For example, the
ITOP binder must conform to an imposed standard for the transmission of
interface references. If the default binder graph were used, the IIOP binder
might pass a name generated by some other protocol — which would breach
the ITOP standard. To overcome this problem, we may design a more complex
binder graph, shown in . The second cache in this graph is used
purely for IIOP names (IORs). This ensures that an IOR is generated for an
interface when required, even if some other name has already been
generated. This illustrates how the binder graph concept can allow complex
binding requirements to be met through the reuse of basic components.
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14.3.2

14.4

BinderTop

local BinderTop
used to generate
and resolve names

Figure 31 A Special-Purpose Binder Graph to Support 110P

Smart Choice

The function of the Smart Choi ce resolver is to choose the appropriate
protocol specific resolver to be used to resolve a given name. Rather than do
this directly, Smart Choi ce calls a resolve method on the name itself. The
name may then examine the available choice of resolvers, and pick an
appropriate one. In extreme cases, the name may create a new resolver, and
augment the binding graph. It may even perform resolution itself, completely
removing the need for a protocol specific resolver. This is particularly useful
for ‘one off protocols that will not be required when resolving other names.

Naming Proxy Objects

When a name is resolved, the resulting object will be either a ‘real” object or a
‘proxy’ object. The distinguishing characteristic of a proxy object is that it is
not itself named (and cannot be named). Instead, an attempt to name the
proxy object will return the name of the interface that the proxy represents.
The reason for this is simple, if client A is passed a reference to a service
object S (internally a name for S); and then passes this reference to a second
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client, B, then B should obtain the name for S, not the name for the
intermediate object. This is illustrated in _Fi%ure 32.

A passes B a
reference to
the proxy
object

B obtains
proxy for S

Figure 32 Passing References to Proxies

This subtlety is handled by the Cache. When naming an interface on an
object, if that object is a proxy object, then the object is asked for its name
directly.

A corollary of this is that proxy objects may implement only one (nameable)

interface. It is of course possible for them to implement other, engineering,
interfaces, but these cannot be passed by reference using FlexiNet.

14.5 Names as Objects

Names are themselves Java objects. This allows different naming classes to
be used to implement different strategies for resolution. In particular a name
may be able to resolve itself without the use of a resolver. This feature is used
when creating smart and generic proxies, as described in section A
further possibility is for a name to dynamically load or create an appropriate
resolver and add it to the Smart Choice’s database.

As names are always passed by value, care must be taken that they do not
become inappropriately large. For example, it is perfectly reasonable for a
naming class to contain a blueprint for the construction of a binder (See
chapter @, but it would generally be an unreasonable overhead if this
blueprint were carried in each name instance.

As names are objects, a client receiving a name is no more (or less) likely to
be willing to load and execute the name’s class as it would be to load and
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execute any other classes passed to it. The ad-hoc invention of naming classes
should be avoided, if these must be used in open environments where class
loading may be restricted for security reasons.

14.6 Generator Interface

The Generator interface has a total of five methods.

Nane generat eNane(Cbj ect obj,d ass cls, Fl exi Props qos)
This generates a name for the specified interface that meets the
required Quality of Service (QoS) constraints. cl s is an interface class,
and obj is the object that implements the interface. This may be a
proxy object.

The third parameter, qos is normally null, but may be used to specifiy
constraints on the type or format of the name returned. QoS
parameters are given as a set of Fl exi Props (see section . In
general, a generator should only generate a name if it both
understands, and meets the requirements of, every specified
constraint.

When QoS is not specified, the Cache binder at the head of the binder
graph will remember each name generated, so a generator below it in
the graph will only be asked to name an interface once. However, when
using QoS parameters, a programmer may require that different
names are generated for the same interface, in response to different
calls to gener at eNane so that each QoS instance can be individually
identified. For this reason, Cache does not remember names generated
when QoS is specified. If names meeting a particular QoS do required
caching, then it is up to the particular Generator to perform this
function.

bool ean grant Nanme( Cbj ect obj, d ass cl s, Nane nane,

Fl exi Props qos)
Grant the specified name to the specified interface with the specified
QoS. This is used to start up services at specific addresses.

voi d dropNanes(bj ect obj, C ass cls)
Remove all knowledge of all names generated for the specified
interface. Subsequent calls on these names should fail as if the name
has never existed. The generator must not subsequently reuse any of
these names to represent a different interface.

String stringifyName(Nanme nane) throws BadNane

Return a stringified form of the specified name. This is intended to be
parsed back into a Name using resol ver. par seNane. The method
Nane. t oSt ri ng simply provides a human readable description of the

name, and may not contain sufficient information to re-parse. Section
14.8.1) describes the format for stringified names.

bool ean addGener at or (Generat or Q)
Each generator (notionally) contains a list of alternate generators to be
used to handle calls that this generator is unable (or unwilling) to
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handle. This called adds the specified generator to the head front of
the list.

The (first) alternate generator is used in the following circumstances:

- To generate names for interface that this generator does not wish
to name.

- To generate names when this generator cannot meet the specified
QoS.

— To grant names that this generator cannot grant.
- To stringify names that this generator cannot stringify.

The list of generators is terminated with a special Nul | Gener at or
which returns exception or failure conditions whenever called. In
addition to this, when dropNanes is called on a generator; the
generator should call dr opNanmes on the nested generator, in addition
to performing any local processing.

14.7 Resolver Interface

The resolver interface has just three methods, as follows:

bool ean resol vesProt ocol (String protocol)

Return true if the resolver is capable of resolving names in the
specified protocol. A resolver must normally be capable of resolving all
valid names in a protocol it resolves. If, in practice, a number of
resolvers are required to manage different partitions of a namespace,
then these should be wrapped and presented to the system as a single
resolver.

bj ect resol veNane( Nanme nane, C ass cl s, Fl exi Props qos)
t hr ons BadNane

Resolve the specified name and return an object implementing the
interface it represents using the specified QoS (normally null). This
object will ordinarily be a proxy object, or the object that the name was
originally generated for - if that object is local. BadNane should be
thrown if resolution fails. Note, there is no requirement for the
resolver to validate that communication with the named interface is
actually possible. The cl s parameter is the class of the interface that
the name refers to. This parameter is specified to remove the
requirement for names to include their interface type. This is
always available from the context of the resolution.

As with generating names, the Cache at the head of the binder graph
will remember which names have been resolved, and a resolver will
not be asked to resolve the same name twice. However if QoS is
specified, the resolver must perform any caching that is required.

Nane parseNanme(String nanme) throws BadNane
Parse a name previously generated by Generat or. stri ngi f yNane.
Throw BadNane if this cannot be accomplished.
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14.8

Name Interface

14.8.1

Name classes all implement the abstract class Name. Nanme is actually
specified as an interface, as this gives developers more freedom in the
implementation of concrete Naming classes. Nane has two methods

® (bject resolve(d ass iface, Bi nderDB ct xt,
Fl exi Props qos) throws BadNane
Resolve the name to an interface of class i f ace with the specified QoS
constraint. To aid resolution the binding context, ct xt, is supplied.
This is essentially a small database of resolvers and other useful
information. Typical implementations will lookup the appropriate
resolver within the context, and then call r esol veNane on it.

®* String getProtocol ()
Return the protocol that the name uses. This is used within resolvers
for type checking.

Stringified Name Format

It is possible to represent most name classes in a stringified format. This is
intended primarily to aid debugging. In the normal case, Names should be
passed between JVMs, or stored, using FlexiNet serialisation. However, to
allow clients to locate their first reference to the distributed system, a
secondary mechanism is useful. This is usually a stringified reference to a
naming service. It is important to note that some names may not have a
stringified form.

The format of a stringified name is a protocol name followed by a colon, and
then a protocol specific string. Protocol names are strings made of any
character other than colon and open and close parenthesis. To allow new
protocols to be created by different organisations without fear of name-clash,
each protocol name should be proceeded by the standard Java package name
prefix for the creating organisation. For example “UK.co.ansa.flexinet.rrp”.
An exception is made for Citrix Systems (Cambridge), as the originator of
FlexiNet, who may use simple short names.

The protocol specific string usually (but not exclusively) comprises of a
number of sections contained in parenthesis. These correspond to the
structure of the name object they represent. As names may contain other
name-like objects, these is typically recursively structured. For example the
name of an interface on a cluster, using the request reply protocol is:

rrp: ((123. 45.56. 78: 1000) ( 12345678: 12345678) ) ( 4)

This has two sections, the cluster address and the interface identity. The
cluster address section is itself composed of two parts: the TCP endpoint and
the cluster identity.
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14.8.2 Semantics of Names

Names are used to represent interfaces, however they are not strictly
identifiers for interfaces — two different names may be used to represent the
same interface. Names can be compared for equality, however no conclusion
can be made as to whether two unequal names represent the same interface.

Two distinct names may act identically — either absolutely or when viewed by
a particular client. Names are not considered as secret. They are passed
between processes in plain text (unless the protocol used for communication
is inherently encrypted). They may also be copied.

Each name relates to a protocol. The protocol is effectively the class of a
name. In practice, a protocol is identified by a Java string. The protocol “self’
is used to identify names that resolve themselves. A resolver for any other
protocol must resolve all correct names in that protocol. (This removes the
need for a one to many protocol to resolver mapping).
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15 GENERIC MIDDLEWARE

15.1 Introduction

Many of the facilities provided in a middleware platform such as FlexiNet are
generic, in that they do not depend on the type of the interfaces, object or data
involved. However some features, such as type checking and marshalling
(serialisation) are type specific. This has lead to one of three paths being
taken in the design of middleware:

1y

2)

3)

Type checking and marshalling are avoiding, for simplicity, and/or to
allow generic code to be wused. Most messaging and group
communications systems have taken this approach. The obvious
disadvantage is that type safety, and utility, is lost.

Type specific code is generate on a case-by-case basis. As the type
dependant code is application specific, this requires the automatic
generation of middleware code (for example the use of stub compilers).
Typically, this leads to heavyweight stubs that are protocol specific.
Systems employing this technique tend to support few protocols, because
of the need to generate different stubs for each.

The type information is encoded and passed as additional parameters.
This adds to the complexity of the middleware system. CORBA ORBs
employ a mixture of (2) and (3).

In Java, there is a fourth possibility. Java is strongly typed, and we may cast
an object to a generic type (Cbj ect ) and back to a specific type in a type safe
way. In addition, the introspection facilities of JDK 1.1 provide sufficient
information to allow marshalling to take place in generic code. This has
allowed FlexiNet to be designed the following features:

1)

2)

Stubs are only used to cast invocations to a generic form. They are
completely protocol independent. This has lead to stubs that are simple
and universal. An ‘on-the-fly’ stub generator has been constructed to
build these stubs. This would not have been a cost-effective approach
with heavyweight or protocol-specific stubs.

All other middleware code is generic, but type safe.
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3) Generic data may be passed as objects, rather than bytes. This allows
Java to enforce the type safety, and makes debugging considerably
easier.

4) Methods may also be passes generically, and are type checked by Java.

Stubs

The purpose of a FlexiNet stub is twofold. Its primary function is to convert
an invocation form a type specific form to a generic form. This is represented
by an Invocation object. The stub’s secondary function is to store naming
information to allow it several stubs to multiplex calls over the same
communications stack.

An simplified example stub is illustrated in A complete example
can be found in chapter

public O ass Foo Stub extends Flexi Stub inplenents Foo
{
private Object body;
private Nane nanme;
static WrappedMethod barMethod = ...;

/1 method from proxied interface
public Baz bar(String s,int i) throws myException;

Object[] arg = new Object[2]; /1 convert argunents to
arg[0] =s; /1 object array
arg[1] = new Integer(i);

/1 construct new invocation object
Invocation inv = new Invocation(barMethod,name,arg);

inv.invoke(body); /1 invoke invocation on body
Object rc = inv.getReturnValue();
if(inv.isExceptionalResult())
/'l cast to approriate exception type and re-throw
if(rc instanceof myExcepetion)
throw (myException) rc;
else if (rc instanceof RuntimeException)
throw (RuntimeException) rc;
else
throw new FlexiNetRuntimeException(rc);

return (Bar) rc; /1 return normal result

Figure 33 Example Stub
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15.3 Invocation Class

The I nvocation class is used to represent an invocation. It contains
information about the target object and method, the arguments and (after
being invoked) the return value or exception raised. For the most part,
I nvocat i on is a record class, with get and set methods. It also has a number
of other methods, in particular invoke(..) which will execute the stored
invocation on the target object. The methods and constructors are listed
below.

I nvocati on()
Construct a new invocation object.

I nvocat i on( W appedMet hod net hod, Cbj ect target, Qbject args[])
Construct a new invocation object from a (method, target,
arguments) tuple. The method is given in a wrapped form, which
allows efficient access to the method’s signature for serialisation.

hj ect getTarget ()

voi d set Target ((oj ect target)
Get/set the target object upon which the invocation will
ultimately be invoked. The target may also be a representation of
the ultimate destination (for example a name for it). This feature
is typically used in remote method invocation, where an
invocation object on a client contains the name of the target object
on the server.

Met hod get Met hod()
voi d set Met hod( Met hod m
Get/set the method to be invoked.

voi d set Method(String name, String sig)

voi d set Met hodd ass(C ass i faced ass)
Set the method to be invoked in from it's signature, and the
interface class that implements it. This is used as an efficient way
of constructing an invocation from a serial form.

String getMet hodNane()

String getMethodSig()

O ass[] get Met hodPar anet er Types()

d ass get Met hodRet ur nType()
Get various attributes of the method. These functions are
provided as more efficient access than the corresponding methods
on j ava. |l ang. refl ect. Met hod. In addition, they may be used
before the method is fully resolved.

hj ect[] get Argunents()

voi d set Argunent s(Cbj ect[] 0)
Get/set the array of arguments to passed when the invocation is
invoked.
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bj ect get Ret urnVval ue()
voi d set Ret ur nval ue( Cbj ect 0)
voi d set Excepti onal Ret ur n( Throwabl e t)

Get/set the return value of the invocation. Normally these are set
automatically, as a result of a call to i nvoke(). The method
set Excepti onal Ret urn should be used when the invocation
raises an exception.

bool ean i sExcepti onal Ret urn()
Determine if the invocation threw an exception.

voi d i nvoke() throws BadCal | Exception
Perform the invocation on the stored target. If target implements
the GenericCall interface, then target.invoke() is called,
with this invocation as an argument. This may throw a
BadCal | Excepti on. Otherwise, if target implements the stored
method, this is invoked using Java core reflection. If t ar get
implements neither of these, a BadCal | Excepti on is thrown.

voi d i nvoke(Cbject target) throws BadCal | Exception
A second form of invoke which takes an explicit target.

Engineering Support

Invocation objects are typically used to represent invocations that will
ultimately be invoked on a remote machine. To aid the engineering of protocol
stacks, Invocation objects may store references to a number of engineering
objects relating to the reflection, or remote execution of the invocation. These
are accessed via a number of additional methods as follows:

Sessi on get Sessi on()

voi d set Sessi on( Sessi on s)
Get/set the session associated with this invocation. Sessions are
engineering objects used to orchestrate communication with a
remote machine. Sessions are described in section m

I nput Buf f er get | nput Buffer()

voi d set | nput Buf f er (I nput Buf fer x)
Get/Set the input buffer related to this invocation. On the client,
the input buffer contains the serialised result, on the server it
contains the serialised invocation.

CQut put Buf f er get Qut put Buf fer ()
voi d set Qut put Buf f er (Qut put Buf fer x)
Get/Set the output buffer related to the invocation.
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voi d recycl el nput Buffer()

voi d recycl eQut put Buffer()
Discard and recycle the input or output buffer. This method is
called once the buffer is no longer needed.

voi d push(Cd ass cl s, Ohj ect obj)

bj ect pop(d ass cls)
Invocation objects maintain a stack of ‘additional arguments’ or
‘additional results’ that may be used to pass extra information
between engineering object on the client and sever. The push and
pop methods take an additional argument, the expected class of
the object being pushed/popped. This must be the same for a pair
of push/pop operations. It is used to optimise the serialisation of
the object’s class. See section P6.7]for details.

i nt get StackSi ze()
Return the size of the stack of additional arguments/results.

bj Li st get Rawst ack()

voi d set Stack(int noitens, DeSerializer deserializer)
A low level engineering interface to get/set the stack as a whole.
Normally only used by the serialisation layer in remote invocation
stacks.

Different fields within an Invocation may be valid at different stages of
resolution or execution of the invocation. When the stub creates an
Invocation, only the method, target and arguments are set. On return, the
stub expects the result to be set. Other fields may be used to process the
invocation or may be left unused.

Discussion

The invocation class is a general way of representing an invocation, and may
be used in a purely local context. In particular a stub and invocation object
may be used as a mechanism for achieving local method reflection. This is
discussed in section

In the design of the | nvocat i on class, care was taken that invocations could
be efficiently invoked on stub objects. This is important as client-side
reflection is often used to wrap a remote invocation (so called Smart-Proxies).
To achieve this, all FlexiNet stubs implement the Generi cCal | interface.
When an invocation is invoked on an object implementing Generi cCal | , this
corresponds to a simple and direct method invocation. Composition of stubs
used for reflection and remote execution therefore gives both a high degree of
abstraction, and high performance. Smart Proxies are described in section
17.3
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16

BINDING

16.1

Introduction

16.2

Binding is the process of linking a client proxy to a service object. It is
undertaken by two complementary components. On the server, a generator
generates a name for an interface. This name is passed to the client, and is
then resolved, usually by a matching resolver. (See chapter . The term
binder is used to describe both of these components, and in general, one object
will be responsible for both generation and resolution.

Beyond this definition, the implementer of a generator or resolver has few
restrictions. However, the majority of binders for remote communication have
a standard form, and this is described in this chapter. It should be noted that
not all binders will conform to this, and in particular, Cache and
Smar t Choi ce are two binders that do not.

Protocol Stacks

On the client, a stub is usually connected to the top of a protocol stack. This is
a chain of layers which ultimately is connected to a network endpoint of some
form (typically a socket or set of sockets). On the server, there is an analogous
arrangement, with the top of the stack connected to the application level
service object(s). This is illustrated in

The protocol stack covers much more than is usually regarded as a ‘protocol .
In addition to the manipulation of network packets, the stack will be
responsible for resource management, and any other invocation related
functions, such as authentication, access control, auditing, locking,
transactions, failure tolerance etc. The specifics covered by a particular stack
are dependant on the class and configuration of the binder used to create it.
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Figure 34 An Abstract Protocol Stack

Binders as Stack Factories

16.3.1

The primary purpose of a binder is to generate and/or resolve names. In a
generator, when a name is generated, sufficient infrastructure must be
constructed to allow invocations arriving off the wire to be recognised as
invocations on the named interface. In general a generator must therefore
create a new protocol stack associating some network endpoint with the
named interface.

Similarly, in a resolver, when a name is resolved, the created stub must be
associated with the top of a binding stack that will ultimately create a
network connection with the peer on the server. This will again require the
construction of a new protocol stack, or the reuse of an existing one.

Multiplexing

It would be extremely inefficient if every named interface was associated with
a different network endpoint, and required a different protocol stack. For this
reason, most binders can allow some degree of multiplexing through the
stack, so that some or all of the layers are shared. In fact, for the majority of
protocols the entire protocol stack can be shared. Exceptions to this rule are
generally protocols that have strong requirements for unshared sockets — for
example multicast or SSL protocols.
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In the majority of binders, there is therefore a single protocol stack used for
both the client (resolver) and server (generator). This stack is created upon
the construction of the binder, or on the first call to generate or resolve. Upon
subsequent calls to gener at eNane, the binder configures a multiplexing
layer within the stack to read and resolve the identity of the callee object.
Upon calls to resol veNane, a stub is created containing the name, and
linked to the (shared) top of stack.

Generic Call

16.4.1

When designing the various layers that make up a FlexiNet protocol stack,
the intention was to encourage reuse. For this reason, each ‘invocation’ layer
corresponds to a standard interface. Logically, this interface should be
CGenericCal |, as each layer gives an invocation abstraction to the layer
above it (on the client) or below it (on the server). However, as a single layer
object is often used to manage both client calls (down the stack) and server
calls (up the stack) this interface cannot be used — as a Java class cannot
implement an interface twice. To overcome this dilemma, two new interfaces
are defined; Call Up and Call Down — these are simply distinguished
synonyms for GenericCal | .

The order of the layers may be varied, providing that the appropriate
information is available in the | nvocati on object in order for a layer to
perform its task.

‘ UDP Layer ‘

v

Network

Figure 35 Decomposition of a Name

Decomposition of Names

In order to allow multiplexing layers to be reused in different protocol stacks,
it was essential that they were not tied to strongly to the class of name being
used. The approach taken is to construct names from a nested series of
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16.5

components which may be decomposed as the protocol stack is traversed.
Figure 35 gives an example name and stack fragment. When the Name layer
ﬁ@n the client, the ‘target’ field of | nvocat i on contains the full name
of the interface. The name layer extracts the interface id, and overwrites the
target field of | nvocati on with the address from the TrivNanme. It is
therefore not concerned with the format of this part of the name, be it a
UDPENndpoi nt, TCPEndpoi nt or other addressing information.

Similarly, when the UDPLayer is called, the target field of | nvocati on
contains a UDPEndpoi nt . The UDPLayer is not concerned with what form of
multiplexing preceded it, or how the UDPEndpoi nt was incorporated into a
full name.

The naming information recorded in an invocation object will vary from a full
name to an arbitrary object containing addressing information. To preserve
some type checking, the tag interface NaneFr agnent is used to indicate an
object used for naming.

Addresses

In general a FlexiNet name may represent an abstract interface or a group of
interfaces. However at some point during invocation, the target interface for
the invocation (or a sub-invocation) will be identified. Addressing information
for this interface is stored in an object that implements the Address
interface. This has a single operation that is used by the protocol stack to
determine the low level multiplexing endpoint. For example, the service
socket that the client must connect to. This endpoint is significant, as
concurrent invocations to the same endpoint must be managed, to ensure that
requests and replies are correctly matched.

Sessions

If a series of calls are made between a particular client and server, then there
may be scope to develop a ‘shared model’ of part of the environment, and
reduce the per-call overhead. We call such an abstraction a ‘session’. Simple
examples of this include piggy-backing reply acknowledgements onto further
requests, and co-ordinated failure management. More complex examples
might include building shared dictionaries of short-codes for commonly used
class or interface names, or establishing ‘session keys’ for security.

In some systems this role is taken by a connection object, for example a TCP
connection. However this is inadvisable, as the trade-offs related to
connection duration and session duration are quite different. For example, on
a dial up line, maintaining a connection may be prohibitively expensive —
however, maintaining a session would lead to more efficient calls, and hence a
reduction in cost.

In a FlexiNet client stack, each invocation that has been resolved to a
particular Addr ess is associated with a session object. The session object has
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a number of standard fields, and in addition acts as a dictionary for
additional (key,value) pairs. On the server, in incoming invocation is
associated with a session as soon as the client’s claimed identity can be
determined.

The session object may be used to cache information between calls, and to
pass additional information between layers in a single call. The lifetime of
sessions 1s maintained by the RPC Layer (as it is closely tied to the RPC
protocol), and in general a session may be destroyed at any time when a call
is not actually in process. Sessions should therefore be used to cache
information, rather than to store it permanently. For most protocols under
moderate load, sessions are expected to survive for a least a few minutes.

Concurrency

Probably the biggest complication in binder engineering is support for
concurrency. Unsurprisingly, it is also one of the biggest causes of lurking
bugs. Problems tend to occur with race conditions between incoming or
outgoing messages and timeouts for resends or session/connection
termination. In FlexiNet, a simple concurrency control model has been
designed, to reduce the incidence of bugs. As the performance of a protocol is
closely linked to the threading policy, the model does not dictate a particular
policy, but makes it easier to manage concurrency regardless of the threading
policy.

The essential idea is that within a particular region of the protocol stack, we
use a mutex to ensure that there will be at most one call in progress on a
particular session. As calls on different sessions are independent, this
removes concurrency concerns from the majority of layers. In general only the
layers responsible for gaining the mutex need be concerned with concurrency
at all. The mutex is engineered as part of the session object. It is taken in
three different circumstances.

®* When a session is associated with an outgoing call. This is managed by
the C i ent Cal | Layer (or an equivalent).

* When a session is associated with an incoming message. This is
managed by the Sessi onLayer (or an equivalent).

* When a timeout occurs, and some action needs to be taken; for example
the destruction of the session, or a retransmission. This is handled in
the RPC Layer.

In each of these cases, care is taken to deal with all possible race conditions.
This removes the majority of the concurrency control complexity, and leaves
other layers free to manipulate sessions and handle multiple calls. This is

illustrated by
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Figure 36 Session Mutex

Let us consider the flow of an invocation in detail. When an invocation is
made on a client stub, it will pass down the stack until it reaches the
ClientCall Layer. Up until this point, a session has not been allocated to
the invocation, and there may be many similar invocations in progress at
once. However, the calls are independent, and any shared state will be
contained within a particular layer (which must perform its own concurrency
control).

In the A i ent Cal | Layer, a session is obtained from the Sessi onManager
before proceeding. In the standard implementation of Sessi onManager, this
never blocks, and an existing session is returned, or a new one created if no
suitable ones are available. Generally, there will only be a small number of
sessions in use between a particular client and server. Once the session has
been obtained, the mutex is taken. There is some careful coding here, as there
is a potential race condition between obtaining a session and acquiring the
mutex. The chance of race condition is low, and a rapid retry loop is used to
handle it. In some message based protocols, the attempt to obtain the mutex
may cause the thread to block. This can only occur if a protocol message is
received on the session during the race period. If this occurs there will be a
short delay — but long term delays cannot result.

Layers below the i entCal | Layer may safely use the session without
concern for concurrency issues. The session mutex may be held on the client
for the duration of the call, or it may be temporarily released within the RPC
Layer whilst the thread is blocked awaiting a reply. The details of this are
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dependent on the RPC Protocol implemented by the particular RPC Layer.
This must be aware of, and deal with, any race conditions.

Typically, the RPC Layer will manipulate a protocol state transition table,
and store the current state for each session, within the session object. This
may be safely manipulated within the mutex-region and used to manage race
conditions.

On the server, a received call is associated with a new or previous session as
soon as the client’s peer session can be determined. Typically this is the first
thing to be read from the incoming message. (In some connection-oriented
protocols, the session is tied to the connection, so the session mutex is held
even before the message is read). Again, the chance of delay due to blocking is
low. This may only occur if the session itself it timed-out, which is an unlikely
event. If timeout does occur, the call is discarded, and it is left to the client to
retry. In this rare case, a new session will be allocated (possibly after a
protocol specific session establishment exchange).

The session mutex is held at least until the RPC Layer. In message based
protocols, the mutex is released before the call proceeds further up the stack.
This is to allow the call to be processed in parallel with further protocol
messages. For example in the Rex protocol, the client may probe the server to
check that it is still processing the request. Although the mutex is released,
the session may still be used by subsequent protocol layers, as the RPC Layer
must preserve the following invariant. There will be at most one server-side
call in progress above the RPCLayer, per session, and the session will not be
destroyed until it completes. As the session may be simultaneously be used
below and above the RPC Layer, care must be taken that state stored in the
Session object is not inappropriately shared between these layers. It is up to
the layer designers to ensure this. (The Invocation object provides an
alternative place for shared state).

This approach to concurrency control has prove particularly useful when
adding low level protocol layers, such as the Rex Fragmentation layer (See
section R0.3.5), as the strong guarantees it provides considerably simplified
the design.

Resources

There are a number of resource classes used within a protocol stack. In
particular threads, buffers and sessions need to be allocated and destroyed.
An issue here is maintaining the separation between layers. For example, on
the client, a high layer must create an output buffer for a request, but this
output buffer will ultimately be used by the bottom layer in the stack. The
naive approach would have been to define a single class for each resource
type, so that layers could be freely mixed. This was rejected, as it would
impose a ‘one size fits all’ strategy for different protocols. Instead, we use
resource factories to provide an abstract resource creation interface. In the
example, the high client layer would contain a reference to an output buffer
factory which it would use to create output buffers on demand. The binder
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16.8

could then choose an appropriate factory to best meet the needs of the bottom
layer.

This topic is returned to in chapter where resource management is
considered in more detail.

Binder Configuration — Blueprints

Most binders construct a protocol stack of a number of layers, and link these
layers to each other. In addition they must inform the layers of resource
factories and helper objects. There is generally a degree of flexibility in the
configuration of a binder — for example there may be alternatives for some
layers, that provide a different degree of multiplexing, or an alternative
network protocol. There is also typically a choice of resource factories, or
policies for the reuse of resources. Finally, simple parameters may be altered,
such as the allowed degree of concurrency, or the port to listen on. The
configuration of such a potentially complex system is non-trivial. A ‘blueprint’
system has been designed which allows a binder to be specified and checked
for consistency. This is described in chapter @
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17 REFLECTION

17.1 Introduction

Classic reflection may be considered as a ‘look aside’ on some aspect of the
execution of a system. FlexiNet is concerned with method reflection. In a
classic system, when a method is invoked on an object, the call is reflected to a
meta object which may examine and modify the invocation before allowing it
to proceed. Similarly, the result is reflected to the meta-object, which may
modify it. Typical uses of reflection include auditing of requests, or controlling
concurrent accesses to an object (as the meta-object may block and/or reorder
requests).

In some senses, an RPC system can be considered as reflective. A client
invokes a method on an object, and this is instead passed to a meta-object
(The RPC system) which manages the invocation. The use of generics within
FlexiNet encourages this approach.

17.2 Reflection in Protocol Stacks

Destination

Object

Generic Communication

Typed Communication
auto generated STUB ‘ Generic Invocation Layer

Untyped Communication

ol RIS 2

Application Code Client Side Server Side
Meta Objects Meta Objects
Middleware Code ’ ’
Reflective Reflective

Protocol Layers Protocol Layers

0 frieiaiondd [ )0 [tk

Figure 37 A Reflective Protocol Stack

Reflective
Protocol Layers

)

12-Feb-99

FlexiNet Architecture 86



17.3

The function of a stub in FlexiNet is very similar to the function of a
reflective object in a reflective object system: it converts a call from a type
specific, to a generic form. We may therefore consider each layer in a protocol
stack as a reflective layer, and indeed high level layers on either the client or
server may perform exactly the same functions as meta-objects in a Classic
reflective object system (. This form of reflection is most
appropriate for protocol-specific reflection as opposed to application or class
specific reflection — this is because all objects named using a protocol will
generally have the same reflective layers.

The design of protocol stacks, and binders to create them, is a complex task.
Frequently, a programmer wishing to utilise reflection will not be skilled in
the construction of binders, and in addition may wish to use the same
reflective layers over multiple ‘standard’” protocols. A more appropriate
interface to reflection for many applications is therefore the use of generic
smart proxies. This will be described in section after the simpler non-
generic case is considered.

Smart Proxies

17.3.1

Smart Proxy is a term used to refer to code that is loaded onto a client in
place of the standard (dumb) proxy created by a stub-stack pair. Typically, a
smart proxy is used when some ‘intelligence’ is required on the client side of a
invocation, for example to perform caching. Such intelligence is usually
service specific, and although it could take place within a custom protocol
stack, a lightweight approach is more appropriate.

In FlexiNet, the use of smart proxies is initiated by the server, and the client
need not be aware that a particular interface is handled by a smart proxy. In
fact, the name resolution process described in section is all that is
required in order to implement smart proxy-like behaviour. However, in order
to make it easy to write smart proxies without knowledge of the resolution
process, an additional API in the form of the Smart Proxy superclass has
been defined.

Mechanism

The Smart Proxy implementation makes use of the fact that Nane. r esol ve
may return any object implementing the required interface. We may therefore
define specific naming classes that encapsulate proxy objects, which may be
returned from calls to r esol ve.
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Figure 38 The Object Graph for an Example Smart Proxy

A secondary issue is how a service arranges that (a name for) a Smart Proxy
is passed in preference to an ordinary reference. The straightforward
approach is to define a Generator to spot cases where Smart Proxies should
be used, and generate a name for an appropriate smart proxy. This approach
is reasonable, however it assumes that the designer of a Smart Proxy has a
reasonable understanding of the naming architecture. It is also relatively
complex for a ‘simplifying’ abstraction.

To avoid these issues, a lateral approach was required. We note that, by
definition, a service is aware that it is using Smart Proxies. We can use this
fact to give straightforward semantics to the use of Smart Proxies. We
arrange that reference to smart proxies themselves are the only special cases.
A server may therefore create a proxy locally, and then pass a reference to
this (rather than to the service itself). FlexiNet will spot this, and create a
smart proxy on the client to match. The proxy itself will normally contain a
reference to the ‘real’ service. This will be treated as an ordinary reference
and a dumb proxy will be created accordingly.

This approach provides a simple and straightforward means for a
programmer to indicate that a smart proxy should be used, and does not
require the any additional management APIs.

The object graph resulting from the use of a smart proxy is illustrated in
The definition of the proxy itself is given in the following section.
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17.3.2 SmartProxy Class

The abstract class Smar t Pr oxy has been created to manage the complexities
of name generation and resolution. A programmer wishing to use a smart
proxy, extends this abstract class by adding the appropriate methods for the
proxied interface. Generally, they will also wish to add a reference to the real
service interface. An example caching proxy for a read-only service is given in

This corresponds to the example object graph in

The Smart Proxy class works by extending the Nane and ProxyQbj ect
interfaces. As it is a ProxyQbj ect, it will be directly asked for the name it
represents during serialisation, rather than having a name generated for it.
(Section P6.10.2). It returns itself as a suitable name. During deserialisation,
the r esol ve method will be called on the smart proxy (acting as a Nane), it
will then return itself as a suitable proxy.

public class RLProxy extends SmartProxy inplenments RenotelLookup

I reference to ‘real’ service
publ i ¢ Renot eLookup service;
/l'local cache of values. Service is read only
/I so no invalidation protocol is needed.
transi ent Hasht abl e cache;

public RLProxy() { this(null); }

publ i ¢ RLProxy(Renot eLookup s)
{

service = s;

cache = new Hasht abl e();

}

/I RemoteLookup.get(key)
public Cbject get(String key)

/l first look in cache
bj ect val ue=cache. get (key) ;
i f(value==null)

// not in cache, lookup in service
val ue = service. get (key);
i f(valuel=null) cache. put (key, val ue); // store in cache

}

return val ue;

}

Figure 39 Example Smart Proxy
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17.4 Generic Proxies

It is often useful to combine the flexibility of binder reflection, with the ease
of programming of smart proxies. The generic proxy abstraction is designed to
meet this requirement. A generic proxy is an object that sits between a
standard stub and the top of the communication stack. It therefore acts like
an additional layer to the stack, and provides an environment for reflection,
but it is not tied to a particular binding protocol, and may be used with many
binders.

Like Smart Proxies, Generic Proxies are actually FlexiNet names, however
the generation and resolution process is different. As Generic Proxies are type
independent, the technique used for generating Smart Proxies is not
applicable. Instead, a special Gener at or must be constructed to generate
Generic Proxies of a particular class. Like any generator, this may choose
whether to generate a name for a particular interface, or whether to pass it to
the next generator in the list (See section .

The designer of a generic proxy generator needs to understand a little about
the use of FlexiNet names. It is not possible to simply construct a proxy
containing a direct reference to the service object — as serialisation of this
object will lead to that reference been replaced by another proxy, leading to
unbounded recursion. Instead, the proxy should contain a Name for the
interface, which may be generated by calling the next generator in the list
(thus avoiding recursion).

In general, a generic proxy may contain many names. The abstract classes
Generi cProxy and Generi cProxyGenerator are provided to help with
their construction. The majority of generic proxies contain only one name —
the name of the ‘real’ server object. To further simplify the construction of
such proxies, the abstract class Si npl eGener i cPr oxy is provided.

gives the Smart Proxy example from as a generic proxy using the
Generi cProxy class, and gives the same example using
Si mpl eGeneri cProxy. The two examples result in an identical object graph,

shown in [Figure 42

Invocations are made by the client to a stub object, which then calls the
i nvoke method on the generic proxy. (See section . The proxy then
manipulates the call and if appropriate, performs a remote invocation by
calling a second stub object. It should be noted that these nested calls are
handled by the stub’s Generi cCal | interface, and have a low overhead.
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public class ROProxy extends GenericProxy inplenments Name

{

public Nanme serviceNane; // the nanme of the real service

transi ent Cbject service;// (a dunmb proxy for)
/1l the real service
transi ent Hasht abl e cache;

publ i ¢ ROProxy(Nanme n)
{

servi ceNane = n

}
public ROProxy() {}

/1 Nane.resolve - called on client on creation
public Cbject resolve(d ass iface, Bi nder DB ct xt,
Fl exi Props qos) throws BadNane

{
cache = new Hasht abl e();
service = serviceNane.resolve(iface,ctxt, qos);
return super.resolve(iface,ctxt, qos);
}
public void invoke(lnvocation i) throws BadCal | Exception
{

/| assune met hod=get (string)->o0bject (by construction)
String key = (String) i.getArgunents()[O0];

oj ect val ue=cache. get (key);
i f(val ue==null)

i .invoke(service); // performrenote invocation

if(!i.isExceptional Return())
{
val ue = i.getReturnVal ue();
i f(value!=null) cache. put (key, val ue);
}
el se

i . set ReturnVal ue(val ue);

Figure 40 Example Use of GenericProxy
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public class ROProxy2 extends SinpleCenericProxy
{

private transi ent Hashtabl e cache;

/] for GPGenerator
publ i ¢ ROProxy2( Name n)

super(n);
cache = new Hasht abl e();

}

/] for serialization
publ i c ROProxy2()

{
cache = new Hasht abl e();
}
public void invoke(lnvocation i) throws BadCal | Exception
{

/1 assunme met hod=get (string)->o0bject (by construction)
String key = (String) i.getArgunents()[O0];

hj ect val ue=cache. get (key) ;
i f(val ue==null)

/1 performthe invocation usng super.invoke
super . i nvoke(i);
if(!i.isExceptional Return())

{ val ue = i.getReturnVal ue();
i f(value!=null) cache. put (key, val ue);
}
el se
{
i . set ReturnVal ue(val ue);
}

Figure 41 Example Use of SimpleGenericProxy
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Figure 42 Use of Generic Proxies

public class RLGenerator extends Generi cProxyGenerator
{

publ i c Name generat eNanme( Cbj ect obj, d ass cls, Fl exi Props qos)

/1 only generate nanes for a particular class
i f(cl s==Renot eLookup. cl ass)

{
/1l create a skeleton to wap the object on the server
RLSkel et on skel = new RLSkel et on(obj);
/1l generate a name this skeleton
Nane basenane = gener at eBaseNane(skel, cl s, qos);
/1l return a proxy that references the skel eton
return new RLProxy(basenane);

}

el se

return generat eBaseNane(obj, cl s, gos);

Figure 43 An Example Generator that Creates a Proxy/Skeleton Pair
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17.4.1

17.5

Destination
Object

Generic
Proxy

Generic
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Figure 44 Using Proxies and Skeletonsfor Reflection

Generic Skeleton

FlexiNet does not normally require server-side stubs (or Skeletons as they are
often called). However, when using generic proxies, it is often useful to add a
reflective layer to the top of the server stack. This can easily be arranged in
the Generic Proxy Generator, and an example generator to do this is shown in
Figure 43

Together a generic proxy/skeleton pair can be used to augment an existing
protocol with an additional ‘meta’ layer on each side. For transaction
processing in FlexiNet, for example, this technique is used to pass the
transaction Id from client to server, as an additional parameter in each call.

illustrates.

Local Reflection

The generic call interface may also be used when building meta-objects for
local reflection. For local reflection a reflective object is required that
implements the service interface, and hands off invocation to a meta-object
that provides a wrapper around the service-object. In FlexiNet terms, this
corresponds to a proxy object (which is a simple stub), a meta-object (which
implements the Generi cCal | interface), and the unmodified service-object.
This is illustrated by example in

12-Feb-99

FlexiNet Architecture 94



Application Class to be reflected
O ass Fool npl inplenments Foo

{
.

Meta-Class
class MetaAudit implements GenericCall

{
Object realObject;

public MetaAudit(Object 0)
{
realObject = o;

}

public void invoke(Invocation i)
throws BadCallException
{

System.out.printin(“Calling: “ + i.getMethodName());
i.invoke(realObject);

}
}

Application code using reflected object
GenericCall g = new MetaAudit(new Foolmpl());
Foo reflectedFoo = (Foo) FlexiNet.reflect(g,Foo.class);

// may now use reflectedFoo

Figure 45 Local Reflection
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18

RESOURCE MANAGEMENT

18.1

Introduction

18.2

Resource management is concerned with controlling the population of
different kinds of resource. Without a resource management abstraction,
resources are simply created and destroyed as required. By recycling or pre-
allocating resources, we can amortise the cost of creation and garbage
collection. By limiting the population of different types of resource we can
prevent or control overload. In particular, during overload, the additional cost
relating to allocation or garbage collection will exasipate the problem. In
addition, if some resources are bounded (for example total CPU, or memory)
then controlling the resources explicitly can allow graceful degradation of
service (for example a server may refuse to allow additional clients to connect
when overloaded).

The resource management abstractions introduced in this section are used for
a secondary purpose. As they abstract the creation of resource, they may be
used for abstract resource management. This is where a component creates a
resource without having to know its concrete type. For example in the Serial
Layer, a Serializer resource must be created in order to serialise new
requests. As this creation is abstracted by a serialiser factory, the Serial
Layer can be configured to use different serialisation policies by changing the
factory that it uses. Abstract resource management is a key feature of
FlexiNet, and is a pre-requisite for the reuse of many protocol layers.

Factories

The simplest resource management abstraction is a Factory. A factory is an
object that constructs resources of a particular class on demand. This has two
advantages over the naive use of a constructor.

® The callee need not know the concrete class of the object being created

® There can be many factory instances for the same class, and each can
maintain different ‘static’ state.

An example Factory class is shown in
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18.3

public class MTicketFactory inplenents TicketFactory
{

private int nextNumber;

cl ass FooBar Ti cket inplements Ticket

{

i nt no;

}

/1 abstract constructor for Ticket
public synchroni zed Ticket getTicket ()

{

FooBar Ti cket t = new FooBar Ti cket ();
t. no = next Nunmber ++;

return t;

}
}

Figure 46 An Example Resour ce Factory

Pools

18.3.1

A pool is a factory that recycles. In addition to creation mechanisms, the pool
has a ‘recycle’ method that can be used to return used objects so that they can
be recycled for later use.

Issues with using Pools

Originally, FlexiNet made heavy use of pools, however in retrospect, this was
a poor decision.

The primary problem with the use of pools was the difficulty in debugging. By
managing some resources within pools, it was essential that the resources be
correctly allocated and freed (i.e. returned to the pool). If a resource was
returned to the pool early (when some other object still contained a reference
to it), the resource might be reallocated, and two objects would then be
unwittingly sharing the same resource. Equally, if a resource was never
returned to the pool, then this would result in a ‘leaked resource’ and the pool
would run dry. In addition, as resources are, in general, arbitrary objects,
they contain a number of fields that are set to default values on construction.
When a pool reallocated a resource, it was essential that all fields were set
back to the correct values. This code had to be hand-crafted, and a mistakes
were hard to spot.

The use of pools accounted for the vast majority of lurking bugs that lead to
unpredictable failures in FlexiNet (generally when resource usage got high).
We had abandoned the Java garbage collector, and were paying the price.
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18.3.2

The solution to these problems was to abandon the use of pools almost
completely. We re-evaluated the benefit of using resource pools on a case by
case basis. For all cases bar one, it was decided that the recycling nature of
pools caused more harm than good. As Java is implemented entirely on a
heap, and all transient objects must be created and freed from the heap, there
was little utility in treating some object classes as ‘special’ and (in effect)
maintaining a private heap. The only exception to this was in the recycling of
‘packets’ — simple fixed sized byte arrays used in the basic buffer
implementation. This special case is discussed in section after basic
buffers have been described.

The secondary use of pools, the accounting of the number of resource in
existence is of benefit — but only for resource classes where it is meaningful to
control the population. For each case we had to trade off the added code
complexity of the need to recycle resources, with the benefit of accounting.
For most cases, we decided to use a simple Factory abstraction instead.

Managing Numbers of Resources

When controlling the creation and destruction of a resource by the use of a
pool abstraction, it is possible to control the overall number of resource
instances in existence. This may be used, for example, to ensure that a fixed
number exist, or that there is an upper (or lower) bound on the total number.
More subtle policies include controlling the bounds on the number of
avatlable resources rather than the total, or policies that do not control the
number, but audit it, either for debugging, or for performance profiling.

In FlexiNet, each Pool contains a reference to a Pool Manager responsible
for managing the number of resources in existence. Whilst the pool
implementation understands the concrete type of the resource being
managed, and its specific features with respect to construction, destruction
and reinitialisation; the resource manager only understands abstract
resources, and is responsible solely for maintaining a set of instances, and
informing the pool when a new resource should be created, or an old one
destroyed

Whenever a resource is requested from the pool, the pool passes the request
to the Pool Manager. This may refuse the request, block the request until a
resource is available, return a resource from the pool, or indicate that a new
resource should be created. In the latter case, the pool constructs the
resource, and returns it to the client.

When a resource is returned to the pool, the pool passes the resource to the
pool manager, which may store it, or request its destruction. In the later case,
the pool is responsible for any ‘tidying’ prior to dropping the object to allow it
to be garbage collected.
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18.4

A number of different resource manager implementations have been built:

Recycl ePool Manager
This maintains an upper bound on the total number of resources
held within the pool. When a resource is requested, one is
returned if the pool is not empty. If the pool is empty, then a new
resource is created if less that the upper bound exist, if not the
callee Dblocks/fails (there is a blocking and a non-blocking
interface). Returned resources are stored and never freed.

CachePool Manager
This is the usual pool manager used for buffers. It maintains an
upper bound on the number of available resources. On a request,
a resource is returned from the pool if available, and a new one is
created if not. When a resource is returned, it is stored in the pool
if the pool is not full (upper bound reached).

DebugPool Manager
This audits the use of resources and checks for resources allocated
in one pool and erroneously returned to another.

Nul | Pool Manager
If no pool manager is specified, resource are created on demand,
and destroyed on return (i.e. the pool acts like a factory).

Resources

There are several different resources used within FlexiNet that need to be
controlled.

Buffers For input and output of remote messages. For performance, it is
useful to reuse buffers, as this reduces the garbage collection and
heap fragmentation overhead. The number of buffers kept in
reserve will effect both performance and memory overhead.
Buffers themselves are created by buffer pools. The standard
buffer implementation (Basic Buffers) uses a pool to store the
packets that make up the buffer.

Sessions  The number of sessions active at any one time is directly related
to the number of clients that a service can support. Attempting to
support to many clients will lead to starvation of other resources.
The Sessi onManager 1is responsible for the construction of
sessions. It uses a Sessi onFact ory to create new instances.

Threads  Typically a protocol will have one or more threads active and
ready to receive a request. If there is no thread waiting when a
request arrives, then this will lead to a delay. There is a
Thr eadResour ce abstraction for pooled threads, however most
protocols integrate the thread management into the protocol
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management, as this can give additional performance in this
critical area.

Other Resources
There are a number of other object classes that are treated as
resources, and are allocated using Factories or Pools. This is
primarily to aid the construction of reusable components.
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PART FOUR:
ENGINEERING COMPONENTS
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19

INTRODUCTION

19.1

Debug

19.1.1

Before diving into the detailed design of the various engineering components
within FlexiNet, it is worth understanding the design and use of the FlexiNet
tracing system. This may be used to selectively trace parts of FlexiNet, and is
extremely helpful when trying to understand their function, or when tracking
down bugs.

The tracing system is implemented in the static class Debug. This has one
primary method, trace(...,string) which is called thousands of times
throughout the FlexiNet code. Debug will select which of these trace
statements should be output to the screen, based on a configuration script
read at start up. As the cost of calling trace() is high — even if the string is not
output, a stylised calling convention is used. Code wishing to call trace,
should first check if the static variable Debug.on is true. For example

if(Debug.on)
Debug.trace(this,“About to call foo(“+arg+")");

The variable Debug.on is set in one of two ways. For a final deployment, it
should be is set to ‘public static final boolean on=false . By
recompiling FlexiNet, this will compile out all Debug.trace() statements
within the code. For development use, Debug.on is set to ‘public static
boolean on=false ’. This will cause debug statements to be compiled in, but
stepped past. The debug system will check the configuration file, and if some
debugging is enabled, the Debug.on will be set to true.

There is therefore a performance cost associated with:
a) Compiling in the trace statements (as they must be stepped past)
b) Enabling any tracing, as all trace statements will be called, though

only selectively printed. Enabling tracing typically slows FlexiNet to
around 50% of its original speed.

Debug Interface

The Debug system has twelve public methods. All are static.
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19.1.2

void trace(Object obj,String nmsg)

void trace(Cass cls,String nsg)

void trace(Object obj,String nsg, Throwabl e t)
If tracing is enabled for the specified class, output the message
nsg, together with the optional exception (The exception back
trace is also output). Calls to trace with an object, rather than
class parameter are for ease, and correspond to
trace(obj.getd ass(), nmsgQ).

void traceX(Cbject obj,String nsq)

void traceX(Cbject obj,String nsg, Throwabl e t)
As trace, but only trace if extended tracing is enabled. Extended
tracing is identical to ‘normal tracing, and is used to indicate
trace statements that will produce a large amount of output.

bool ean traci ng( Cbj ect obj)

bool ean traci ng(d ass cl s)

bool ean traci ngX( Obj ect obj)
Test if tracing (or detailed tracing) is enabled for a particular
class/object. This may be used by code wishing to avoid an
expensive call to t race(...) that would be discarded — for example
the message may have to be constructed from many pieces.

void hel p(String nsg)

Output a message that relates to an unexpected event (for
example a class not found), that is likely to be an application bug.
Typically a help message will be produced whenever the ‘correct’
behaviour would be a silent failure. They do not necessarily
correspond to errors. Help messages may be enabled
independently of ordinary tracing. Help messages are a candidate
for internationalisation (see section although this is little
used in the current implementation.

void bug(String s)
Report a bug in FlexiNet. A standard message together with the
specified string is output. The program then terminates.

voi d assert(boolean flag, String s)
Validate that flag is true, if false call bug('s) .

synchroni zed String get Threadl D( Thread t hread)
In trace statements, an identifier for the current thread is output.
This method allows the application to obtain an identifier of the
same format. It is used when debugging thread synchronisation.

Configuring Debug: The .debug file

The . debug file is used to configure which classes should have tracing
enabled for them. It consists of a list of statements, each of which enables or
disables tracing of a particular class, a particular package or a sub-package.
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The order of the statements is unimportant; each class will be traced
according to the most closely binding trace statement.

For example, a typical . debug file might be.

# Tracing for serialization

- UK. co. ansa. f | exi net

+UK. co. ansa. fl exi net. baseconms. seri alize.ref

- UK. co. ansa. fl exi net. baseconms. seri alize.ref.Ref Serializer
+X_UK. co. ansa. fl exinet.serialize.ref.RefDeSerializer

+UK. co. ansa. fl exi net . baseconms. | ayers. Cal | Layer

+UK. co. ansa. fl exi net. baseconms. | ayers. C i ent Cal | Layer

® The first line is a comment. Blank lines, and lines beginning # are
ignored. All other lines should start ‘- or ‘+.

® The second line disables tracing for all classes in packages beginning
“UK. co. ansa. f| exi net”. This is the default action, and this line is
redundant.

® The third line enables tracing for all classes in the package
“UK. co. ansa. fl exi net. baseconms. serialize.ref”

* The fourth line disables tracing for a specific class.

® The fifth line starts “+X_”. Lines like this enable extended tracing for a
class or package. Extended tracing is typically used when a large
amount of trace code is generated. This line enables extended tracing
for Ref DeSeri al i zer. This will produce detailed information about
each object that is deserialised.

® The final two lines enables tracing of the CallLayer and
Client Cal |l Layer classes. These are often worth tracing is they are
typically the top layers of the server and client stack respectively, and
output trace statements that show when a call enters and leaves the
FlexiNet system.

19.2 Internationalisation

The internationalisation system can be used to ‘translate’ strings stored
within a static class into different languages. It has been designed to make it
straightforward for a programmer to define and use such strings, and
efficient for them to be accessed.

The basic approach is to have a ‘Text’ class that extends the FlexiNet
Language class, and provides a number of public static strings that may be
efficiently used by the application code. For example:

i f(status==1)
Systemout. println(Text.call failed unknown);

The Language class ensures that the all such fields are initialised to
appropriate values for the current locale. To do this the programmer provides
a number of language-specific sub-classes of Text within the same package,
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which define values for each of the strings. These classes are named after the
display language for the locale, for example French. class,
Engl i sh. cl ass, Ger man. cl ass etc.

Strings in a particular language may also be accessed directly, for example:
Systemout. println(French.failed _to_contact_server);

Both of these mechanisms are extremely efficient, and require only three byte
codes (as opposed to two for access to a string literal). In addition, as the
keywords used to identify the strings are Java field names, the java compiler
will spot if any are mistyped, and report an error.

In addition to these mechanisms, an auxiliary mechanism is provided for
applications that need to deal with several different languages, and that need
to pass locale information as variables. This may be performed as follows:

Errors | = new German();
Systemout.println(l.get(Errors.not_multicast));

This mechanism is less efficient, but is required in some circumstances.

The implementation of the Language class is straightforward. Upon
initialisation of a ‘Text’ subclass it determines the current locale and locates
the language-specific subclasses. If locale information is unavailable, then the
subclass can supply an explicit default. The fields in the subclass are then
examined, and for each, the appropriate string is determined from the
language-specific class. There is a useful optimisation here for the native
language of the programmer; language-specific strings need only be provided
if they cannot be generated automatically from the keyword. For example, the
field not _mul ti cast will be set to “not multicast” if no specific alternative is
given in the language-specific class.

An example text class is given in . English and French language
version of this is shown in

public class Errors extends Language

{ .
static
/1 supply default |anguage if |ocale is unknown
init( Errors.class, "English");
}
/1 strings for localization
public static String
not _mul ti cast,
call _failed _unknown,
failed to _contact server;
}

Figure 47 An Example ‘Text’ Class
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public class English extends Errors

{
public final static String
not rmul ti cast ="is not a nmulticast address",
call _failed_unknown ="call failed renmotely (unspecified)";
}

public class French extends Errors

public final static String
not _nul ticast=
"n’ est pas une adresse de diffusion restreinte",
call _fail ed_unknown=
"appel distant echoue’ (non specifie )",
failed to _contact server=
"echoue’ a contacter le serveur";

Figure 48 English and French Language Version of Errors
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20

REX BINDER (GREEN)

20.1

Introduction

20.1.1

‘Green’ was the first binder written in FlexiNet. FlexiNet binders are
generally named after colours, as giving meaningful names that distinguish a
binder from future implementations is difficult. For example the candidate
name for Green was ‘RexBinder’ — but since then at least four other Rex
based binders have been written.

Green supports remote method invocation between client and server. The
server may export many interfaces on the same or different objects, and the
client has access to these via FlexiNet stubs. A process may be both a client
and a server, and there may be multiple simultaneous calls and arbitrary
nesting of calls.

The protocol that Green is uses is the “Remote Execution Protocol” (REX)
which was first designed for use in ANSAware in 1987. In this incarnation,
REX is implemented over UDP messaging and has been simplified from the
original protocol by the separation of messaging and fragmentation.

The original version of Green did not support fragmentation, although this
has since been added. The exercise of adding fragmentation to an established
protocol was a useful validation of FlexiNet’s concurrency control scheme (See

section [L6.5).

Rex Protocol

The REX protocol is an RPC protocol that was designed with the following
key features:

* It is resilient to loss of any message or messages, including protocol
messages.

Under moderate client-server interaction, only two messages are
required per invocation; a request and a reply.

® It can support both ‘small and fast’ and ‘large and slow’ invocation

Server failure is detectable — even if it occurs mid-invocation.
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Figure 49 REX Server-Side State Transition
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Figure 50 REX Client-Side State Transition

REX server-side state transition is illustrated in and the client
side state transition is illustrated in Under normal operation, the
client sends are request and then waits for a reply. If the reply is not
forthcoming, the client resends the request a number of times (and eventually
gives up). If the server receives a duplicate request, it sends an
acknowledgement to the client, to inform that it is processing the request.
From then on, the client need only periodically ‘probe’ the server to check that
it is still alive. A simple sub-protocol deals with re-sending and
acknowledgement of probes.

When the server has completed the request, it sends a ‘reply’ message. The
client does not acknowledge this but under moderate load, the client will
perform a subsequent request at the server, and this will be treated as an
implicit reply acknowledgement. If no acknowledgement is forthcoming, the
server will resend the reply periodically, until it receives an implicit or
explicit reply acknowledgement.
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The entire state transition is performed on a per-session basis. This allows a
client to perform invocations in parallel with each other, and this is simply
treated as if the invocations came from different clients. There is scope for the
sharing of probes and acknowledgements between sessions, but this
optimisation is unnecessary, as these messages are small and rarely sent.

Client Server
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invocation data

VN ‘ CallDown
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Factory CallDown
SerialLayer
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Factory pLay
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Figure 51 The Green Binder and Protocol Stack

20.2 Basic Operation

Upon initialisation, the REX binder creates a single protocol stack that is
used for all invocations — whether client or server side. This is illustrated in
In addition to the stack, there are a small number of shared
resources — factories for input and output buffers, and a Session Manager.

20.2.1 Name Generation

All exported names are Tri vNanes — pairs of a UDPEndpoi nt and an integer
interface ID. In order to generate a mname, the binder calls the
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20.2.2

20.3

Tri vNanmeLayer to generate an interface ID, and then pairs this with the

shared UDP endpoint (See Fi%ure 52).

Shared
UDP Layer Address

'l

Network

Tri vNane

UDPENndpoi nt

Figure 52 Creating a Name

Name Resolution

To resolve a name, a new Stub is created, and initialised with a reference to
the top of stack, and the name being resolved.

Client Side Call Processing

20.3.1

In this section we walk through the process of a call down the stack. In
subsequent sections we consider how a message is received off the wire, and
how requests are handled on the server.

Call Layer (ClientCallLayer)

On the client, an invocation is made on a stub, and passed as an Invocation
object to the top layer, the C i ent Cal | Layer. This obtains a session from
the Sessi onManager . Any free session to the correct port on the server host
will suffice. The Call Layer is not aware of the details of the protocol being
used, but may identify the session endpoint by calling

get Sessi onEndpoi ntl dentifier
Invocation object.

on the target address stored in the
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20.3.2

20.3.3

20.3.4

The Sessi onManager manages two types of sessions, “Up sessions” are used
for data travelling from the wire up the stack, and “Down Sessions” are used
for client calls proceeding down the stack. In this case, a Down Session is
required. One is removed from a pool managed by the session manager, and
returned to the client thread. If no session is available, a new one is created.
On completion of the call, the session will be returned to the pool, and may be
reused by the same (or a different) thread wishing to make a subsequent,
non-overlapping call to the same service endpoint (port). After receipt from
the session manager, the session is locked, and validated for race conditions.

Serial Layer

The serial layer obtains an output buffer from the factory to write the
invocation in to. It then serialises the method name, signature, and
parameters. When the call competes, it is responsible for deserialising the
result (exception or normal). If the result is exceptional, it is not the
responsibility of this layer to throw the exception. It is simply recorded in the
invocation object. In general, a layer should only re-throw exceptions that its
peer layer generated.

Name Layer (TrivNameLayer)

The Name Layer examines the address of the interface being invoked. This
must be a Tri vNane (as Green only resolves Tri vNanmes). It extracts the
interface id and writes this to the output buffer. Output buffers are
segmented, so the Name Layer does not need to be aware of the size/position
of data written by the serial layer or other layers (see Section . The
Name Layer then overwrites the target field in the Invocation with the
address portion of the Tri vNanme. In this way it need not be aware of the type
of protocol above which it is multiplexing, and lower layers need not be aware
that multiplexing has taken place. (See section .

RPC Layer (RexLayer)

The RPC Layer is responsible for managing method invocations over
asynchronous messages.

To process a client call, the RexLayer first writes a header into the output
buffer to indicate that the message is (the next) request, and then sends it to
the layer below. Once sent, the message is stored in the associated session.
The session is then added to a timer queue, so that the message may be
resent if no reply if forthcoming. The client thread waits at this point is not
woken until a matching reply has been received.

For simplicity we will gloss over the details of the Rex protocol. Let us instead
follow the progress of an outgoing message from the RexLayer to the wire.
This will be the same for requests, replies and protocol messages. For
messages, the Invocation class is inappropriate. Instead just the buffer and
session are passed.
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20.3.5

20.3.6

20.3.7

20.4

Fragmentation Layer

Fragmentation is handled at this point. This will be described in section bo.6l

Session Layer

The session layer writes an identifier for this session (and the peer server
session if known) into the buffer. As the session is no longer available, the
layer below is passed the output buffer and address.

UDP Layer

The UDPLayer simply sends the request to the given address, and then
returns void. The stack rapidly unwinds back to the RPC Layer.

Receipt of a message

204.1

20.4.2

Messages are received off the wire symmetrically on client or server. It is only
at the RPC Layer that it is determined if they represent a request, reply or
handshake. In this section, we walk through the progress an incoming
message makes.

UDP Layer

Messages are received off the wire in the UDPLayer . This contains a pool of
threads waiting to listen for incoming messages, but only one actually
listening at a time. When this thread receives a message, it stores the bytes
into an | nput Buf f er (obtained from the input buffer factory) and passes it
up to the next layer.

In its simplest mode of operation, before passing the message up the stack, it
unblocks/creates a new listener thread. However, for efficiency, it may be
more appropriate to wait until the message has been serviced, and then allow
the original thread to continue listening. This will depend on the time take to
service the message — which is dependant on the type and context of the
message. Rather than burdening the UDP layer with this knowledge. a
‘KickThread’ interface is provided, which allows a layer further up the stack
to inform the UDP layer that the processing of a message will take some time,
and that it would be better to start a new listener. This is used in Rex with
fragmentation and is discussed in section

Session Layer

When an incoming message reaches the SessionlLayer, it must be
associated with the appropriate session. First, the Session Layer reads the
session identifier from the input buffer, it then calls the Session Manager and
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20.4.3

20.5

asks for a matching ‘Up Session’. There are actually two sessions identified.
The session on this machine, and the session in the peer machine. For all
calls other than initial requests, both values are known. For an initial
request, the client specifies that the server session is unknown, and the
server must allocate a new session. There is a possibility of an initial request
being duplicated, so the SessionManager must handle this, and return the
same session to both requests. Duplicate suppression of messages is itself
performed by the RPC layer.

RPC Layer

When a message is received by the RexLayer, there are several possible
courses of action, depending on the type of the message. Protocol messages
generated by the peer layer may lead to a stored message being resent or a
timer modified. Replies that match a stored request will lead to the
requesting thread being woken and handed the reply. We will go through the
third case, the receipt of a ‘request’ message in more detail.

The state of the session associated with the request is first updated to
indicate that a request is in progress. Only one request is allowed at a time
for each session. The session is then unlocked is to allow further protocol
messages to be received relating to this call, whilst the call is still in progress.
In Java, locking is block-structured, so in practice this involves unwinding
the call stack back to the session layer, to unlock the session, and then calling
directly back to the RexLayer. The Conti nuati on interface is used to
abstract this as cleanly as possible.

Once the session is unlocked, the call proceeds up the stack. When the call
returns, the output buffer stored in the Invocation has a header appended to
it, indicating that it represents a reply; and is then sent as an outgoing
message. The RexLayer also deals with some server side errors by marking
replies as normal, error, or extended error. The latter two resulting from the
call up the stack returning exceptionally. This will always be due to a system
exception, not an application level exception. At this point, passing error
information is troublesome, as we are below the serial layer. A simple
protocol is defined for allowing Exception classes to provided ‘extended
information’, to allow them to be recreated on the client machine.

Server Side Call Handing (above Rex)

20.5.1

On the server, a call is effectively initiated by the RexLayer, and ultimately
unwinds back to the RexLayer. The RexLayer is then responsible for
converting the result into a reply message.

Naming Layer (TrivNameLayer)

The Name Layer reads the identifier of the interface being called from the
input buffer, and looks this up in the dictionary it maintains. It then sets the
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20.5.2

20.5.3

20.6

invocation target to the corresponding application object. In addition to this,
the Tri vNanmeLayer also retrieves the stored class of the exported interface.
This is also stored in the Invocation for later validation that the method being
invoked is one that was exported.

Serial Layer

The serial layer reads the method name and signature and converts this to a
real method which is stored in the | nvocation object (At this point
conformance with the exported interface is checked). It then reads the
arguments and deserialises them to real objects. The call is then passed up
the stack. When it returns, the result (exception or normal) is serialised.

Call Layer

This is the top layer of the server-side stack, and by this point the Invocation
object is complete. This layer invokes | nvocat i on. i nvoke. The invocation
object, in turn, invokes the stored method and arguments on the target object.
If the target implements the Generi cCal | interface, then this is used to
perform the invocation. Failing this, Java core reflection is used.

Fragmentation Approach

20.6.1

Fragmentation was added to Green long after the basic protocol was written.
Unlike previous Rex implementations, fragmentation was written as a
separate layer 'slotted in' below the Rex Layer. This approach was taken
based on experience with the initial ANSAware implementation, where the
protocols for fragmentation and RPC were intertwined, which lead to
considerable additional complexity.

Basic Concepts

Each (large) message is broken in to a number of fragments, and each
fragment is given a fragment number to allow the fragments to be
reassembled, even if they are reordered, or some are lost. A buffer
implementation was designed to be used with fragments, that stores buffers
as a linked list of segments, where each segment is the size of a single UDP
packet.

On message output, the calling thread sits in a loop and outputs each
fragment in turn.

On input, the fragmentation layer assembles fragments in a structure stored
in the session. Normally, an up-call will lead to a fragment being added to the
structure, and the call then returns. When the last fragment of a message is
received, the calling thread is then used to call up to the next layer, with the
complete message.
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20.6.2 Locking Issues

There are several potential areas for 'feature interaction' between the
fragmentation layer and other layers. In particular, there is a potential race
condition between fragment assembly and protocol messages. The
fragmentation layer may be assembling a message at the same time that the
Rex layer above it sends a new outgoing protocol message.

The session locking strategy used in FlexiNet takes care of most of the
problems. As the session is locked whenever the Fragmentation Layer is
called, that layer may safely process messages, and use the session, without
being concerned with thread activity. One remaining problem is if the
fragmentation layer has to deal with very large messages. With these, the
time taken to fragment or assemble may be large enough to interfere with the
normal processing of acknowledgements by the Rex protocol. This might lead
to Rex unnecessarily re-sending messages, and in an extreme case would lead
to protocol failure (when a large message leads to the re-send of another large
message, and a downwards spiral). To prevent this problem, the
Fragmentation layer briefly releases the session lock during sending. This
allows any incoming protocol messages a chance to get through to the Rex
Layer.

20.6.3 Fine Tuning

There are a number of ‘fine tunes’ to optimise the use of fragments.

Thread Kick

When processing a large message, the Fragmentation layer will
quickly deal with an incoming fragment (unless it is the last
fragment). It can then return to the UDP layer and the same
thread can be used to listen for the next incoming message. This
is far more efficient that immediately spawning a second listener
in the UDP layer, as this will typically lead to a thread switch per
fragment.

Rex Acknowledgements

Vanilla Rex does not acknowledge requests, instead the client
resends the request if the reply does not arrive quickly. This
approach leads to fewer messages in the usual case that RPCs are
handled quickly. However for slow RPCs, there is an overhead of
a resent request, and a acknowledgement. For short requests, this
overhead is two messages and the ‘normal case’ optimisation is
worthwhile. However for fragmented requests, this approach is
suspect, particularly as large requests often equate to slow RPCs.
For this reason, the Rex layer has been modified to detect
requests corresponding to fragmented messages, and to
immediately acknowledge them.

Missed Fragments
In the initial implementation, the Fragmentation Layer would
simply drop a message it failed to assemble. This is clearly an
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20.7

expensive approach if message lost is likely. The optimisation is
to send a nack indicating the first fragment that is lost. The peer
machine then resends all fragments from the lost fragment
onwards. This approach is taken, as typical network behaviour is
to drop no messages, or to drop a burst of messages. Statistically,
this approach sends less messages than a ‘nack single fragment’
approach, and is considerably simpler.

Fragmentation Timeout

If the last fragment of a multi-fragment message is not received,
the fragmentation layer will not spot this (it will wait
indefinitely). A solution would be to add a timer into the
Fragmentation Layer, to spot this special case. This approach was
rejected as the overhead of timer management was large
compared to the likelihood of this fragment being lost. Instead we
rely on the Rex layer to timeout and re-send the entire message.
For use in a particularly unreliable network, this decision may
require re-evaluating.

Fragmentation Engineering

20.7.1

The fragmentation layer relies on the fact that Basi cQut put Buf f er stores
long messages in a linked list of packets. The binder supplies the
Basi cout put Buf f er Fact ory with a suitable packet size.

The fragmentation layer uses a two-byte fragment segment in each buffer
containing the fragment number. These start at one and the last fragment is
marked by negating its fragment number. Single fragment messages have a
fragment number of minus one.

Outgoing messages

The down method transmits each packet in a multi-packet buffer as a
separate fragment. Between each fragment it releases the session lock by
waiting on the session for a microsecond, so as to enable the session to
process incoming messages.

If the receiving fragmentation layer notices a gap in its sequence of fragment
numbers, it will send a NAK fragment. A NAK fragment is marked by setting
the two most significant bits of the fragment number to 10 and the least
significant 14 bits to the number of the first missing fragment.

when a transmitting fragmentation layer receives a NAK fragment, it
rewinds its output buffer to the requested fragment and resumes
transmission of the message from that fragment.
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20.7.2

20.8

Incoming messages

Incoming messages are processed by the lower layers one fragment at a time
in single packet buffers. The fragmentation layer assembles the fragments of
a multi-fragment message from multiple single-packet input buffers into a
single multi-packet input buffer. The partially assembled input buffer is
stored in the session object.

If the fragmentation layer notices a gap in its sequence of fragment numbers,
it will send a NAK fragment for the first missing fragment. It will discard any
duplicate fragments.

While assembling a multi-fragment message, the fragmentation layer returns
almost immediately to the UDP layer, which can then listen on the same
thread for the next fragment and avoid an unnecessary thread switch.
However, when the fragmentation layer receives the last (or only) fragment of
a message it needs the current thread for an indeterminate time to deliver
the message to the layers above it. Therefore, before delivering the message,
it calls the ki ckLi st ener Thread method on the UDP layer to allocate
another thread to listen for incoming messages.

Summary

Green was the first FlexiNet protocol and provides a complete and efficient
RPC implementation. However, it is no longer used as the default FlexiNet
binder. This is because a TCP based binder can be made more efficient. On a
level playing field, Green ought to out perform TCP binders such as Magenta.
The reason it does not is primarily because:

a) UDP is less well supported, and less heavily optimised, than TCP in many
operating systems.

b) REX over Java performs error detection/correction in Java. RRP over TCP
performs error detection/correction via the TCP libraries which are native
(and probably Kernel) code. This is far faster.

¢) Green is more susceptible to poor thread implementations than is
Magenta.

12-Feb-99

FlexiNet Architecture 117



21

RRP BINDER (MAGENTA)

21.1

Introduction

21.2

RRP (Request Reply Protocol) is a simple but efficient RPC protocol designed
specifically for FlexiNet. It is designed to be an ‘ideal’ protocol for Java, and is
considerably simpler than the implementation of a standard such as IIOP.

RRP is a TCP based protocol that supports a request-reply abstraction. The
protocol itself passes only messages, and pairs requests with replies. It does
not understand objects, interfaces or other ‘high level’ concepts. It makes use
of the session abstraction, and for each session uses a TCP connection for low
level communication. The TCP connection may be timed out or closed
independently from the life of the session. The RRPLayer provides the same
abstraction as the RexLayer and all layers below it within the Green
protocol.

Magenta

To a first approximation, Magenta is a Green binder, but with the RPC,
session, fragmentation and UDP layers replaced with a single RPC-to-wire
layer, RRPLayer. A simple substitution of these layers would give a valid
binder, however Magenta has a couple of additional features.

In part five, we will introduce the notion of ‘clusters’ within FlexiNet. These
lead to names requiring two levels of indirection: A request received off the
wire is first de-multiplexed to a cluster, and then layer de-multiplexed to an
interface within a cluster.

The Magenta binder is capable of resolving names produced by a RRP binder
for use with clusters. It therefore has additional layers to deal with the
additional levels of multiplexing. In all, Magenta can deal with three type of
name.

1) Tri vNanes consisting of an ID and TCPEndpoi nt
These names are generated by Magenta binders on ‘standard’ systems.

2) TrivNanmes consisting of an ID and C uster Address. Where the
Cl ust er Addr ess in turn consists of a Cl usterl D and TCPEndpoi nt .
These names are generated by Magenta binders on ‘cluster’ systems.
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3) Mbbi |l eNanmes consisting of a (reference to a) Mobil eNaner, ID and
Cl ust er Addr ess. These names are generated by Magenta binders on
‘mobile cluster’ systems. (see Chapter .

These effects are seen in three areas of the binder. Firstly, there is an
additional layer akin to the Tri vNanmeLayer to write the C ust er | D part of
the name. Secondly, there is a layer to deal with rebinding Mobi | eNanmes that
refer to interfaces that have moved. Finally, the binder functions responsible
for generating, resolving, parsing and stringifying names must deal with the
additional cases. The Magenta binder is illustrated in
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Figure 53 The Magenta Binder Stack

21.3 Cluster Name Layer (SingleClusterMuxLayer)

This layer is responsible for managing the C ust er | D associated with the
names of interfaces in remote or local clusters. The Magenta binder itself
does not normally support local clusters, although it can be configured to
support a single local cluster. This is typically used to support a service that
can be (manually) restarted on a different machine. In either configuration,
Magenta can resolve names generated by Magenta-compatible binders that
do support clusters.
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21.4

When a call is sent down to this layer of the Client, if the | nvocat i on target
is a cluster address (class GNaneFr agnent ), then the cluster ID is extracted
and written into the output buffer. The | nvocat i on target is then amended
to contain the capsule address portion of the cluster address. For calls to non-
cluster addresses, this layer does nothing and garbage will be passed as the
cluster id.

On the server, incoming calls reaching this layer are normally passed up
unmolested. If Magenta has been configured to support a single cluster, then
the identity of the cluster being called is read from the input buffer, and
checked against the identity of the local cluster, which is stored in this layer.
An UnKnownNaneExcept i on is thrown if these do not match.

Locate Layer

21.5

The LocatelLayer 1is a client side only layer that deals only with
Mobi | eNanes. For calls on names of other classes, it passes calls through
with no effect. For calls to Mobil eNanmes, the Locate Layer uses the
get Addr ess method on Mbil eNane to get the current address of the
interface. If a call using this fails because the implementing cluster has
moved, then the thread loops, calls get Addr ess again, and retries. With each
call to get Addr ess, the ef f ort parameter is increased, to indicate that the
previous result was outdated, and the Mobi | eNane should ‘try harder’ — for
example, it might ignore a local cache and communicate with an authoritative
name service. The Locate Layer gives up if Mobi | eNane. get Addr ess throws
an exception, or returns the same address as the previous attempt,
suggesting that continuation would be futile.

This implementation is imperfect — a Mobi | eNane referring to an interface
on a cluster moving back and forth between two locations might correctly
return an address that is invalid by the time it is used. It may then become
valid again, by the time that the next call to get Addr ess is made. This
would lead to a failure, although the interface remains contactable. It would
be possible to produce more optimistic version of Locate Layer that tried for
longer before failing, although for a ‘perfect’ solution, some form of
synchronisation would be required.

RRPLayer

2151

The RRPLayer implements the RRP protocol. We will consider its function as
a client and server separately.

As a Client

When a client request arrives at the RRPLayer, it will already be associated
with an RRPSessi on. From this, the layer may determine the TCP
connection that the session uses (There is a one-to-one session/connection
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21.5.2

mapping). For the first call, the connection will be null, and a new one will be
created by binding to the server address.

When the connection is first established. A handshake is undertaken,
whereby the client sends an identifier for the client session and an identifier
for the server session (or nul | if not known). The server responds with the
identity of the server session, which the client stores in the session for
subsequent use if the connection is later broken.

The client writes the request buffer to the socket (along with its length) and
then blocks attempting to read the return status. When reading and writing
to a TCP socket, care must be taken that unnecessary flushes are not caused.
For this reason, the length of the buffer is added to the beginning of it, and
then the whole written as a block. Similarly, when reading, as few individual
reads as necessary are made.

When the reply returns, the client thread unblocks, and reads a length and
status byte. It then reads the reply which will be the return value or an RRP
error status, which is converted to a BadCal | Except i on. Before returning
up the client stack, a timer is set to timeout the TCP connection.

If the TCP connection timer fires, the connection is torn down, and a further
timer set for the session destruction. Note that neither timer can fire whilst a
call is being processed — because the session itself is locked. The timer
implementation ensures this by delaying the signalling of a timeout until it
can acquire the session lock (See section

As a Server

As a server, the RRPLayer has a number of listener threads that are blocked
waiting for new connections. Only one thread actually listens. When a new
connection arrives, a second thread is unblocked/created to handle the next
connection, and the original thread calls processC ient. When this
ultimately returns, the thread is either returned to the listener pool, or
destroyed — depending on the concurrency parameters set when the layer was
initialised.

To process a client, the server first reads the client’s session identity from the
wire, and uses this in a call to the Session Manager to obtain the appropriate
server session. It immediately sends a handshake to the client indicating the
matching server session id. This exchange only takes place when a new
connection is made.

The server then locks the session semi-permanently, as it will be the only
thread processing requests on using this session. The session will eventually
be unlocked when the connection is broken. The server thread sits in a loop
reading client requests, sending them up the stack, and then writing replies.
Care 1s again taken with minimising the number of flushes sent by the TCP
system. Before the first read, the server sets the socket read timeout to be
equal to the desired connection timeout. If this fires, or the connection is
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closed by the client, the server sets a timer for the session destruction,
unlocks the session, and the processClient method returns.

Discussion

The RRP protocol has been designed and implemented with certain threading
characteristics. On a server, one thread is required for each client with an
open connection. This decision is partly due to the nature of Java threads —
they are generally cheap, and there is no socket level ‘select’ command. It is
also partly due to the desire to minimise thread switching. In RRP there need
by no thread switch during an RPC on either client or server. This is
particularly important as in current Java implementations, thread switching
is very slow (~0.25ms on a Pentium Pro 200 running NT).

An important feature of RRP is that only one request is ever in progress on a
particular connection. This removes the need for ‘listener’ threads found in
IIOP and other protocols. However it does mean that a pathological
client/server pair that nests many RPC between each other will lead to the
creation of a large number of connections. This is considered to be a rare case,
and will lead to inefficiency rather than failure (assuming there is no bound
on the number of connections placed by the operating system).

A similar approach was independently developed in the OmiOrb system, from
Olivetti Research Labs [ORL98], for use in their IIOP protocol. We rejected
this approach for ITOP as we feel it is not in the spirit (though arguably
within the law) of the IIOP standard.
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[IOP BINDER

22.1

Introduction

22.2

IIOP is an ‘interoperability protocol’ supported by all CORBA ORBs. FlexiNet
supports IIOP to allow FlexiNet clients to access CORBA services, and vice
versa. As IIOP is a standard protocol, we may not modify it to better fit
FlexiNet (or Java) concepts. It therefore poses the challenge of supporting a
‘foreign’ protocol. We do not attempt to make FlexiNet a CORBA ORB, rather
we wish applications written using FlexiNet to interoperate with CORBA
using FlexiNet coding style and concepts as much as possible. We must
therefore translate between FlexiNet concepts such as Interface, Name,

Object and CORBA concepts such as Object, IOR and Data type.

A secondary goal of the IIOP binder was to determine how well FlexiNet met
its flexibility goal with respect to third party protocols that are based on
‘foreign’ assumptions and concepts.

The standards used for the IIOP binder work were the relevant OMG
specifications that were current at the time of development: [OMG97b],
[OMG98a], [OMG98b], [OMG98c]. In order to support the use of IIOP as a
alternative protocol to REX or RRP, we need to support the serialisation of all
Java types. To do this, we made use of the ‘Objects by Value’ and ‘Java to
IDL’ mapping specifications, which had not reached their final forms at the
time of implementation.

Some familiarity with IIOP and the CORBA standards is assumed of the
readers of this chapter.

Basic Operation

Upon initialisation, the IIOP binder creates a single protocol stack that is
used for all invocations — whether client or server side. This is illustrated in
In addition to the stack and standard shared resources, there is
also an | DLMapper, which is responsible for the mapping between Java and
CDR types. This is described in section
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Figure 54 ThellOP Binder Stack

IIOP is actually a generic interoperability protocol (GIOP) running over a
TCP/IP transport. The majority of the stack is therefore GIOP specific, with
only the transport layer being IIOP specific. Bi nder | | OP itself is a concrete
subclass of Bi nder@ OP, and is only responsible for transport specific
features, the other layers being initialised by Bi nder G OP.

Name Generation

Names in GIOP are represented by standard objects called IORs
(Interoperability references), whose structure is defined by the CORBA
standard. They contain details about the referenced object and addressing
information for connecting to the object via one or more possible protocols.
The information is held in an encapsulated form, i.e. it has been converted to
its wire format and stored in a byte array. Furthermore, an IOR can contain
multiple addresses for a given object.

In order to treat IORs as FlexiNet names, they are encapsulated into
G OPnanes, which implement the standard FlexiNet name interface.
| I OPnane is a subclass of this used for IORs using the IIOP protocol.

When a name is passed in a ‘standard’ FlexiNet protocol, the name may be an
object representing the union of a set of alternative names (typically
alternatives using different protocols). The same facility is provided in IORs
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22.3

using the support provided for arbitrary extensions through Tagged
Components [OMG98c]. This may be used to allow FlexiNet processes to pass
IORs containing both IIOP and (non-IIOP) FlexiNet names. When an IOR is
deserialised by FlexiNet, non-IIOP FlexiNet names are resolved in preference
to IIOP names. To engineer this, Bi nder| | OP may be initialised with a
reference to a secondary generator which is used to generate FlexiNet specific
names. This is typically a reference to Bi nder Top. Bi nder | | OP detects and
handles the special case that it is called recursively via Bi nder Top.

Thus, a standard IOR can be exported from a FlexiNet system to an arbitrary
third party. If that IOR is ever imported back into a FlexiNet system, the
FlexiNet-specific name can be extracted and the preferred internal protocol
can be used between the two FlexiNet systems instead of IIOP.

Name Resolution

Bi nder | | OP can resolve both | | OPnanes (generated as described above),
and raw IORs (assuming that the IOR contains an IIOP address). Support for
raw IORs was added to circumvent wrapping and unwrapping during
deserialisation. In retrospect, this ugliness was probably unnecessary.

When resolving an IOR or | | OPnane, Bi nder || OP first checks whether it
contains an embedded FlexiNet name (as described above). If it does, that
name is extracted and passed to the secondary resolver to be resolved in
whatever manner it chooses. If this is not the case, a new Stub is created and
initialised with a reference to the top of the IIOP stack, and the name being
resolved.

[IOP Connection Model

Before describing the function of the IIOP binder stack in detail, it is worth
pausing to consider the computational model of IIOP with respect to
messages and connections. Unfortunately, IIOP is a little confused in this
respect, which makes for some ‘interesting’ engineering.

There are two basic approaches to RPC handling. Message-based and Stream-
based. In a message-based protocol, such as REX or RRP, the invocation is
marshalled into a buffer, which is then sent to the server. This reads the
buffer and then processes it. With a stream-based approach, the client opens
a connection and then starts to marshal the invocation into it. This may be
sent to the server is parallel with the marshalling. This removes the need for
the client to hold the entire marshalled message in memory at once. On the
server, the message may be unmarshalled in parallel with reading it from the
client. This removes the need for the server to store the entire marshalled
message, and allows for improved performance if the four activities (client
marshal, client write, server read, and server unmarshall) can take place in
parallel. In either scheme (message or stream based) the ‘high level’ approach
may be mapped to a low level message or connection based transport.
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It is an issue of some contention as to whether the stream-based approach
warrants the extra complexity. The memory use advantage only applies to
very large invocations, and any performance gain may disappear if many
different invocations take place simultaneously (as they provide alternative
scope for parallelization).

In many respects IIOP is stream-based; however the standard insists that the
client indicate the total size of a request, prior to sending it. This prevents a
client from sending a part-marshalled request, and the advantages of a
stream-based approach on the client are lost. On the server, a stream-based
approach would still be appropriate. Unfortunately, in a later revision of
IIOP, the notion of ‘fragmented messages’ were added, to alleviate the
problem of the client having to assemble an entire request prior to sending it.
Whilst this is helpful on the client; it complicates a server-side stream-based
implementation, because it must use the ‘fragment length’ field to aid
reassembly. This ‘strongly encourages’ the server to use a message-based
approach. (A better approach, in the authors opinion, would have been to
remove the length field completely — and possibly replace it with a transport-
specific framing layer).

IIOP, as it is today, is therefore effectively a message-based protocol, as it has
the standard hallmarks of sized messages, fragmentation and reassembly.
However, as a message based protocol it has some failings. The length itself is
buried within the marshalled data, and is not easy to recover. This makes it
difficult to split an IIOP protocol stack into standard read-assemble-process
layers. In the FlexiNet implementation of the IIOP protocol stack, we took a
message-based approach, and accept some ‘knitting’ of the layers as required
to identify the length in a message as it is read from the wire. This was
relatively straightforward as the other FlexiNet binders are all message-
based, and it is in keeping with the trend of IIOP development, which
appears to favour this approach.

Client Side Call Processing

2241

22.4.2

In this section, we walk through the process of a call down the stack. In
subsequent sections, we consider how a message is received off the wire, and
how requests are handled on the server.

Call Layer (ClientCallLayer)

The IIOP protocol uses the same C i ent Cal | Layer as the Green protocol,
and it behaves identically. See section

Serial Layer (GIOPserialLayer)

This layer subsumes the function of both naming and serialisation (as the two
are intertwined in IIOP). It obtains an output buffer and then serialises the
parameters of a GIOP Request message, namely:
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224.4

2245

22.5

* service context data (a standard block of information providing
encoding format details)

* message id (which doubles as a session id)

* aflag indicating if the invocation is one way

* the target object id (extracted from the name of the destination object)
®* the method name

® a callee principal string (always a default value in our implementation)
* method parameters

* Any context values provided by the IDL Mapper (none are provided by
the current mappers).

When the invocation completes, if it was not a one way call, this layer is
responsible for deserialising the result (exception or normal).

RPC Layer (GIOPrpcLayer)

This layer deals with all the messages involved in the GIOP protocol. For
invocations, this means formatting the header of the buffer received from the
serial layer to make it a GIOP Request message and then passing it down to
the session layer. If a reply is expected to the request, the calling thread will
then wait for notification that the response has arrived (or that the
connection has been closed).

Session Layer (GIOPsessionLayer)

The session layer ensures that a connection exists over which to send the
message, caches the identifier of the connection and then passes the message
to the TCP layer to send to the remote host. It then returns to the RPC layer,
which will wait if a response is expected.

TCP Layer (IIOPtcpLayer)

This simply sends the request on the given connection, and then returns. The
stack rapidly unwinds back to the RPC layer.

Receipt of a message

Messages are received off the wire symmetrically on client or server. It is only
at the RPC layer that their type is examined and appropriate action taken. In
this section we walk through the progress an incoming message makes.

12-Feb-99

FlexiNet Architecture 127



2251

2252

2253

2254

TCP Layer

Messages are received off the wire in the | | OPt cpLayer . The layer contains
a pool of threads waiting to listen for incoming messages, but only one
actually listening at a time. When this thread receives a message, it stores
the bytes into an Input Buffer and passes it up to the next layer. Before
passing the message up the stack, it unblocks or creates a new listener
thread.

TcpLayer is a general purpose transport layer for TCP based protocols which
multiplex many messages over a single connection. In such protocols, it must
be possible to read one message, and then simultaneously process this, and
read the next message. | | OPt cpLayer is a thin veneer over the standard
TCPLayer, to deal with the problems of extracting the length from IIOP
messages.

GlOPsessionLayer

When an incoming message reaches the G OPsessi onLayer, it is associated
with the appropriate session. The GIOP protocol does not incorporate the
concept of sessions, but we simulate them as they are useful abstraction when
designing and refining a binder. To implement sessions in GIOP, we use the
message id field within request-response message pairs. So, if a response
message 1s received, its id is used to find the session associated with the
previously sent request message. In other cases, either the last session
associated with the source endpoint is used, or if there is none, a new one is
allocated. Having found an appropriate session, the message is then passed to
the RPC layer for interpretation.

GIOPrpcLayer

The GIOP protocol contains a number of messages in addition to the pair
used to encode an RPC request and response. The RPC layer is responsible
for handling all of these, which include such things as checks for object
existence, connection termination, and fragmentation of large messages. If
the message is a response to a previous RPC request, then control is handed
over to the waiting request thread via a thread rendezvous, and processing
continues as described above. In the case of a protocol error or closed
connection, any waiting thread is woken up and informed of the problem.
Requests are passed straight up to the RPC layer with the active thread
retaining control. On return, any result buffer is formatted as a Response
message and returned to the originator.

GlOPserialLayer

A request is dealt with by deserialising the received buffer contents and
constructing an Invocation object, which is handed to the Call layer. The
buffer is returned to the pool at this point.
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22.6

On return from the Call layer, if the request was not a one-way request, the
results of the invocation are serialised into a newly allocated buffer and sent
down to the RPC layer.

Call Layer

This is the top layer of the server-side stack and works identically under IIOP
as for other protocols such as Green or Magenta.

Implementation Issues

22.6.1

IIOP is not a native FlexiNet, nor even Java, protocol. In addition it is
‘committee designed’ which has lead to a number of inconsistencies and
difficulties.

IDL/Java mapping

A standard FlexiNet serialiser is responsible from converting an arbitrary
object graph into a sequence of primitive Java types, which are then written
to an output buffer which handles the mapping of primitive types onto bytes.

With ITOP, primitive types are CDR types. These have a different format and
range from their Java equivalents, and in particular the mapping is not one-
to-one. For example, a Java String is used to represent both narrow and wide
CDR strings. To complicate matters, the mapping from Java classes to CDR
types is non-trivial, and there may be many different mappings. These are
described in the relevant specifications for IDL to Java mapping [OMG97b],
Java to IDL mapping [OMG98b], and objects by value [OMG98a].

Standard implementations of Java-based ORBs solve this problem by
compiling IDL into stubs that contain hard coded routines to correctly encode
and decode the values. FlexiNet however was designed to do without pre-
compiled stubs by making use of the reflective capabilities of Java to obtain
the necessary information about data types. We did not want to sacrifice the
flexibility and ease of use that this approach offers.

The problem was solved by defining IDL mapping objects which the IIOP
stack consults to determine the correct mapping between Java and CDR data
types. A default mapper is associated with the stack on creation, but can be
overridden during name resolution on a per name basis. The mapper objects
implement the | DLnmapper interface, behind which they can provide any
policy they choose for mapping between types.

Two implementations of mappers are provided with the FlexiNet distribution:

| DLmapper Basi ¢
This implements a basic mapping that conforms to the IDL to
Java mapping [OMG97b] and is sufficient for encoding all
standard CORBA data structures

12-Feb-99

FlexiNet Architecture 129



| DLmapper Gbj ByVal ue
This implements a mapping which conforms to the Java to IDL
[OMG98b] and Objects by Value [OMG98a] specifications. This
allows all Java objects to be serialised, and allows the IIOP
Binder to be used as a standard FlexiNet binder.

These two implementations use ‘educated guesswork’ to determine which
mapping is intended. Though this works well, clearly it will fail if the same
Java type is mapped to two different CDR types within a single interface, e.g.
if an interface contains both ‘wide’ and ‘narrow’ strings. Ultimately,
guaranteed correct encoding and decoding of method calls on an interface can
only be done through reference to the IDL definition of the interface.
Although not provided with FlexiNet at present, an IDL mapper class could
be developed that read information from an interface repository to provide
fully correct encoding and decoding.

22.6.2 Method types

A related issue is that of method information that is only available from the
IDL definitions, e.g. whether or not the method is one-way, and whether
parameters are i n, out or i nout. As with type mapping, the IDL mapper
class provides the answers to these choices, and the mappers provided with
the distribution use educated guesswork to avoid reliance on IDL. They
assume that there are no one-way methods. Qut and i nout parameters can
be distinguished from i n parameters as they are represented by special
Holder classes. If the holder object's value is null on the first call to the
method, it is assumed to be an out parameter else it is taken to be an i nout .
An IDL mapper object that made use of IDL compiler generated information
could be written to provide guaranteed correct answers.

22.6.3 Serialisation

There are three stages to serialising a Java invocation as a GIOP message;
each of these stages is handled by a distinct class.

® On serialisation, the | DLmapper determines the equivalent IDL
signature for a Java method.

®* The parameters of that method are then serialised by an instance of
the CDRSer i al i zer class; this decomposes complex IDL types into the
fundamental types supported by the CORBA Data Representation
(CDR) and writes instances of those types into a CDRQut put Buf f er .

®* The CDRQut put Buf f er handles the mapping of CDR types into a byte
representation within the buffer, including recording a byte ordering
flag.

Conversely, on deserialisation, the CDRI nput Buf f er receives the raw bytes
from the wire and handles byte ordering transparently to interpret them as
CDR data types. A CDRDeSeri al i zer then constructs these types into
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instances of compound IDL types and then these are mapped to Java types by
an | DLmapper again. This is illustrated in Fi%ure 55.

IDLmapper maps Java CDRSerializer maps CDROutputBuffer maps
sig to IDL sig IDL types to CDR types CDR types to bytes

Java Client

byte[]

IDLmapper maps IDL CDRDeSerializer maps CDRInputBuffer maps
sig to Java sig CDR types to IDL types bytes to CDR types

Java Server

Figure 55 Serialisation and Deserialisation of GIOP M essages

22.6.4 Pass by value

The FlexiNet IIOP implementation (optionally) supports ‘Objects by Value’.
This is still not an official part of the CORBA specification. The extensions
covered in the Objects by Value RFP [OMG98a] were used to implement this
feature. These extensions involve modifications to certain standard OMG
classes such as TCKi nd and | nput St r eam which in turn means that we had
to modify the CORBA Java classes that are included in JDK1.2. These
modified classes are shipped as part of the FlexiNet distribution, and must be
used instead of the standard JDK1.2 CORBA classes.

22.6.5 Sessions

Sessions in FlexiNet are used to hold state information for at least the
lifetime of a request-reply pair and possibly longer. Other FlexiNet protocols
rely on a session identifier being sent in a request which is then returned in
the reply and used to associate the correct session with that reply. The format
of the GIOP message however is dictated to us by the standard, and it does
not include a session identifier field.

A solution of sorts was engineered by using the message id field that is
present in all of the request-reply pair messages in GIOP to double as a
session id. As the value sent in the request is guaranteed to be returned by
the server in the associated reply, we can happily use this value to select the
correct session on the client side when a response is received. Server sessions
though cannot be maintained over multiple calls as there are no guarantees
about the message id sent by clients, which results in less efficient usage of
sessions on the server side than in other FlexiNet protocols.
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22.6.7

22.6.8

Message format

The protocols designed by the FlexiNet team have fixed size segments within
the message formats used, which allows layers in the protocol stack to encode
and decode their required information in isolation from other layers in the
stack. This in turn facilitates he assembly of arbitrary sets of layers to form
protocol stacks to meet specific requirements without recourse to modifying
the layers themselves. IIOP was not designed with this approach in mind,
and consequently the IIOP message format contains many instances of
variable length data. Furthermore, the total length of the IIOP message is
not the first value encoded in that message (as it is for FlexiNet protocols).

This message format has two consequences: firstly, the TCP layer offers a
stream interface upwards, delegating the responsibility to work out how
many bytes to read to higher layers. This is to support true ‘stream-based’
protocols, as well as to aid the modularity of the IIOP implementation.
Secondly, there is some ‘blurring’ of the layers, although this has been kept to
a minimum. In particular, the session layer has to understand a little of the
format of the part of the message handled by the RPC layer in order to
extract the message id that it uses as a session handle; and the input buffer
class has to understand the message header format in order to read the
length of the message.

Message Fragmentation

Version 1.1 of the GIOP protocol supports the fragmentation of large
messages into smaller pieces. The FlexiNet implementation of the GIOP
protocol does not make use of this feature when sending messages itself,
however the GIOPmessageLayer understands fragmentation and correctly
reassembles fragmented messages before further interpretation.

Threading issues

The GIOP standard states that traffic to more than one object can pass over
the same connection between two hosts. Furthermore, if there is more than
one request outstanding on a connection, no guarantee is given that the
responses will be in the same order as the requests.

These features of the protocol have two effects on the threading model used
by the IIOP implementation. First, on the client side, the thread handling a
client request does not wait for the response (because the first response on
that connection might not necessarily be for it). Instead it waits in the
message layer, and a dedicated pool of receiver threads handles the
connection. Once the correct thread to handle the response is identified,
control i1s handed over via a rendezvous. Secondly, as a request can be
received on a connection while another is still outstanding, the IIOP stack
always has a thread listening on the connection. When a message is received,
a new listener thread is allocated from a pool while the previous listener
handles the message.
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This approach is relatively costly, but necessary to stay within the bounds of
the IIOP standard. A better approach (to the design of IIOP) would have been
to allow the client to dictate the terms of use of each connection it established.
This would allow clients with sufficient resources to choose a much simpler,
and more efficient, model (for example that used in RRP) whilst allowing the
full flexibility for clients with limited socket resources.
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SSL BINDER (CRIMSON)

23.1

Introduction

23.2

SSL (Secure Socket Layer) is a security protocol, originated by Netscape
Communications Corporation, which provides authentication, encryption, and
integrity checks. The Crimson binder uses iSaSilk, an implementation of
SSL version 3 [IAIK]. As SSL works with TCP connections, the Crimson
binder is a direct descendant of the Magenta binder. In fact the default
behaviour of the Crimson binder is not to use SSL at all, and behave in every
way as if it were a Magenta binder.

Crimson

23.3

The primary distinguishing feature of Crimson is that it wuses a
Confi gur abl eSocket Fact ory, which is capable of creating SSL sockets
and plain sockets, whereas Magenta used the standard Socket Factory
which produces plain sockets only. As SSL is highly configurable, the
configuration data is passed to the socket factory as an extra Fl exi Props
argument in the socket creation methods get Socket and
get Server Socket. The Crimson binder constructor also takes a
FI exi Props configuration argument, and if this contains an “ssl” property,
then this will be used to configure sockets when they are created.

If Crimson is constructed in this way, the configuration data is passed to the
components that use the socket factory to create sockets, namely the session
factory (client side) and the RPC layer (server side). If the Crimson
configuration has no “ssl” property, then Crimson acts as a Magenta binder.

Security Algorithm Selection

The first thing that happens when a client SSL socket attempts to connect to
a server SSL socket is algorithm negotiation. The client sends lists of
algorithm names identifying possible configurations for a connection.

The first list specifies candidate compression methods. In iSaSiLk the only
option is “no compression”.
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The second list specifies security algorithms. The client requires that the
server choose one item from the list. It prefers the server to choose an item at
the front of the list. If the server is unable or unwilling to connect the client
using an algorithm from the list, then it will close the connection, and an
exception will be raised on the client.

Each item on the list is a security algorithm triple. This identifies three
things

* a key exchange algorithm
® an encryption algorithm (or “no encryption”)
®* a message authentication code (signature) algorithm
The primary function of SSL configuration is specifying which triple are

suitable for a given connection, and providing sufficient additional
information for the selected algorithms (for example Keys, Certificates etc.)

SSL Configuration

2341

There are three categories of property used to configure the Crimson binder.
These relate to algorithm selection, client/server identification and trust.
They will be described in the following three sections. In general, some
properties in each category must be specified for each connection, although a
particular binder instance usually treats all connections in a uniform way.

Algorithm Selection

The client and server must both enumerate which algorithms they are willing
to use, and give an order of preference. Two sets of properties are used for
this, one for a server’s security configuration, and one for client’'s. The
structure of the two sets is the same.

* client.algorithmsets
This gives a simple enumeration of acceptable algorithm triples. The
properties should be a list of algorithm triples, specified as a space
concatenated list of strings or an array of strings. Each string should
be of the form K+C+M, where K is the key exchange algorithm, C the
encryption algorithm, and M the message authentication algorithm.

Every available algorithm triple listed in this property is included as
an acceptable algorithm triple. A client will be willing to use any of
these triples to talk to the server.

* server.algorithmsets
An analogous property for servers. A server will be willing to allow a
client to connect using any of these triples.

* client.key_exchange_al gorithns
server. key_exchange_al gori t hns
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® client.cipher_algorithns
server. ci pher_al gorithns

® client.mac_al gorithns
server.nmac_al gorithms
These properties provide an alternative means of specifying acceptable
algorithm triples. They may be used instead of, or as well as, the
al gorithm sets properties. Each of these properties should be a list
of algorithm names, specified as a space concatenated list of strings or
an array of strings. Names that do not correspond to algorithms of the
appropriate type are ignored.

Every available algorithm triple formed by choosing one algorithm
from each set is considered to be an acceptable algorithm triple.

® client.algorithmsets. order
server. al gorithm sets. order

* client.key_exchange_al gorithns. order
server. key_exchange_al gorit hns. or der

e client.cipher_algorithns. order
server. ci pher _al gorithns. order

* client.mac_al gorithns. order
server. mac_al gorithns. order
These properties are used to specified the order of preference of the
algorithm triples defined using the preceding properties. Each
property should be a list of algorithm names, specified as a space
concatenated list of strings or an array of strings.

If two triples are given a conflicting ordering using these properties,
then the algorithm sets property takes precedence, followed by key
exchange, cipher, and message authentication code algorithms, in that
order.

23.5 lIdentification

Once the server socket has successfully chosen a mutually available cipher
suite, it sends an SSL certificate to the client socket. An SSL certificate
comprises a sequence of X509 certificates. The first of these contains the
server’s public key, the servers name, plus some additional information, and a
signature generated using a certificate authority’s private key. The next
certificate in the chain should be the certificate for the same certificate
authority, and contain the authority’s public key, which can be used to
validate the signature in the server’s certificate. Similarly this first authority
certificate is signed. The signature on an authority’s certificate may have
been generated by yet another authority’s private key, in which case the
corresponding certificate should be the next in the chain. The alternative, for
the last in the chain, is for the certificate to be self signed, so that the
signature can be checked using the public key from the same certificate.
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The properties used to supply certificates to the server and client have
identical structure.

e certificate directory
Root directory for files used for certificates and temporary RSA key
pairs. Properties which contain file names for these types of stored
object can be given relative to this directory, or be given as absolute
paths.

* client.key_and_certificate. RSA,
server. key and _certificate. RSA,
client.key and certificate. DSA,
server. key _and _certificate. DSA,
client.key_and_certificate. DH
server. key_and_certificate. DH

When supplied, these properties can be either key and certificate pair
objects, or the names of files where key and certificate pairs are stored.

* client. password. RSA,
server. passwor d. RSA,
client. password. DSA,
server. passwor d. DSA,
client. password. DH
server. password. DH
The passwords to use to decrypt the private keys of key and certificate
pairs read from file.

23.5.1 Trust

These properties may be used to define which clients may connect to a service
interface, or to restrict the identity of the service to which a client is
connecting. As SSL certificates are issued by certification authorities then the
acceptable/required certification authorities must also be specified.

When the SSL certificate is received by the client, then the configuration set
up by the Configurable Socket Factory will always check that the chain of
X509 certificates is signed as previously described. In addition, it can also be
configured to check that the chain contains a certificate for a known
certificate authority. This option is controlled by the properties:

® client.require_trusted_root
A boolean property.

® client.authority_certificates
Either a string containing file names concatenated with separating
spaces, or an array of X509 certificate objects.

In addition, a server has the option of requiring an SSL certificate
from the client. This is set up by using the configuration properties:

12-Feb-99

FlexiNet Architecture 137



® server.require_certificate,
server.require_trusted_root
Boolean properties.

®* server.authority certificates
Either a string containing file names concatenated with separating
spaces, or an array of X509 certificate objects.

All of the configuration and initialisation of the SSL connection happens

when server sockets are created and when client sockets are connected. There
is no interaction with the client or server applications.

23.6 Supported Algorithms

The algorithms currently supported by iSaSiLk are:

* Key exchange
- RSA
- RSA_EXPORT

- DH_DSS (Diffie Hellman with public key from a certificate signed
using a DSA authority certificate),

- DH_DSS_EXPORT

- DHE_DSS (Diffie Hellman with temporary keys, DSA signed,
using a DSA user certificate)

- DHE_DSS_EXPORT

- DH_RSA (Diffie Hellman with public key from a certificate signed
using a RSA authority certificate)

- DH_RSA_EXPORT
- DH_anon (Diffie Hellman with temporary keys, unsigned)
- DH_anon_EXPORT

The export versions restrict the use of DH, and RSA keys to fewer that
512 bits when used for encryption.

If an ephemeral or anonymous Diffie Hellman algorithm is selected,
then temporary Diffie Hellman parameters are required by the server.
If any of these algorithms are available after having processed the
cipher suite properties for a server socket, then the Configurable
Socket Factory will automatically generate the parameters.

If RSA_EXPORT is selected, or RSA with NULL encryption, and the
server certificate contains a public key longer than 512 bits, then the
server requires a temporary RSA key pair that satisfies the length
restriction. This has to be set using the properties (server only):

* server.tenp_key
This should either be the name of a file containing an RSA key pair,
or an explicit RSA key pair.
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23.7

e server.tenp_password
This is only required if server.tenp_key contains a file name, in
which case it should be the password to use to decrypt the private

key in that file.
* Encryption
- NULL (no encryption)
- RC4 (40 bit key)
- RC4/CBC (with cipher block chaining, still 40 bit key)
- IDEA/CBC, DES/CBC (40 bit key)
- 3DES/CBC (Triple DES with CBC, two 40 bit keys).

* Message authentication
- MD5
- SHA

Not all of the combinations are included is SSL version 3, for example the

only combination which includes IDEA is with RSA and SHA. See the
iSaSilLk documentation for details.

Generating Certificates

23.7.1

The Java application Certificate@J has been written to provide a
reasonably convenient way of producing both authority and user certificates
for use with the Crimson binder. The following sections describe how to use
the interface to generate the certificate files for a SSL certificate comprising a
chain of three X509 certificates.

The following sections detail the various windows that form the user interface
of the program.

Main window

The main window ( is divided into four data entry areas, plus a row
of buttons and a status line.

Certificate Details
This area contains three choice items: Certificate type, Key type,
and Maximum key size.

An SSL certificate comprises a sequence of X509 certificates,
starting with a user certificate, followed by one or more authority
certificates. The certificate type choice is used to distinguish these
two X509 certificate roles.
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Egg Certificate Creation Interface !EE
File

Certificate Details

Certificate Details: |Authority

Key type: IDSA

<l =] 1=

Max key size: |1024

Signature

Sign by: |Se|f

= =

Using algorithm: |DSA

Name Components

country:

stateOrProvince:

locality:

organization:

organizationalUnit:

commonName:

Validity Period

Valid from: |16 dec 1998

Expiry: |17 dec 1998

New Save | Load | Exit

Figure 56 CertificateGUI Main Window

Three key types are supported: DSA, RSA, and DH. As DH keys
are only used for encryption, and authority certificates are used to
sign other certificates, it is not sensible to generate an authority
certificate that has a DH key type. The program detects
nonsensical combinations when the generation of a new certificate
is requested, and pops up an error dialog which details the
problem detected.

Two key size options are provided. These always relate to the size
of the public key of the key pair and are included so that users
can comply with legislation. The actual key length is randomly
chosen to be of a length which does not exceed the stated size, nor
be significantly shorter. This has the effect of strengthening the
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23.7.2

Signature

algorithm over fixed key length choices by allowing more possible
keys to be used.

This area contains two choices. The "sign by" choice provides a
selection of the known private keys which can be used to sign the
new certificate. In the case of a root authority certificate this can
be the private key corresponding to the public key on the
certificate itself (this is listed as "self", and is the only choice until
an authority certificate file is loaded, or an authority certificate is
generated.

The second choice item is for the signature algorithm to use,
comprising two DSA based algorithms and three RSA algorithms.
If a DSA key and an RSA based algorithm (or vice-versa) are
selected, then no certificate is possible, again detected when
certificate generation is requested.

Name Components

This area allows the entry of the most common name components
used in X509 certificates, chosen from a vast collection of esoteric
possibilities provided by the x509 specification. At least one of the
fields must be non-empty to avoid an error dialog.

Validity Period

Although it is possible to generate certificates which expire at a
date prior to their "valid from" date, or at a date in the past, this
is regarded as being an error.

“New” Button

This generates a new key pair and produces a new X509
certificate holding the public key of the pair with signature, name,
and validity period as entered into the areas as detailed above.
The key generation can be quite slow, and whilst this is being
done the status line (below the buttons) explains that this is
happening. Once the objects have been successfully created, an
dialog pops up asking for a single name to use to refer to them by.
This is used as the base name for files when they are saved.

“Save” Button
“Load” Button

These open the load or save dialogs respectively. These operations
are also available from the file menu.

“Exit” Button

This exits the program, after prompting for confirmation.

The Save Dialog

This dialog contains a directory area at the top. Under this is a list of the
objects that have been created but not saved to file. For each authority
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23.7.3

23.8

certificate there will be two entries; the x509 certificate by itself (for use in
checking a certificate chain for a trusted root), and a pair comprising a
private key and SSL certificate (for use in signing certificates in a subsequent
session). A user certificate just has the pair of the private key and SSL
certificate.

The Save button initiates the saving of the selected item (if any) to file. When
a key and certificate object is saved, the private key component is encrypted
prior to writing the file, and to do this a password entry dialog is popped up.
The private key encryption dialog has two text fields, for the password and its
repeat, plus a choice of the encryption algorithm to use.

The Load Dialog

The directory area of the Load dialog is identical to that in the Save dialog.
Underneath this is a list of the files which may be loaded. This will only list
those files with names of the form nane_key and_cert. der that contain a
key and SSL certificate pair, and where the main X509 certificate is not
currently loaded.

The Load button initiates the loading of a key and certificate from the
selected file. The private key read from file is assumed to be encrypted, and a
private key decryption dialog will appear. If the correct password is entered,
the key will be decrypted and the pair loaded.

Generating Temporary RSA Key Pairs

A secondary program, TenpKeyGUl, is provided for generating temporary
RSA keys. This is much simpler. The main window has a choice of maximum
key size, which would normally be selected as 512 bits, as this is the
commonly used maximum size for temporary RSA keys. The New button
generates a new pair of keys, and then pops up a Save dialog. This dialog has
a directory area identical to that in the certificate generating program,
followed by a file name field, a password and password repeat field plus a
choice of algorithms to use to encrypt the private key of the pair.
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24 RMP BINDER (BLACK)

24.1 Introduction

Black supports reliable message passing between a group of member objects.
Messages are transmitted by methods with fully typed arguments and a voi d
result. Message methods can be grouped into interfaces just like call methods
and a group may export many interfaces. Black is currently unfinished. In
particular it reuses some components that should be customised for efficiency.

A group member is both a client and a server. A member sends a message to
the group by invoking the corresponding method on the FlexiNet stub for its
interface. Control is returned to the sender as soon as the message has been
transmitted and only a local runtime exception may be thrown. The protocol
delivers the message to each member of the group (including the sender) and
its method is then executed by each member. There are no reply messages
(not even null ones or exceptions).

The protocol that Black uses is based on a subset of the “Reliable Multicast
Protocol” (RMP) which is described in [RM] and which in turn is based on the
Chang and Maxemchuk protocol [CM84]. The protocol characteristics and
state machine are described in section

The RMP protocol controls the QoS (reliability, ordering and resilience) of
message delivery. Black only implements a subset of the RMP QoS options.
RMP provides unreliable and reliable delivery; Black only provides reliable
delivery. RMP provides unordered, source ordered, and totally ordered
delivery; Black only provides totally ordered delivery. Both provide K
resilient, majority resilient and totally resilient delivery. (K resilient means
the message has been acknowledged by K nodes before the protocol delivers it
to the application.)

The Black binder and protocol stack are based on the Green ones. The top
three layers (Cal |, Serial and Nane) of the Black stack are the same as
those used in Green. The MessagelLayer is a heavily cut down form of
RexLayer, which cuts out all the, acknowledgements, probes, timeouts and
retransmissions. This is because the lower layers provide reliable delivery.

The Sessi onLayer is the same as used in Green. The Sessi onManager and
Session could probably be cut down.
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24.2

The Fragnent ati onLayer is inserted between the MessagelLayer and the
Sessi onLayer. Currently the fragmentation layer from Green is used, but

this supports NACKSs for reliability, and this is redundant when used over the
RMP protocol.

In a well-structured world, RexLayer would be a subclass of MessagelLayer,
and the Green FragnentationLayer, Sessi onManager and Session
would be subclasses of the Black ones.

The Reliable Multicast Protocol is implemented in an extra RnplLayer
inserted beneath the SessionLayer. In addition, UdpLayer has been
extended to form a Mul ti cast UdpLayer .

Basic Operation

2421

24.2.2

Upon initialisation, the Black binder creates a single protocol stack that is
used for all invocations — whether client or server side. This is illustrated in

In addition to the stack, there are a small number of shared resources —
factories for input and output buffers, and a Session Factory.

At the moment only a single group can exist. When multiple groups are
implemented, the RnpLayer will  multiplex a  number of
Mul ti cast UdpLayer s using data structures similar to sessions.

Name Generation

All exported names are Tri vNanmes — pairs of a UDPEndpoi nt and an integer
interface ID. In order to generate a name, the binder calls the
Tri vNaneLayer to generate an interface ID, and then pairs this with a new
UDPENndpoi nt containing the group’s multicast IP address and UDP port .

Name Resolution

To resolve a name, a new Stub is created, and initialised with a reference to
the top of stack, and the name being resolved.
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Figure 57 The Black Binder and Protocol Stack

24.3 Client Side Call Processing

In this section we walk through the process of a call down the stack. In
subsequent sections we consider how a message is received off the wire, and
how requests are handled on the server.

24.3.1 Call Layer, Serial Layer, Name Layer
Identical to Green (sections .
24.3.2 Message Layer
This layer is responsible for managing method invocations over asynchronous
messages.
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24.3.3

24.3.4

24.3.5

24.3.6

24.4

MessagelLayer is a cut down RexLayer (section m Basically, it
converts Invocations into messages. All timeouts, queues, retransmissions
and protocol messages (ACKs and Probes) have been removed. Sequencing
has been left in for now as a check on the RnpLayer ordering. Request reply
pairing has been left in for when non-member call invocations are added to

the RnpLayer.

Message invocations (i.e. with a void result) return up the stack to the caller
as soon as the message has been transmitted.

Fragmentation Layer

Identical to Green (section [20.3.5), but the NAK protocol is redundant and
can be removed.

Session Layer
Identical to Green (section M
Group Layer (RmpLayer)

This is an additional layer not present in the Green protocol.

Outgoing messages are typed as ‘Data’, source ordered, tagged with the
sending host’s IP address, sent on down the stack and queued for possible
retransmission.

UDP Layer (MulticastUdpLayer)

For outgoing messages, the function is identical to Green (section m
except that the message is sent to a multicast address.

Receipt of a Message

2441

Messages are received off the wire symmetrically on client or server. It is only
at the RnpLayer that they are determined to be application or protocol
messages. In this section we walk through the progress an incoming message
makes.

UDP Layer (MulticastUdpLayer)

Identical to Green (section R0.4.1), except that the layer listens on the group’s
multicast IP address and UDP port rather than the host’s IP address and
process’s UDP port.
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24.4.2 Group Layer (RmpLayer)

This additional layer is a massive change from Green (compared to this, every
other change has just been minor tinkering).

The basic principle of the protocol is: a sender multicasts a message to all
members of the group (including itself) and it is positively acknowledged by a
single multicast ACK sent by a designated member known as the token
holder (m. The ACK is also used to pass the token round all members
of the group in turn so that each member can order, deliver and discard its
messages with the required QoS.

Sender

message

ACK

Token Holder

Figure 58 Basic Oper ation of RMP

But because UDP messages may be lost, its a little more complicated than
that...

A sender adds its own UDP address and a local source order to a message and
multicasts it to all members of the group. All (or most) of the group members
receive the message and queue it in their holding queue. If the token holder
receives the message, it assigns a total order to the message and multicasts
an ACK message containing the senders UDP address, sender's source order,
group's total order and the next token holder's UDP address.

The message sender periodically retransmits the message until it receives the
ACK for its message. The token holder periodically retransmits the ACK until
it receives an ACK with a higher total order or a ‘confirm’ message for the
ACK.

When a member receives the ACK for a message, it places it in its ordering
queue along with a slot for the message. If it finds the message in its holding
queue it orders the message by transferring it from the holding queue to its
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slot in the ordering queue, otherwise it multicasts a NAK requesting a copy of
the missing message. If a member sees a gap in the sequence of ACKs it
multicasts a NAK requesting a copy of the missing ACK.

After a member has received K-1 [K <= group membership] ACKs after the
ACK for a message then the member can deliver that message up the protocol
stack for local execution. This is illustrated in

Holding Queue

Data Data Data Data
> > >

Sender, Source Order: A6 E,23 A7 G,15

Moved on receipt of ACK E,23————

Received, but unordered, messages

Ordering Queue

Total Order: 66 67 68 69 70 71 72 73
Type: ACK —p» Data —p ACK Pt Data 9 ACK P Data Y"/ACK ‘)—b
Sender, Source Order: B,9 B,9 E,22 E,22 G,14 G,14 \E,23/
Delivered Queued awaiting more ACKs
Items (for resilience)

Advance over next data message
on receipt of ACK 74
(for K=3 resilience)

Figure 59 RMP M essage Queues

Each member keeps each message in its ordering queue until the token has
been passed round every member of the group since the message was ACKed,
it can then discard it.

A member may not accept the token until it is in possession of all messages
up to and including the message acknowledged by the ACK passing it the
token. It must send out a NAK for each missing message and wait until it has
received them all before becoming the token holder.

If a token holder, or member retrieving messages prior to becoming the token
holder, receives a retransmitted ACK it should send a confirm message to the
sender.

NACKSs are replied to with a multicast of the request message or ACK by the
token holder, because it must have obtained copies of all outstanding
messages before accepting the token. They may also be replied to by the
previous token holder, if is still waiting for an ACK or confirm message from
the new token holder.

If messages are not sent fast enough to ensure timely circulation of the token,
then a null token is transmitted round one complete circuit on a heartbeat
time out.
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24.4.3

2444

24.4.5

24.5

Orderly group membership changes are initiated by Join and Leave messages
which are replied to by the token holder with the new membership list in a
List message. The List message is ordered in the same sequence as data
messages so that the membership change takes place between the same data
messages in each group member.

When the token gets lost, a reformation protocol is invoked to discover the
remaining members, find the highest total order and elect a new token
holder.

For further details of the membership and reformation protocols see [RMP].

Session Layer

Identical to Green (section .

Fragmentation Layer

Identical to Green, but the NAK protocol is redundant and can be removed.

Message Layer

No protocol messages are generated or received by the MessagelLayer .

Messages are processed as in the RexLayer except that exceptions from
message invocations are discarded.

Server Side Call Handing (above RPC)

Identical to Green (section .
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25

OTHER BINDERS

25.1

Yellow — REX over TCP

25.2

Rex is a reliable protocol designed to run over an unreliable message passing
system (such as UDP). However, it can also be run over TCP. This may be
required for machines with no UDP support — or for access to services across
a firewall — where TCP is a better supported protocol. The Yellow binder is
identical to Green, except that it uses a TcpDat agr anLayer instead of a
UdpLayer. This layer ‘hides’ TCP connections to give a datagram interface
similar to UDP.

Yellow was created both as a test to determine how easy it was to construct a
new binder out of existing pieces (TcpDat agr anLayer being the only new
piece) and to provide TCP support at a time when Green was the only other
binder. This was a half way point in the development of the first SSL-base
binder, Rose.

Yellow is less efficient than Magenta — as the protocol management (the Rex
Layer) is unaware of the connections, so cannot manage them effectively.
Apart from specialist use, Magenta should usually be used in preference to
Yellow.

Blue — REX over UDP with Mobility

25.3

This is a REX-based binder designed for use with clusters and capsules. It is
implemented as Cluster-Capsule binder pair. It is described in the context of
clusters in chapter

Negotiation Binder

This was part of an early piece of work on negotiated binders (so early, the
colour name convention hadn’t kicked in).
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25.4 Burgundy — Magenta using Blueprints

This is a version of Magenta that is constructed using the Blueprint system
(chapter @ Other than initialisation routines, its structure is identical to
that of Magenta.

25.5 Other Binders Created During Development

A number of binders were created that have subsequently been replaced or
that have otherwise become extinct. An incomplete list is as follows:

* Rose — REX over TCP with SSL
This was created during early SSL experiments — before a more
suitable TCP transport was available. It was removed because
Crimson (RRP with SSL) is a better alternative.

* Lemon — REX over TCP with SSL and Mobility
The mobility-aware version of Rose. This has likewise been replaced
with an RRP version. In addition, the design of clusters evolved after
this binder was designed, and Lemon was never updated.

® Purple — Same domain pseudo-binder
This was a piece of binder ‘magic’ that was required to in order to
initialise clusters. After a reengineering of this cluster abstraction,
this became obsolete.
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26 OBJECT SERIALISATION

26.1 Introduction

Serialisation is the process of converting a graph of objects in to a serial, or
byte array, form. This is generally required either to pass the objects to
another JVM (for example in a remote method invocation) or to store the
objects persistently to disc. Serialisation is similar to marshalling. The
difference is that serialisation is an object-oriented process — and in each
object may be a sub-class of the class expected.

26.2 Serialising Interface References

When considering a serialisation system for use in a middleware platform, we
must consider one important special case. When serialising a graph of objects,
we must be able to distinguish between objects to be passed as data (by value)
and objects that should be passed by reference.

In FlexiNet, we wanted to support the ODP abstractions as closely as
possible, and so took the decision that references to objects should be passed
by value, and references to interfaces should be passed by reference. This is
illustrated in . To determine the difference between a reference to
an object and a reference to an interface, the class of the reference must be
examined.

Pointer to an
object, passthe
state of the object.

public Class 0O
implements A,B

Pointer to an
interface, pass a
reference to the
interface.

Figure 60 Determining Whether to Pass by Reference or Value
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26.3

Java.io.Serializable

26.4

JDK 1.1 shipped with a ‘built in’ approach to serialisation. Although it would
have been straightforward for FlexiNet to use this, unfortunately it was
considered too limited. In particular, the Sun’s serialiser cannot be extended
to deal with special cases on a by use basis. This is exactly what was required
in FlexiNet to spot the difference between a reference to an interface on an
object, and a reference to the object itself.

Sun’s serialiser does support extension, but only on a per class basis. Each
class may provided special serialisation methods to serialise it and its
subclasses. This is used in Sun’s RMI system, and is why RMI server objects
must extend a specific superclass.

FlexiNet Serialisation Approach

26.5

Rather than producing a serialisation system which specifically distinguished
between object and interface references, we decided to design a serialiser that
could deal with by use special cases in general. The per class specialisation
provided by Sun’s serialiser is a special case of this.

Every time a new use of an object is detected (i.e. every time an object is
referred to by a reference of a different class), then a serialiser method is
invoked to determine if this use should be treated as a special case, In the
default serialiser (Basi cSerializer) no uses are special, however by
subclassing Basi cSeri al i zer we can provided for different special cases.

Contextual Information

When serialisation, there is usually a context associating the serialiser and
deserializer. That is to say that the serial form does not have to be fully self-
describing — the deserializer can determine some information about the data
from context in which it is used.

For example, in a method invocation, the server expects each parameter to be
a subclass of the corresponding parameter class in the method signature. If
any of these classes is ‘Final’, then no typing information for that parameter
need be included in the serialiser data. If a parameter is of the expected class
(as opposed to a subclass), then a flag may be serialised instead of a full class
name.

FlexiNet’'s writ eCbj ect method therefore takes an additional parameter,
the expected class of the object, as determined from context. This is used both
to reduce the amount of contextual data written to the serial form, and to
determine the way in which the object is being referenced.
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26.6 Object Graphs

The basic operation of a serialiser is to walk over a rooted object graph. For
each object the following procedure is undertaken

To serialise (object,context):

* If the context is a primitive type (boolean, char, int etc.), write the
value it represents. Exit.

* If the object is null, write a flag to indicate this.Exit.

* Lookup (object,context) in the dictionary. If has been serialised before,
write the dictionary index of the previous use. Exit.

¢ Add this (object,context) to the dictionary. Remember its index (i ).

* Determine if this use is special. If it is, write i , and a flag to indicate
which special case. Then use custom per-case code to write the
appropriate state. Exit.

* If the object is not special, the context has had no effect. Lookup
(object,null) in the dictionary. If it is found at index j :

- Replace (object,context)->i with (object,context)->
— Write |
- Exat.

* Add (object, null)->i to the dictionary. Write i .
* Write the true class of the object (see section @

* Write the state of the object in ‘slices’ from its ultimate superclass
down to its concrete class.

To serialise a slice of object

— Check for special methods for serialising this slice, use if
available. Exit. A per-slice special method might, for example
serialise an object of class Foo, but then allow standard
techniques to serialise additional fields added to a subclass of Foo.
This is currently not used in FlexiNet.

— For each field, write the data for that field. If the field contains an
object, or an array of objects, write those objects by recursively
calling serialize(object,context). The context is the type of the field.
The fields may be read (and set) using Java core reflection.

Note.
The absence of some flags in the serialised byte stream must be
detectable. In the current implementation, this is done by ensuring
that each flag written is distinct from all the other values that may also
be written at that point in the stream. In particular

— The null-object flag is a impossible dictionary index

— The special case flags are all distinct from the first item written to
identify a class.

12-Feb-99 FlexiNet Architecture 154



26.7 Class Serialisation

Classes must be serialised on two different occasions. Firstly, an actual class
may be passed as the ‘object’ parameter in a call to wi t eCbj ect . Secondly,
classes must be serialised to identify the actual class of objects written to the
stream. This second case is much more common.

There are many issues relating to class serialisation. Firstly, it is
inappropriate to serialise the bytecodes making up the actual class. These
may be very large, and in general, all classes imported by the serialised class
would also have to be passed. As the recipient is likely to have loaded (or have
better access to) some or all of these classes, this would be extremely
wasteful. For this reason alone, the naive approach is rejected.

Class serialisation is therefore concerned with supplying identification
information, so that a recipient can determine which class to load, and where
the byte-codes for that class, and classes it imports, can be located.

There are several parts to this information
* What is the fully qualified name of the class?
® Which version of the class should be used?
®* Where can the class be obtained?

* Which versions of imported classes should be used? and where may the
classes be obtained?

* What is the certification to the authenticity and authorship of the
class?

In addition to this information, there is an issue as to whether the recipient
will be willing or able to actually load and execute the class. They may be
unwilling due to security policy, or unable because the class is not accessible
to them, or because they have already loaded a different class with the same
name. (This second limitation is removed by use of the FlexiNet Class
Repository).

There are many approaches to serialising classes, and for this reason, the
FlexiNet serialiser may be parameterised with a Cl assSeri al i zer that is
solely responsible for serialising classes. Two Cl assSeri al i zer s have been
written, a trivial one described in section and a more complex one that
interfaces to the FlexiNet Class Repository described in section

Although serialising classes is in general a complex issue. In the majority of
cases, the class to be serialised is exactly that class that is expected from the
context of the call. For example, the method op(Foo f) will probably be
passed an object of class Foo more often that an object of a subclass of Foo. In
this special case, all that is required is for the serialisation of a flag to
indicated that the class is as expected; the recipient will have already loaded
this class in when loading the interface class. A second common optimisation
is to spot subsequent references to a class previously serialised, and to
serialise the index of the class within a dictionary. This optimisation is
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26.7.1

26.8

particularly signification when a number of interface references are serialised
together — as they will tend to make use of the same naming classes.

ClassNameSerializer

This is a trivial class serialiser. It assumes that the peer deserializer has
access to a class of the same name and version. In addition, it assumes that
the peer uses its own means for validating the authenticity and authorship of
the class.

The approach is straightforward
® If the Class is the expected class then a flag is written. Exit.

® The class is looked up in a dictionary. If it has an entry, the index is
written. Exit.

* The class is added to the dictionary, and the index is written.

® The fully qualified class name is written.

Basic Serialiser

26.9

The superclass for all existing FlexiNet serialisers 1s called
Basi cSeri al i zer, this implements the Serializer interface, which is used
by other parts of FlexiNet to abstract the particular serialiser being used.
Similarly, the peer deserialiser is called Basi cDeSeri al i zer. The ‘basic’
serialiser performs object-graph walking with no special cases. Other
serialisers override the ‘special’ method to provided additional functionality.

Sun Compatible Serialiser (SCSerializer)

26.10

This is a subclass of BasicSerializer that spots per-class special cases in a
manner compatible with Sun’s External i zabl e interface. This allows
FlexiNet’s serialiser to serialise application objects with special serialisation
methods conforming to this standard interface. However, it should be used
with a modicum of care, as the Ext ernal i zabl e interface does not pass
context — and any per-use special cases will therefore not be spotted until the
first level of recursion.

Reference Serialiser (RefSerializer)

This is the primary serialiser used by FlexiNet. It is a subclass of
SCSeri al i zer, so will deal with Ext er nal i zabl e special cases in addition
to its own.

Ref Seri al i zer is designed to spot references to interfaces, and serialise
these ‘by reference’. To achieve this, it looks for two special cases.
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26.10.2

26.11

References to Interfaces

References to interface are detected because the class of the reference is an
interface class. The special case is handled by generating a name for the
interface, and writing the following information to the output buffer.

* A flag to indicate that this is a special case
® The class of the interface being referenced

* The name generated to represent the interface (care!)

The interface name must be written with a modicum of care. It should be
written as a ‘value’ object, not a reference. This is an issue with Smart
Proxies, where the name will also be a proxy (which would trip the second
special case). The solution is to use a pseudo-interface as a flag in the call to
writeQbject. This flag is spotted by the RefSerializer during the
recursive call, and no special case is raised.

References to Proxy Objects

Proxy objects are used within FlexiNet to represent a ‘view’ on to an interface
— typically to allow a client to have a reference to an interface on a remote
object. If a reference to a proxy object is serialised, the name of the real
interface should therefore be serialised instead. For the most part, this could
be dealt with as a reference to an interface, as described above. However
adding this special case allows us to deal with two problems described in the
next section. When a proxy object is serialised, the following information is
written.

* A flag to indicate that this is a special case
* The class of the interface represented by the proxy

® The name of the interface represented by the proxy

This information is identical to that written for the first special case, so the
deserialiser does not have to distinguish between them.

Automatic Widening of Interface References

Java is an object oriented programming language, and frequently objects are
narrowed in order to be manipulated generically, and then widened upon
retrieval.

An example of this is use of the standard Hasht abl e class.
Foo f = new Fool npl ();

hject o = (Ghject f) // narrow ng
Hashtable.put(“myfoo”,0);

(.)”= hashtable.get(“myfoo”);
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f = (Foo) o; // widening

This approach is equally applicable in a distributed context, for example if an
interface is stored in a Trader. However, there are two important issues.
Firstly, if an interface is cast to be of type Obj ect , then the Ref Seri al i zer
will be unable to detect that the intention is to pass a reference not a value.
The second issue is that widening of interface references is generally
disallowed, as it is a security risk (a client gaining a reference to one interface
on an object could illicitly convert it to a reference to a second interface).

These problems are tackled together by using a proxy. As the proxy stores a
reference to a particular interface (of explicit type) then it is irrelevant how
the proxy is cast. The Ref Seri al i zer will know both that it is to be passed
by reference, and the class and name of the interface being represented. To
use this feature, the programmer must tag that a narrowed interface may be
widened by a client.

For example
Foo f = new Fool mpl ();

hject o = Flexi Net.tag(f, Foo.class) // narrow and tag
remoteHash.put(“myfoo”,0);

0 = remoteHash.get(“myfoo”); /'l sanme or different client
f = (Foo) o; /'l no special action on w dening

In practice, what actually occurs is that the tag operation creates a local
proxy for the identified interface. This proxy contains explicit information
about the class of the interface that it represents. This used by FlexiNet when
it is serialised. This tag method provides a general mechanism for specifying
constraints on exported interfaces. More examples are given in section

To aid in the type safety of services that wish to handle references to ‘any’
interface, the class Iface 1is defined as the ‘most general’ interface class (in
the same way that Object is the most general object class). A programmer
may use this to indicate that an interface is required. This does not require
that application interfaces actually extend Iface — this is handled by the
proxy class used by the engineering — it is simply an annotation to encourage
type safety.

StubSerializer

This serialiser was designed to be used when serialising application code in
order to migrate it. Here the distinction between pass by reference and pass
by value is different than from ‘normal FlexiNet use. We require that all
objects are passed by value unless they are actually proxies to remote
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interfaces — in which case the names of the interface should be passed, and
the proxies recreated when the state is deserialised.

To do this, StubSeri al i zer overwrites special() with a method that looks
for proxy objects. Proxies to remote objects are dealt with in an identical
fashion to Ref Seri al i zer, however proxies to local objects are treated as
‘normal’ objects, so that they may be recreated in an identical fashion on the
destination machine. A special case is that auto-generated stubs are not
serialisable by ordinary means, so proxies for local objects which are
themselves auto-generated, must be serialised in a special way.

St ubSeri al i zer produces output which is compatible with that output from
Ref Serializer. There is therefore no StubDeSerializer -
Ref DeSeri al i zer is used instead.

Discussion

The decision to write a new serialiser for FlexiNet was a hard one. Sun’s
serialiser provides a standard that application programmers are familiar
with, and in particular, classes that required special serialisation are much
more likely to be provided for under Sun’s system that ours. However Sun’s
approach is less flexible. In addition to requiring that ‘server’ objects extend a
specific base class, it is not possible to change the action of the serialiser
without changing the application classes. Suns serialiser cannot therefore be
used to migrate application code in the same way as FlexiNet’s. This is one of
the primary reasons which FlexiNet’s “Mobile Object Workbench” is currently
a world beater.

There are two important limitations to the current FlexiNet system. Firstly,
as we use a pure Java approach (as opposed to Sun) we must use Java core
reflection to read and set fields on objects been serialised. In JDK 1.1, we are
therefore restricted to serialising publ i ¢ fields. In JDK 1.2, it is possible to
change the security privileges of the serialiser, and this issue will be resolved.

The second limitation is that readObj ect and witeCbject methods
provided by some classes under Sun’s Seri al i zabl e interface cannot be
used by FlexiNet. This is because they take as a parameter a reference to
Sun’s serialisation system, and we cannot override this. We believe Sun
appreciates the restriction this places on system designers, as they have
provided Ext er nal i zabl e as an alternative interface. We can, and do, make
use of this.
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STUB GENERATION

27.1

Introduction

27.2

The role of a FlexiNet stub is to provide an auto-generated proxy object. This
has a collection of methods, each of which, when invoked, cause the identical
invocation to occur on some other, usually remote, object. Furthermore, the
result value of such an invocation is passed back and returned by the stub
method, or if an exception is raised, then this is similarly passed back and re-
raised by the stub.

It is normal practice in systems which provide this sort of capability to
include a language for describing the methods which the stub should have,
and some sort of compiler which produces the stub from its definition. In
FlexiNet the stub description language is replaced by a Java interface class,
and the stub generator is a specialised compiler which constructs bytecode for
stub classes. The bytecode, when loaded into a Java program, produces a
class that implements the interface from which it was compiled. The stub
generator is usually linked with the application, and generates stubs
dynamically ‘on demand’.

Each instance of a stub class contains a body object that embodies a
connection to the ‘real’ service object that the stub is a proxy for. This is set
when the stub is generated, and (generally) does not change.

Stub Generation

The construction of stub classes from interfaces is made possible by two
features of the Java system. First, Java provides introspection facilities.
These allow FlexiNet to analyse the interface class to obtain descriptions of
all of the methods in the interface, along with their argument types, return
types, and exceptions

Secondly, Java has user defined class loaders, which can load bytecode as an
array of bytes to produce a class. In FlexiNet, just such array of bytes is
produced by the stub generator, and as a result the stub class can be defined
as well as loaded at runtime. This removes the need for an external, build
time, compilation tool, as found in CORBA and Java RMI.
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In FlexiNet terms, each stub method constructs an | nvocati on object to
represent the invocation taking place. The invocation object must contain the
following information

®* The name and signature of the method being invoked. This is stored in
an instance of the WrappedMethod class. This is simply a wrapper for
java.lang.reflect. Method that allow more efficient access to some
attributes.

* The target upon which the method is being invoked. This may actually
be the name of the remote interface rather than an explicit java
reference to the service object.

® The parameters being invoked on the method. These are passed as an
array of objects.

In addition to this, each stub stores a reference to a body which it passes the
newly constructed invocation to. This is the actual service object, or more
typically, the top of a communications stack.

Invocation objects must be created dynamically, as one instance is required
per invocation. However the method, body and name may be shared between
invocations, and do not change during the lifetime of the stub. The method
objects (one per method) may therefore be created and stored in the stub
during construction. The body and name are created externally to the stub
generator, but are also set at construction time.

Whenever a stub method is invoked, a new | nvocati on is constructed,
containing the W appedMet hod object corresponding to the stub method, the
name, and the arguments of the call as an array of objects. The | nvocati on
object provides an i nvoke method which initiates communication. When
communication has completed, the | nvocati on object also contains a result
value to be returned or thrown by the stub.

This gives a the basic structure for a stub method:

* Construct an array of the arguments to the method call, and construct
an invocation object containing it.

¢ (Call invoke.

* Retrieve and analyse the result, to return or throw.

The bytecode for each method starts by constructing the argument array and
initialising it with the arguments as passed to the stub method by the
application. As not all Java values are objects, the bytecode must convert
primitive types into corresponding object types. For object types a simple
assignment will suffice.

Following the code for the construction of the | nvocat i on object, comes the
code to call the i nvoke method with the body as its argument. There is a
possibility that this call will fail and raise a BadCal | Excepti on, and the
stub catches this exception and converts it to a runtime exception before re-
throwing.
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The final stage is to analyse the result. First, a method is invoked on the
Invocation object to determine if the invocation raised an exception. For a
non-exceptional return, the result must be converted from object to primitive
type (if appropriate) by calling an type-specific method on the wrapper object.
The return value is then returned as the result of the method.

For the case where an exception is to be raised, there are three possibilities.

* The return value may be one of the listed exceptions for the method (as
obtained from the interface class)

® The return value is a Runt i meExcepti on

® The return value is an internal FlexiNet exception that should be
converted to a general purpose runtime exception.

The bytecode generator creates bytecodes for a cascade of ‘if clauses to deal
with these cases. An example of the source code equivalent to a stub method

is illustrated in

The generated stub data is loaded using a specialised class loader. This is
used because default Java class loading is from the file system, and we wish
to avoid writing on-the-fly generated classes to temporary files.

As there may be many different (standard) class loaders within an JVM,
there are potentially many different name-spaces for Java classes. For
example, the Class Repository (chapter makes use of this feature. The
stub class loading system therefore must maintain (at worst) one stub class
loader for each ordinary class loader. If fewer stub class loaders were used,
then this might violate the separation between the different class name
spaces. The stub class loading system keeps an table of stub class loaders,
indexed by the class loader that the interface class was loaded with. In this
way it can dynamically generate stub class loaders on demand, and ensure
that the minimum number is created. The stub class loader loads the
minimum number of classes, and in particular refers back to the (standard)
class loader used to load the interface class in order to load any application
classes that are required to support the interface. This approach also ensures
that the stub can be safely cast to be of the interface type, and that the
application need never refer to the stub type explicitly.
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public O ass Foo Stub extends Flexi Stub inplenents Foo
{

private Object body;

private Nane nanme;

static WappedMet hod bar Met hod = new W appedMet hod( " bar",
"(Ljava.lang. String;i)Lbaz;");

/1 method from proxied interface
public Baz bar(String s,int i) throws

nmyExcepti onl, myExcepti on2;
{

oject[] arg = new Qhject[2]; // convert argunents to
ar g[ 0] S; /1 object array
arg[ 1] new | nteger(i);

/1 construct new invocation object
I nvocation inv = new I nvocati on( bar Met hod, nane, arg) ;

try
{

i nv.invoke(body); // invoke invocation on body
}
catch (BadCal | Excepti on engi neeri ngExc)

/I engineering exception — rethrow
t hrow new Fl exi Net Runti meExcepti on( engi neeri ngExc) ;

}

hject rc = inv.getReturnVal ue();

i f(inv.isExceptional Result())
{
Il cast to approriate exception type and re-throw
if(rc instanceof myExcepetionl)
t hrow (nyExceptionl) rc;
else if (rc instanceof nyException2)
t hrow (nyException2) rc;
else if (rc instanceof RuntimeException)
t hrow (Runti meException) rc;
el se
t hr ow new Fl exi Net Runti meException(rc);

return (Bar) rc; //return normal result

Figure 61 An Example Stub Method

The stub generator has been designed to simplify the construction of other
stub and proxy classes using an interface as a template. However, this
remains a complex process, not least because the current bytecode generator
only produces the subset of Java bytecodes that was required for our stubs.
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Despite the fact that we only use a subset of set of Java bytecodes. The API
for bytecode generation is still too extensive to list here. The generated form
of the bytecode data, an object of class O assDat a, has a print method that
can be used to produce a file containing the class in human readable form. A
utility Java program Pri nt C ass is also provided. This reads in a class and
outputs it in the same human readable format as the print method. These can
be used to spot differences between generated an equivalent compiled classes.
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RESOURCE IMPLEMENTATIONS

28.1

Introduction

28.2

This chapter contains a description of some of the resource and utility types
defined in FlexiNet.

Buffers

FlexiNet, like most middleware platforms, supports a buffer abstraction into
which outgoing messages are written, and from which incoming messages are
read. This is used in preference to directly reading/writing ‘to the wire’ partly
to aid code separation, and partly because block writes are usually faster at
the network/operating system interface.

FlexiNet is unusual in that there is a high degree of separation between the
different layers of a protocol stack. It is important that different layers that
wish to write into an output buffer are co-ordinated — so that one does not
write over data written by another. The approach taken is to use segmented
buffers. These are buffers which are logically split into a number of segments.
Each layer is then informed of the segment(s) it should use, and the layers

are therefore kept independent. This is illustrated in

[ java.io.DataOutput J

Segments as used by the 'Green’ protocol

OutputBuffer
Session Fragment R Interface itz ftotl Afgluisile
o Protocol e or
Identification| Number Identification
Header Result

| 8bytes 1 1 2bytes 1 1 2bytes ! | 4bytes 1 | !

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
Buffer _,}Segment Segment| | Segment| |Segment Segment
Segments 0 1 1 2 3

Figure 62 Buffer Segments

FlexiNet distinguished between input buffers and output buffers. Output
Buffers implement the Dat aCut put interface, and primitive types may be
written directly to them (the buffer performs appropriate marshalling).
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Similarly, Input Buffers implement Dat al nput . All components use buffers
via the abstract interfaces | nput Buf f er and Qut put Buf f er. This allows
them to be reused with different buffer implementations, that perform
different forms of marshalling, or that have different implementations for
extending buffers.

There are two primary buffer implementations. Basic Buffers are a ‘native’
buffer implementation and are used by the majority of protocols. CDR Buffers
are used in the GIOP protocols. They use CDR marshalling formats when
reading/writing primitive types. They are also based on an earlier buffer
implementation, which is less efficient at extending buffers.

Basic Buffers

The basic buffer implementation is finely tuned for performance. It uses a
‘chain of packets’ abstraction to store the data internally. New packets may
be cheaply appended to the chain in order to extend the buffer. For datagram
oriented protocols, each packet within the buffer corresponds to a packet to be
sent on the wire. The buffer implementation can reserve a space at the front
of each packet to allow per-packet header information to be written.

Basi cBuf fers are managed by Buffer Pools. As pooled resource, they
contain a recycl e method. However, they are not themselves reused.
Instead, when a buffer is recycled, the packets contained within it are stored
by the pool manager, and the buffer itself is discarded. This reduces the
possible introduction of bugs that was found with arbitrary recycling of
objects within other pool implementations. (see section . The following
steps are taken to ensure safe recycling:

* References to packets are encapsulated by buffers and pools. Only
these classes need be correct to ensure that a packet is not erroneously
shared between two buffers.

®* When a buffer is recycled, it is crippled so that it no longer contains a
reference to its packets. If a buffer is erroneously used after being
recycled, this will lead to an immediate failure rather than a lingering
bug.

* The finalize method for buffers recycles them. This ensures that
buffers are eventually recycled, even if the programmer forgets.

* Packets contain only bytes, not references to other objects. This reduces
the impact of a buggy reinitialisation routine. We define that a new
packet contains arbitrary data, so the need for reinitialisation is
avoided completely.

To ensure that buffers can be rapidly allocated, we minimise their complexity.
In particular, individual buffers do not contain information about buffer
segments; they simply contain a pointer to the current position within the
buffer. When a call is made to change the current segment, the buffer pool is
consulted, and returns the segment’s offset. Basic buffers can be optionally be
compiled with additional bounds checking code that validate that
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reads/writes to a segment do not overrun. This checking is by default only
performed when debugging of FlexiNet as a whole is enabled.

Priority Queues

Most protocols require some form of queue abstraction. In particular, many
protocols require a timer queue which is used to resend messages over
unreliable transports, or timeout connections or sessions. The
PriorityQueue class was designed to perform efficient queuing of items
ordered by key. A subclass of this, Ti mer Queue is used in Green, Magenta
and most other protocols.

The priority queue manages an ordered queue of items, each of which is
associated with a key. The item with the lowest value is stored at the front of
the queue. The implementation is tuned to make the addition and removal of
items as efficient as possible, regardless of their position within the queue.
Internally, a heap structure is used to maintain the ordering relationship
between items. The heap is implemented as an array of (references to) handle
objects. Each handle contains a reference to the queued object, the key value
and a back reference to the object’s position within the heap. This allows for
efficient removal from the heap, without recourse to searching. This is

illustrated in

PriorityQueue
Heapified array

Handle

key
position
value

TimerQueue

Figure 63 Priority Queue I mplementation

Each object stored in the queue must implement the Queueabl e interface.
This contains the dequeued method, which is used by sub-classes of
PriorityQueue to inform an object that it has been removed from the queue.

An important feature of the priority queue abstraction is its interaction with
synchronisation mechanisms. Frequently, a dequeued item must itself be
locked prior to some action being taken. The thread performing the dequeuing
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would therefore lock the queue (to dequeue) and then lock the object (during
processing of the dequeue event). Equally, an object that needs to be queued

is often locked, this leads to acquisition of the locks in the opposite order. This
could lead to deadlock.

To avoid this, the queue implementation ‘juggles’ its locks when dequeuing an
object so that obtains the locks in the order object, queue. This removes the
possibility of deadlock. The priority queue also manages the race condition of
an object being simultaneously removed from a queue manually, and being
de-queued (for example due to timeout). This allows straightforward use of
priority queues.

For example if a mutex is held on an object, and a timeout occurs leading to
the object being dequeued, the callback will not occur until the mutex is
released and may be attained by the timer thread. If in the meantime the
item is removed from the queue, the callback will not occur at all.

There is one issue here: in Java, there is no way to ascertain if a lock is held
on an object without attempting to gain the lock (and possibly blocking). In
the case of the timer queue, this may result in the callback on other objects
being delayed, because the object with the lowest timeout is locked for a long
period of time. For current protocols, this limitation is not significant, as
mutexs are only held briefly; however this must be considered if the timer
queue is used for other purposes.

28.5 Cache

Various parts of FlexiNet perform some form of caching. An abstract cache
interface has been defined to allow different caching policies to be used
interchangeably. The cache interface is shown in It is essentially a
key-value lookup.
public interface Cache
{
public Cbject put(Cbject key, Gbject value,int weight);
public Cbject put(Cbject key, Cbject val ue);
public Cbject get(Object key);
public void resize(int size);

public int getCurrentSize();

public int getMaxSize();

Figure 64 The Cache I nterface

There are currently three cache implementations, two of which are trivial.
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* Bottomless Bucket
This is a simple hashtable. It never discards anything from the cache.

¢ Null Cache
This does not store anything at all.

* Blocking Hashtable

This is a useful cache abstraction. It is essentially a hashtable, but has
and additional method, get b (get blocking). This will retrieve an item
from the cache, but if it is not present, will mark the callee as the
‘handler’ for this key. Any subsequent calls to get or getb with the
same key will block until the handler has performed a put operation.
This may be used to ensure that only one thread performs an
expensive lookup if a cache lookup fails. The handler may put a null
value into the cache to indicate that it has failed. The next thread to
attempt a get b will become the new handler.
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BLUEPRINTS

29.1

Introduction

29.2

FlexiNet is highly configurable, and a mechanism is required for the
specification of complex component interdependencies. The Fl exi Props
system was designed to fit this purpose. This is a simple extension of the Java
property scheme that allows arbitrary (non-string) properties. FlexiProps is
still used for the specification of some properties, in particular for specifying
quality of service constraints. However, it was found to be lacking when used
to specify complex compound objects, such as binder protocol stacks. For this
reason, the ‘blueprint’ system was introduced.

An important use of the blueprint system is to allow a client to specify
modification to a standard template used in binder initialisation. For
example, a client may wish to produce a variant of the Magenta binder that
uses a different threading policy, or that uses a different buffer pool
abstraction. The type checking facilities in blueprints ensure that the
modification do not lead to an inconsistent graph.

Blueprints

Blueprints are a mechanism for specifying an arbitrary object graph and then
co-ordinating the construction of the graph. Each node in the graph
represents an object that is to be constructed, or a property value. The
blueprint maintains a set of constraints on the class that the object might
have, and the possible values of each property.

The blueprint system will validate a blueprint by asking each class
represented within the graph to add constraints on the values of other nodes
that it depends on. For example, a node representing a UDP messaging layer
may place a constraint on the node representing the buffer property
indicating the maximum size for a buffer.

The blueprint system will iterate over a graph until it has found a set of
candidate values for each node that meet all constraints. It can then co-
ordinate the construction of the object graph matching this blueprint.

The utility of Blueprints comes from the fact that only the top node within the
graph need be specified, and this will add additional nodes and constraints,
recursively specifying the full blueprint. A programmer may specialise this
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template be predefining constraints on any particular node within the graph,
without having to be aware of the details about how this node relates to other
nodes. If the programmer specifies that a non-default class should be used for
a particular node, then this class will be used when the object graph is
ultimately created, and when the classes are interrogated to add additional
constraints.

Blueprints are used for protocol stack specification and construction. A
common requirement is to use a default stack (as specified by an existing
binder) with small modifications, such as a change in buffering policy, or a
different serialisation factory. In these cases, blueprints allows
straightforward specification with a guarantee the blueprints will report any
conflicts, if the new graph is inconsistent, or one component is not compatible
with another.

In principle all that is required is that each node has constraints set on its
value, and a proof system could then be used to choose appropriate values.
However in practice, such a scheme would be far to inefficient (and in general
intractable). To make the approach practicable, for each node both constraints
and suggestions are stored. For example, a messaging layer might constrain
that the buffer size is less than 8K and suggest that 4K is a suitable size.
This suggestion will be used if it meets any constraints placed on the property
by other nodes, and if not other suggestions override it.

Blueprint Structure

A Blueprint graph is held internally as a tree structure with ‘symbolic links’.
Each node in the graph represents an object to be created or a property value,
which is simply stored. On each node are a number of suggestions for a
possible value, and a number of constraints on what the value may be. Once
the blueprint has been resolved completely, each node will also contain a
value. The object that the root node specifies is built or composed from the
components specified in the lower parts of the tree. Blueprints are
hierarchical for this reason, the object that is required is built from sub-
components represented by the lower parts of the tree, which are themselves
built from components is yet lower parts.

Each link in the tree is given a meaningful name, and a ‘dot separated’
pathname is used to identify a particular node. The root of the tree is an
exception, and is unnamed. In node 5 is referred to as “a.d”, while
6 which has a symbolic link from 2 may be referred to either as “b.f” or “a.e”.
The structure of a Blueprint defines scopes for each of the nodes. For example
in all the nodes are visible in the root’s scope. However only nodes
4,5 and 6 are in node 2’s scope, and 3 is not accessible at all. The link “e” from
2 to 6 must be established from a scope that contains both 2 and 6, in this
case only the creator of the Blueprint or node 1 may do that. It would be
impossible for node 2 since prior to the link being established 6 is outside its
scope.
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Figure 65 A Blueprint Graph

Internally, the graph below any node forms a valid blueprint, and refers to its
descendants by relative names. For example, node 2 refers to node 6 by the

[P

name c.

Each node in the Blueprint may contain a number of suggestions as to its
eventual value, and a number of constraints on that value. The constraints
must be mutually compatible, that is, it must be theoretically possible to find
a value that satisfies all the constraints. If a constraint is added which
breaches this requirement the Blueprint will throw an exception, and fail to
apply the constraint.

The order in which suggestions are made is significant. When there are two
or more suggestions on a node, they will be considered in the order in which
they were made. The reason for this is to ensure that the outer scopes take
precedence in normal usage. This is discussed when Resolution is examined
in detail.

Writing Classes for use in Blueprints

For a class to be a valid suggestion for a blueprint node, it must implement
the Uni f or nCr eat e interface and a number of static methods. The static
methods are not specified in the interface, as Java does not allow this.

public static void setRequirenents(Blueprint)
This allows a class to add suggestions and constraints within its
scope. The method is passed the blueprint node that will
eventually be initialised to be an object of this class. From this it
can access all nodes within that node’s scope. Typical usage would
be to constrain nodes that will later be used to set the object’s
internal state.
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public static Object createUninitialised()
This is used by the blueprints system to create an object graph,
once the correct object class for each node has been ascertained. It
simply creates an instance of the class. It is distinct from the no-
arg constructor as it creates an object that is uninitialised.

public int initialise(Blueprint)
Initialises the object, obtaining any state needed from the
supplied Blueprint. The argument is the same as for
set Requi r enent s. Any other initialisation that is needed should
also be done at this point.

Use

To construct an object graph, a blueprint node for the root object is first
created which suggests the (only) possible value for the root object. The
creator may then add suggestions or constraints to the blueprint, or child
nodes. There are three phases to the initialisation of an object graph from a
blueprint.

* Firstly, the blueprint is resolved. To do this a suggestion is chosen for
each node, and set Requi r enent s is called for each node in the graph
that corresponds to an object to be created. As each requirement is
added, it is checked for consistency. The resolution algorithm will back
off and try different suggestions until it finds a consistent set.

* Secondly, the graph is walked and createUnitialised called for
each node. This constructs an uninitialised object graph.

* Finally, the object in each node is initialised.

Resolved blueprints may be stored rather than used to immediately create an
object graph. This is useful, as resolution may be costly for complex object
graphs. Blueprints have a utility constructor allowing a graph to be read from
a previously saved state. A code fragment for constructing a binder using
blueprints is shown in

/1l create a blueprint for an object of class Burgundy
Bl ueprint bp=new Bl uepri nt (Burgundy. cl ass, Burgundy. cl ass);

/1 suggest that a special purpose serial layer is used

/1l This suggestion takes precidence over default suggestions

/1l as it is made in the outernost context
bp.suggest(“serial’,CompressingSerialLayer.class);

/1 Built the object graph and read the result

bp.construct();
Burgundy burgundy = (Burgundy) bp.get(null);

Figure 66 Using Blueprints
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29.6 Resolution

Resolution is a complex process, and is in fact NP-complete. In practice, most
solutions are found trivially, but the potential to store previously resolved
graphs is important for difficult cases.

The resolver uses a backtracking algorithm which walks the Blueprint tree in
a top-down manner (root first). At each node it picks the first untried
suggestion and tests it against the current constraints. If the suggestion fails,
it tries the next one, and so on, until it runs out of suggestions or a suggestion
is accepted. In the case of running out of suggestions it returns a failure.

Once a suggestion is accepted, the node tries to resolve all the nodes below it
(without following links). Should any of these fail, then the current
suggestion at this node is deemed a failure and the next suggestion is taken.

If all the children are successfully resolved then the current suggestion is
rechecked against the current constraints, since it is possible that the
children have imposed new constraints. If all this is successful then the value
for this node is set to the current suggestion.

If the node in question is the root of the Blueprint tree this results in a return
from the resolution method, otherwise the node calls its parent to report
successful completion. This call rather than a return allows the parent to fail
(due to constraints imposed by its children), and unwind the stack to find the
latest untried suggestion. In fact, all successful suggestions cause a call
rather than a return. Eventually the root gets a call of this type, and so long
as it’s satisfied, the stack can unwind leaving the resolved tree.

In effect, the way the algorithm works is to do both the non-deterministic
solution positing, and testing in a single phase. This means that when a
suggestion is rejected, all possible sub-solutions that are as yet unresolved
are rejected. In this way, the number of tests can be reduced. This in no way
mitigates the fact that the problem is NP-complete, but it does mean that the
number of solutions to be tested is reduced from the worst case. In principle
this could be reduced further, by resolving those parts of the tree with fewest
suggestions first, thus making the length of backtrack shorter when it does
happen.

One bug in the algorithm has been found. If suggestions are made on a node
that has already successfully resolved and a later node fails (implicitly one
that is not in its scope of the resolved node), then the new suggestion will
never be tried. This means that a possible configuration has been missed.
Problems can only arise if suggestions are made over a link. As this feature is
not currently used this is not presently a problem. This limitation could (and
should) be rectified in a later revision of blueprints.
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29.7 Instantiation and Initialisation

29.8

Instantiation is a very simple process. The blueprint tree is walked, and all
for all nodes representing an object to be created, the createUnitial i sed
method is called.

Initialisation is somewhat more complex. Again the blueprint tree is walked
and for each node where an object has been created in the previous pass, the
i nitialise method is called on the object, passing it the corresponding node
as argument. It is possible that during initialisation of this object, it will need
to make invocations on other objects within the blueprint graph that have not
themselves been initialised. If an object is invoked as is not (sufficiently)
initialised to handle the call, it should raise an Uni ti al i sedExcepti on. An
initialisation method may catch this and return a status flag to the blueprint
system to indicate that it, itself, has been unable to complete initialisation.
The blueprint system will continue initialising other objects, and will
eventually return to this object and attempt to complete initialisation. It this
way blueprints may create object graphs, where some parts of the graph are
mutually dependent on each other.

The initialise method actually has three possible return values

* Complete
This object is initialised. Do not calli ni ti al i se again

®* Progress
This object is not yet fully initialised, but has made progress. It might
be worth initialising other objects that might depend on this one.

e Stall
This object is not yet fully initialised and has made no progress since
the last call toi ni ti al i se. If all objects are stalled, then no progress
can be made, and failure is reported.

Note that it is the responsibility of the objects themselves to either behave
idempotently with respect to initialise calls, or to record their previous return
value, so as to prevent repeating previous set-up. Classes must correctly
report progress or stall. A class that always returns Progress regardless of its
real set-up status will cause an infinite loop and is an error.

The potential failure mode of the system is when there are two classes which
require each other’s services for set-up, and cannot offer those services until
they themselves are completely initialised. In this case both will stall causing
a failure.

Relationship to JavaBeans

The JavaBeans API suggest standard mechanisms for the creation of objects,
and for the specification of properties. When beans are composed, one bean
may veto parameter changes suggested by another bean (or by a visual tool).
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In many respects, JavaBeans is an alternative system to Blueprints, all be it
more primitive. If the two approaches were merged, then a commonly
understood abstraction (Beans) could be used within FlexiNet, and the visual
tools associated with beans could be used to aid the prototyping or
construction of new binder stacks. An additional advantage is that the
adoption of the bean style guide would give a strong relationship between
property values and fields within an object. Given this relationship, much of
the code responsible for setting requirements for a given class could be
inferred from the names and types of the object’s fields. This would make the
design of a blueprint-compatible class more straightforward.

A merge of the two technologies is worthy of further consideration.
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PART FIVE:
CLUSTERS AND CAPSULES

12-Feb-99 FlexiNet Architecture 177



30 CONCEPTS

30.1 Distribution Transparencies

The RM-ODP standard identifies nine distribution transparencies. Of these,
only two, Access and Location relate directly to remote invocation. In addition
to this, some FlexiNet protocols may provide some degree of Failure,
Replication and Security transparency. The other transparencies, Migration,
Relocation, Persistence and Transaction cannot be tackled on a per-invocation
basis. Instead, they require some notion of encapsulation, whereby all
interactions with an object, or group of objects can be intercepted and
managed.

The RM-ODP standard introduces the notion of a cluster as a unit of
encapsulation. We have implemented this concept within the FlexiNet
framework. Using this construct, FlexiNet may be used to support mobile
objects (requiring Migration and Relocation transparencies), persistent
objects (requiring Persistence and Failure transparency) and transactional
objects (requiring Transactional transparency). These are discussed in
chapters @l and Drespectively.

Transparent
Engineering
Objects

Reference

Figure 67 Encapsulated Objects
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30.2

Encapsulation

30.3

What makes a set of objects encapsulated? We define this as a sub-graph of
the entire object graph, such that all references into and out of the sub-graph

(or cluster) are implemented by FlexiNet interface references. This is
illustrated in

If we never pass references across FlexiNet interface references, then it is
impossible for two clusters to join, so once encapsulated, a cluster remains
encapsulated. In FlexiNet, when communication takes place across an
interface reference, objects are passed by value, and interfaces are passed by
constructing a proxy object in the destination cluster — not the sharing of a
Java reference. In the design of a FlexiNet clustering mechanism, we are
therefore only concerned with the initial construction of clusters. The normal
FlexiNet invocation model will ensure that once a cluster, always a cluster.

Strong Encapsulation

One important application for Clusters is to support mutually distrustful
pieces of code. When used in this way, Clusters provide a ‘virtual JVM’
environment, whereby different clusters are isolated from each other, to some
degree. We term the techniques used to achieve this “strong encapsulation”,
in particular we arrange that:

* Each cluster contains its own thread group, and is a manager for those
threads. Whenever a call is made from one cluster to another, then a
new thread is created within the callee, to service the request. In this
way, callee failure or blocking will lead to caller timeout (a ‘safe’
failure) and the caller has no control over the calling thread, and
cannot block or kill it. The callee and caller are therefore isolated from
each other.

* Each cluster has its own view on the class namespace. Classes loaded
by one cluster cannot restrict the possible classes loaded by another.
Each cluster also has a distinct set of static methods and data, so they
cannot interfere with each other.

* Each cluster has its own security manager, and may have different
security policies applied to it.

12-Feb-99

FlexiNet Architecture 179



Application
Code

Cluster
Manager

External
SIS EgeCINU Y | Communications

Figure 68 Cluster Components

30.4 Cluster Components

We distinguish between three components that together make up a cluster.
These are illustrated in

® (Cluster Manager
Each cluster contains a distinguished management object that is used
to orchestrate access to the cluster from outside agencies, and to
control access to system resource from within the cluster. Different
cluster managers may provide different facilities, for example, the
mobile cluster manager provides an additional interface to support a
mobility abstraction (see chapter 36).

® (Cluster Comms
The Cluster Comms component is the FlexiNet infrastructure that
surrounds the Cluster and enforces the encapsulation. There may be
different Cluster Comms implementations, that correspond to support
for different communication protocols.

* Application Code
The third component of a cluster comprises of the objects that make up
the application cluster itself — the other two components being
infrastructure components. A null cluster consists of a cluster manager
and cluster comms, with no application code component.

30.5 Capsules and Nucleus

To support the cluster abstraction, there are two additional computational
objects. A capsule is both a container and a factory for clusters. A particular
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JVM may support several capsules in order to support different types of
cluster, or for other reasons (for example one Capsule per user). In
engineering terms, a capsule is simply a cluster with a ‘more powerful’ cluster
manager — just as a factory is also an object.

A cluster (or capsule) is created by constructing an appropriate Cluster
Manager, and them wrapping it with a newly created Cluster Comms. This
associates the Cluster Manager with a new communications environment,
and separates it from the rest of the process. This is illustrated in
As cluster factories, capsules are responsible both for the creation of Cluster
Managers, and for wrapping them. Capsules may also create other capsules.

Figure 69 Wrapping a Cluster Manager to Create a New Cluster

The first capsule within a JVM is a special case, as there is no factory capsule
to create it. The Nucleus is provided for this purpose. It provides a
wr apCapsul e interface used to wrap the first capsule created within a JVM.
This is unusual in that only associates the capsule with a FlexiNet
environment, it does not separate it from the calling thread — as that thread
is not within an existing capsule. In effect, Nucl eus. wr ap wraps the entire
JVM as a single capsule.
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31 SYSTEMS ARCHITECTURE

31.1 Aims

In addition to the support of the Cluster and Capsule abstraction, there are a
number of additional, engineering aims of the implementation. These where
determined after an initial trial with an ad-hoc implementation.

Configurable Communications

Applications using FlexiNet are generally unconcerned with the
selection of generators and resolvers made available to them. This has
allowed the development of a ‘plug-and-play’ test bench, whereby a
command line argument can be used to change the default binding
protocol. This has been useful for both protocol testing, and to allow
controlled integration of services in an evolving platform. As the
cluster abstraction requires more intimate knowledge of the binding
process, it is tempting to closely link these two disparate pieces of
engineering, and indeed the initial cluster implementation was single-
protocol. An important aim of the full design, was to allow the same
sort of binder configuration as is found in non-cluster FlexiNet
applications.

Distributed Capsules

Capsules are factories for clusters, and in the current implementation,
clusters must be created within the same JVM as the capsule.
However, for scalability it may later be required that clusters are
created on a ‘farm’ of JVMs managed by the capsule. In the initial
implementation, the cluster creation interface included the
construction of an application object. In a distributed implementation,
this would lead to the capsule having to load application classes — a
potential bottleneck. The new interface was designed so that clusters
are created empty — the burden of creating application classes is
therefore moved from the capsule JVM to the cluster JVM.

Extensible Cluster Management

‘Vanilla’ clusters are of relatively little use. To provide a useful cluster
abstraction, it is necessary to specialise some or all of the cluster
manager, capsule or communications infrastructure. The system must
be architected it such a way as to make this possible.

Simplicity

The engineering of Clusters is necessarily complex. However, as it is
envisaged that programmers will wish to produce there own
specialised Cluster abstractions, is it important that the internal
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31.2

interfaces that such a programmer would need to understand are kept
as straightforward as possible.

Cluster Identity and Address

31.3

A major aim with the design of the cluster abstraction was to support clusters
that might migrate from one machine to another. This migration might be
due to mobility of an executing cluster, or simply due to the restarting of a
failed cluster. To aid in the construction of this abstraction, two concepts are
introduced. The cluster identity is a pseudo-random identifier that uniquely
identifies a cluster within a particular capsule, and is expected to be globally
unique. The global uniqueness of a cluster identity cannot be guaranteed for
two reasons. Firstly as it is a random number, there is always a possibility of
clash, and secondly a malicious program may intentionally create clusters
with the same identity. A cluster will normally retain its identity after it
(logically) moves, however in the case of a clash, the cluster will be assigned a
new identity. Cluster identities are therefore only guaranteed to be unique
within a capsule, but the expected uniqueness property may be used in
optimising the design of certain services (such as the relocation service).

The second concept that is introduced is a Cluster Address. This is a tuple of
a cluster identity and a protocol specific address. It is effectively a name for
the cluster as a whole. The names of interfaces within a cluster are always
tuples of a cluster address and protocol specific inter-cluster multiplexing
information. It is therefore possible to re-map an interface name from one
cluster to a replica of the cluster, by substituting one cluster address for the
other.

Components and Interfaces

A cluster comprises of two components, for each of these, there is a
corresponding factory component within the Capsule.

® The Cluster Manager is created by the Capsule Manager

®* The Cluster Comms is created by the Capsule Comms. This is used to
‘wrap’ the cluster manager and isolate it from the rest of the system.
Once wrapped, objects within the cluster may only be accessed via the
Cluster Comms.

This is illustrated in

The Capsule Manager is also responsible for managing clusters it has created
via calls to the Cluster Manager on (a subclass of) the C ust er Manager
interface. In turn, the Cluster Manager may control its own Cluster Comms
via calls to the O ust er Conmrs interface.

During an invocation, the Cluster Comms will communicate with the Cluster
Manager to inform it of a call’s progress, and to allow the manager to control
interaction with the cluster.
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Figure 70 Creating a Cluster

In addition to these interfaces, there is one other standard interface. The
cluster manager implements (a sub class of) O ust er. This provides a high
level management interface, to allow application code to control the use of the
cluster. The primary method on this interface is cr eat eCbj ect, which is
used to instantiate a cluster with application code.

The standard interfaces are illustrated in
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Figure 71 Standard Cluster Interfaces
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31.3.1 ClusterManager

This is the ‘most basic’ cluster manager interface. Cluster managers designed
for particular types of cluster are likely to extend this. This interface is made
available to the capsule that created the cluster, as the cluster owner, and to
the cluster’s Cluster Comms. A cluster manager may also provide additional
public interfaces, or interfaces for use by threads within the cluster.

The first method is called by the Capsule Comms during wrapping:

public void set Comrs(C usterConms conms)
Set a reference to the local (per-cluster) communication sub-
system. An explicit reference is required as a management
interface to the FlexiNet generators and binders used in the
cluster.

The next two methods are called by the Cluster Comms to orchestrate access
to the cluster:

publ i c bool ean startCall ()
A callback to inform the cluster manager that a client is
attempting to call an interface within the cluster. The manager
may block this call until the cluster is in a consistent state, or
may return f al se to indicate that the cluster is closing down.

public void endCall ()
A callback to inform the manager that a client has finished an
invocation into the cluster.

The final method is used by Capsule Manager to obtain a reference to the
public cluster management interface. Typically, the C uster Manager
interface will be extended with additional methods for the Capsule Manager
to use:

public Custer getCusterlface()
Return the public interface to the cluster (if there is one). This
interface will typically be a sub-class of Cluster.

Note. In the current implementation, there are two additional calls on
d ust er Manager. Get Thread@ oup is used to determine the per-cluster
thread group. This call (or an equivalent) should actually reside within
Cluster Commes, to allow it to support weakly encapsulated clusters that do not
have their own thread group. The second call, set Mbbi | eNaner is used to
configure clusters that support mobile naming. This topic will be discussed in
a later section.
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31.3.2 ClusterComms

This interface is used by a Cluster Manager to configure and control its
Cluster Comms. It has a number of methods which are mainly concerned with
restarting a cluster from a previously captured state.

O ust er Addr ess get C ust er Addr ess()
Return the address of the cluster as a whole. This may be used to
later recreate a cluster at the same address, or to translate names
issued by a cluster with one address to names issued by a second,
equivalent, cluster.

bj ect get Exports()
Return an object which encapsulates information about all the
interfaces exported from this cluster. This may be stored, and
later used to recreate a cluster with the same exports.

bool ean set Exports(Obj ect exp)

The dual of get Exports; set the interfaces exported by this
cluster, to those identified in exp. When setting exports, the
names of exported interfaces will be translated to the equivalent
name in the new cluster. A client with a reference to an interface
to the previous cluster may therefore convert it into a reference to
the equivalent interface in the new cluster, by mapping the
cluster address embodied in the name to the new -cluster’s
address. The details of this a protocol specific.

voi d dont Export (Obj ect obj, d ass cls)
Inform the Cluster Comms that a particular interface is to be
discluded from the set of exports returned by get Exports. This
is typically used to note that an interface is an engineering
interface, and should not be recreated if the cluster were rebuild
from a stored state.

Nanme nanel face(Chj ect obj,C ass cls)
Generate a name for an interface explicitly. This name may be
stored and later used in a call to nanel f ace(obj, cl s, nane) in
a new cluster.

bool ean nanel face( Cbj ect obj, d ass cl s, Name nane)
Give an interface a specific name. This is of specialist use, and is
part of the process required to restart a cluster at a previous
address. The name should have been returned by a previous call
to nanel f ace.

bool ean redirect Tod uster(Mbil el uster Namre newC uster)
This call informs the cluster comms that calls to the cluster
should be redirected to a different cluster. This is typically used in
mobile clusters, as the final action of a cluster manager, once a
replica cluster has been created in a remote capsule.
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31.3.3

bj ect get C ust er ByVal ueRef erence( bj ect ori gi nal Ref,
Gl ass ifaced ass)
This call is used to obtain a reference to a remote cluster that is
associated with a StubSeriali zer, rather than an ordinary
serialiser. This is used to pass the contents of the local cluster by
value’ to the remote cluster.

Serializer get C ust er ByVal ueSeri al i zer ( Dat aCut put out put)

DeSeri al i zer getd usterByVal ueDeSeri alizer(Datal nput input)
These three calls are used to get engineering objects capable of
reading or writing the cluster state. They are used when writing
the cluster state out to a file.

Bi nder get Bi nder Top()
Return a reference to the top of the binding stack. Used only
during wrapping.

voi d set Mobi | eNarer ( Mobi | eNanmer naner)
Indicate that names generated for interfaces should be ‘mobile’ in
that they can be indirected via the relocation service ‘namer’. This
is used to allow a reference to be transparently moved from one
cluster instance to another.

voi d destroy()
Destroy the communications system and prevent future incoming
or outgoing calls.

voi d set NanmeHandl er ( NameHandl er handl er)
A hook into the binding system, set a handler to be used to catch
NanmeNot Found exceptions and dynamically create service objects
to service the failed request.

Capsule

This interface is used by application code to create new clusters. Particular
implementations may extend this to provide additional per-capsule
management functions

public Custer createC uster()
Create a new cluster. This is the most commonly used call. A
cluster will be created with the default types of Cluster Manager
and Cluster Comms for this capsule.

public O uster createH ntedd uster(Mbil eNamer naner,
G obal I D i dHint)
Generate a new cluster using the specified information as a hint.
namer is the mobile namer to use to name interfaces generated by
this cluster. i dH nt is a suggested identity to give the cluster.
This call is used when recreating a cluster from another cluster,
or from a stored state. If the suggestions are taken, then the
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relocation service will be able to store the mapping more
efficiently than if the suggestion is ignored.

public Custer createNanmedd uster(Mbil eC usterNanme nane)
t hrows BadNane
Create a cluster of a given name. This is used to recreate a cluster
at an old address after a crash. It is rarely required as the
relocation service may be used to re-map references to a cluster
with a different name. This will throw BadNane if the name is
unsuitable.

31.3.4 Cluster

31.3.5

The Cluster interface has a single operation used to create new objects within
the cluster. A particular cluster implementation may only allow this method
to be called once.

public Iface create(nject(C ass cls,hject[] args)
throws Instantiati onException
Create an object of class cl s within the cluster. If the object has
an i ni t method matching the specified arguments, then this will
be called after the object has been constructed. This may return
an interface, which will be passed to the client.

CapsuleComms

The Capsul eComs interface is an interface onto the Capsule Comms for use
by a Capsule object. Typically, there will be one capsule comms per capsule,
although it is perfectly reasonable to multiplex several capsules above a
Capsule Comms.

public Cbject wap(d usterMinager clusterMnager,

d ass manager | f aced ass,

G obal I D i dHi nt,

O ust er Addr ess requi redAddr ess,

d ust er Coms cal | eed ust er Coms)

t hr ows BadNane
Wrap a cluster manager to construct a new cluster. The
parameter manager|faceC ass specifies the subclass of
Cl ust er Manager that should be returned as a wrapped interface
to the cluster manager. i dH nt provides a suggestion as to the
identity to be associated with the cluster (if non-null) and
requi r edAddr ess specifies the address the cluster should use (if
non-null). The final parameter, cal | eed ust er Conms is used to
wrap the management interface before returning it. This is used
Wél)en ‘spawning’ one cluster form another (as shown in
6
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public Cbject wap(d usterMinager clusterMnager,
d ass manager | f aced ass,
String addr ess,
d ust er Coms cal | eed ust er Coms)
t hrows BadNane
A second form of wrap that takes a stringified address.
Deprecated — used by information space only.

public voi d addNaneHand! er (NaneHandl er naneHandl er)

public void renpveNaneHandl er ( NaneHandl er naneHandl er)
These methods are used to dynamically load clusters on demand.
They specify name handlers to be used to resolve the names of
clusters that a client believes are local to this capsule, but do not
in fact exist.

public String getBootstrap()
Return a bootstrap string for this capsule comms, that may be
used to reinitialise it after a crash.

Design of Cluster Comms

The cluster comms sub-system is essentially a per-cluster instance of the
FlexiNet binding system. The Cluster Comms object itself is simply a
wrapper for a binder graph. Resolvers within this graph may be ‘standard’
resolver classes, however Generators must provide some additional
management facilities, and subclass the interface C ust er Gener at or to do
this. The additional facilities are required for managing the lifecycle of the
cluster, in particularly, destroying it, and instantiating it from a stored state.

The C uster Generator interface extends Generator, and provides five
additional methods:

public O usterAddress getd usterAddress()
Return the address of this cluster. In the current implementation,
each cluster may have only one (leaf) generator, and hence one
cluster address. In principle a cluster could have a number of
generators.

publ i ¢ Name mapNanme(Name ori gi nal Nane)
Convert a name generated by the corresponding generator in a
previous incarnation of this cluster to a name within this cluster.
This is performed by removing the embedded cluster address, and
replacing it with the current one.

public bool ean redirect Tod uster(Mbil el ust er Name newNane)
Redirect any further calls into the cluster from names generated
by this generator, to the named cluster. The ‘newName’ is a tuple
of a cluster address and a reference to the relocation service that
clients will contact when attempting to locate this cluster.
Different generators may use different algorithms to achieve this,
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but the normal behaviour is to pass the redirection information on
to the relocation service, and then refuse all incomming calls.

public void destroy()
Destroy the generator, and refuse all incoming calls. If called
after redirectToCluster, then the redirection should continue to
take place.

public void set Mobi | eNaner ( Mobi | eNaner naner)

Set the relocation service (mobile namer) to be embedded in
names generated by this generator. A client with a ‘mobile name’
of this form will contact the relocation service to determine
whether the cluster has been migrated. In general, the relocation
service is only contacted after an ordinary invocation has failed.
However, for some clients or protocols, the relocation service may
be contacted in advance (For example if the client has reason to
believe that the cluster has migrated).

31.4.1 Shared Cluster Communications

If a capsule supports a large number of clusters, then it is unreasonable for
each to have a completely separate communications system. In practice, this
may lead to each having a listener socket and listener thread. To reduce the
overhead, generators and resolvers for use in clusters are usually split into
two parts; a shared per-Capsule Comms part, and a private, per cluster part.
This is illustrated in m

Capsule Comms
|nder Stack

Network

Figure 72 Sharing Communications Resour ces Between Clusters

The per-cluster part of a generator or resolver implements the
Cluster Generator or Resolver interface, as might be expected. A
standard interface is also defined for the bottom, shared part. There is a high
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31.4.2

31.4.3

degree of independence between the two parts, and this allows one top part to
be fitted over different bottom parts. The top part is typically involved with
high level functions, such as interface naming, serialisation, access control
etc, and the bottom part is involved with protocol specific functions, such as
call control, error handing, multiplexing, threading and the like. The bottom
part of a resolver implements the Capsul eResol ver interface. The bottom
part of a generator implements Capsul eBi nder (as it may act as both a
resolver and generator). These interfaces are explained in the following two
sections.

ClusterResolver

This interface provides low level support for a per-cluster Resolver. Many of
the calls are equally applicable to supporting a Generator. It has five
methods.

public int getNoBufferSegnents()
Cluster binders make use of segmented buffers in an identical
way to standard binders. The per-cluster part of a binder needs to
know how many of the buffer’'s segments are used by the per-
capsule part. The per-capsule part claims segments 0 — (n-1) and
the rest are used by the per-cluster part.

publ i ¢ Sessi onManager get Sessi onManager ()
Return a reference to the session manager. The type of session
manager is dependent on the wire protocol, and so is handled by
the per-capsule part of the binder. However, the top part of the
binding stack requires a reference to this, so it may obtain
sessions for outgoing calls.

publ i c CQut put BufferFactory get Qut put Buf ferFactory()
Similarly, the buffer type is protocol-specific, and is therefore
managed by the per-capsule part of the binder. The per-cluster
part requires this to obtain output buffers for serialisation.

public Call Down get Cal | Down()
Return a reference to the top of the shared part of the binder.

publ i c Address parsed uster Address(String address)
t hr ows BadNane

Parse a cluster address.

ClusterBinder

This interface extends O ust er Resol ver and provides additional support
for per-cluster generators that are split and multiplexed over a shared per-
capsule part.
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Ol ust er Addr ess get C ust er Addr ess( Obj ect cl ust er Rep)
Return the address of a cluster. CusterRep 1is the
representative of the cluster, from the point of view of the per-
Capsule portion of the binder. It is actually the object towards
which incoming calls should be directed. This may be used both to
determine the name of a cluster, and to cause the naming of a
newly created cluster.

O ust er Addr ess get C ust er Addr ess( Gbj ect obj, d obal I D hint)
A form of getClusterAddress that supplies a cluster id as a hint.
This is used to obtain an address for a newly created cluster, and
to specify a hint that it should reuse a previous cluster identity if
possible.

bool ean grant d ust er Addr ess( Cbj ect obj,
Cl ust er Addr ess addr ess)
Assign a specific address to a cluster. This will return false it the
address is unsuitable.

void dropCluster(d obalID id)
Remove all knowledge of the specified cluster. Calls made to this
cluster in future should fail. The binder should not reuse this id in
future, as clients of the old cluster might be unable to detect that
the original cluster had been destroyed. An exception to this is if a
call to gr ant Cl ust er Addr ess or get O ust er Addr ess is made
with this id as a hint.

String stingifyCQ uster Address(C ust er Address addr ess)
t hr ows BadNane

Stringify a cluster address.

voi d addNanmeHandl er ( NameHandl er naneh)
Add a name hander. The name handler(s) will be called whenever
an incoming call contains addressing information relating to a
cluster that does not exist. The name handler may cause the
cluster to be created (or, for example, recovered from disk), and
the binder will then try again.

voi d renoveNanmeHandl er (NanmeHandl er naneh)
Remove a name handler.

31.5 Generating a Cluster
This section gives a brief overview of the process of creating a cluster. It is
illustrated by
a) a created uster call is made on an existing Capsule Manager. This
creates a Cluster Manager of an appropriate type.
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b)

d)

The Capsule Manager calls its Capsule Comms. The Capsule Comms has
a stored reference to the shared capsule binders and resolvers, and uses
these to create new cluster binders and resolvers for the cluster. There are
several different capsule comms implementations, and each
implementation will produce a different set of binders and resolvers.
These are analogous to FlexiNet testbenches (see Chapter @

The Capsule Comms creates a binder graph and a cluster comms to
isolate the details of the communication system from the cluster manager.
The cluster manager and cluster comms are associated with each other.

The capsule comms uses the binders to name the cluster manager
interface from within the cluster, and then resolve the cluster manager
interface from outside the cluster. This results in an encapsulated
interface to the cluster. This interface is used by the Capsule Manager to
externally control the cluster, in particular to obtain a public management
interface to it. This may be used to create objects within the cluster.

S

(a) Creation (b) Comms Creation

-

(c) Wrapping (d) Configuration

Cluster
Binder

Capsule
Binder

Figure 73 Stagesin the Creation of a Cluster
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32 A CLUSTER BINDER (BLUE)

32.1 Introduction

Blue is the archetypal cluster binder. It is both a generator and resolver, and
assumes the provision of a Capsul eBi nder to deliver invocations into the
cluster, and to process outgoing invocations. In fact, Blue is the only cluster
binder that has been built thus far. It has been deployed over a number of
different capsule binders, and has been used with a number of different

Cluster Managers, to provide different styles of cluster management.

The Blue Cluster binder has five layers, illustrated in

Blue creates

(CSED)

Server

Client

Blue

Object<Interface>
(¢

(generator)

transient reference
obtained from
invocation data

CallDown
ClientCallLayer

RefSerializer
Factory

-4
CallDown
. SerialLayer
RefDeserializer Callup
Factory
CallDown P requests
NameLayer F interface id
Cluster
Manager
Capsule Comms
CallDown
SESs[;)nl\t/Ianager Ou[t:puttBuffer Top Layer of Capsule
(Factory) actory Comms Stack

Figure 74 Blue Binder Stack
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3211

The function of most of these layers has been explained in previous chapters.
In this chapter, we cover the remaining layers

Encapsulate Layer

This layer represents the encapsulation boundary around the cluster. Before
an incoming invocation may proceed up the stack, the following must be
validated:

®* The cluster is ready and willing to receive the invocation. This is
checked by a call to startCall in the O ust er Manager interface.

(Section B1.3.1).

® The invocation is handed over to a thread within the cluster’s thread
group. This is to support strong encapsulation. (See section .

These two operations must be are performed atomically. This allows a cluster
manager to pause a cluster by first locking the cluster (i.e. blocking all calls to
startCall), and then waiting until all executing threads exit. If the
operations were not performed atomically, then there would be a possibility of
a cluster manager checking for no thread activity, and then a thread being
started by the Encapsulate Layer. An alternative approach would be to
explicitly count the number of calls to st art Cal | and endCal | , and use this
as a measure of activity, instead of the thread count. This approach would be
advantageous in clusters that did not otherwise require strong encapsulation.

Note. The design of the d ust er Manager could be improved with respect to
strong encapsulation. Ideally, thread groups and activity monitoring should
be a function of the Encapsulation Layer. This would allow different forms of
encapsulation. This has not been updated in the current implementation, due
to the complex locking strategies within the Information Space, which interact
with cluster locking.
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33 A CAPSULE BINDER (MAGENTA)

33.1 Introduction

Magenta is a capsule binder based on the RRP protocol. When used together
with ‘Blue’ it generates and resolves names that are compatible with the
Magenta binder. The binding stack produced by the Magenta Capsule Binder

is shown in Figure 75

Cluster Binder

Bottom Layer of Cluster
Binder Stack O O O
CallUp
4

Cluster Binder

Bottom Layer of Cluster
Binder Stack
Callup

h N

A

transient reference
obtained from
invocation data

DispatchLayer

OutputBuffer
Factory

CallDown request Magenta
ClusterNameLayer —— Capsule

Calup Binder

InputBuffer
Factory

CallDown

SessonManager RRPLayer
<
(Factory)
IP Network

Figure 75 Magenta Capsule Binder

33.2 Binder Layers

The Magenta Capsule Binder has three layers.

RRPLayer
This is identical to the RRPLayer in the Magenta binder.

Cluster Name Layer ( GhaneMuxLayer)
This is a naming layer which is similar to Tri vNanmeLayer, but
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which uses large (128bit) identifiers to discriminate between the
multiplexed endpoints, rather than small integers. This is more
appropriate for naming clusters.

A second difference is that it stores a mapping from identifiers to
objects, rather than from identifiers to interfaces on objects. This
simplification is possible as clusters are always accessed through
the same middleware interface.

Di spat chLayer
A form of Cal | Layer to deal with the fact that protocol layers

have CallUp interfaces, not GenericCall. It simply calls
i nvocation. getTarget (). call Up(i nvocati on)
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34 ENCAPSULATION ISSUES

34.1

Introduction

34.2

Java is not a pure object oriented programming language. That is to say it is
possible to access system objects and resource without first obtaining an
object reference. This is a problem, as the encapsulation mechanism used in
FlexiNet works by controlling the propagation of object references.

In particular, threads may access static methods and static fields. This
circumvents the encapsulation mechanisms, as static fields and methods are
accessible from all clusters. This problem is expatiated by the fact that most
of the Java system resources (files, windowing, sockets etc) are accessed in
this way.

A further issues is the use of callbacks. Java is sloppy in its handling of
threads. If a system object makes an asynchronous callback to an application
object, then this will generally take place in an arbitrary thread. As we use
thread groups for protection and encapsulation, this is a dangerous loophole.
This problem is particularly rife in the Abstract Windowing Toolkit.

Static Methods and Data

34.2.1

We divide the issue of access to static methods and data into two cases; access
to system classes, and access to application classes. Access to system classes
can be handled on a case-by-case basis. Access to application classes clearly
cannot.

Access to System Classes

Public static data in system classes is rare. The use of public static methods is
much more common. Thankfully, most of these calls are security checked — by
a call to the security manager. We can arrange that each cluster (effectively)
has its own security manager, and can therefore control the use of static
methods to some degree (see section . Making this a watertight solution,
particular in the case of future Java system classes, is a difficult task.
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34.2.2

34.3

Access to Application Classes

There is more opportunity to control the use of application classes. We can
arrange that different clusters use different class loaders, and thus obtain
completely independent instances of classes. The use of static methods/fields
therefore ceases to be a problem. This solution cannot be used for system
classes (in general) as these classes must be loaded in order to get the basic
FlexiNet system running. By this stage, it is too late to control the class
loaders used. The potential cost of loading classes many times over is high,
and for this reason we allow classes to be tagged to indicate that they may be
safely shared without breaching the encapsulation rules. Currently, this
tagging is a manual process, although an automated conservative checker
could be built. The class loading approach and architecture is outlined in
chapter @

Asynchronous Callbacks

34.3.1

Asynchronous callbacks allow a system thread to run application code within
a cluster. The thread auditing used to count the number of threads will then
fail, and the per-cluster security manager will also fail, as this relies on the
thread id to determine the callee cluster. This is a dangerous problem, and in
general must be dealt with on a case by case basis.

Abstract Windowing Toolkit

The AWT wuses a great deal of asynchronous callbacks to inform the
application of user interaction (mouse movement, button clicks etc). These
call backs are made by an essentially arbitrary thread. A further issue is that
the AWT creates a number of background threads, and it does this using the
thread group of the first thread to call particular AWT methods. This means
that threads may get created within the cluster thread group that are nothing
to do with it, and that can never be destroyed. This upsets the thread
auditing, and in particular, mobile object become unable to move.

To solve these problems, a wrapper for the AWT is provided. This is of two
parts. A demon is started prior to the use of clusters. This ‘tickles’ the AWT to
cause it to create its background threads. These are therefore created in a
safe, non-cluster thread group. The demon then exits. The second part is a
wrapper for the AWT event system. This is used to catch AWT events, and
then re-signal them within the cluster’s thread group. Correct use of this
wrapper avoids all the AWT related encapsulation issues. The per-cluster
security manager may be used to ensure that a cluster does not access the
AWT event system directly. The event wrapper is illustrated in
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34.3.2

34.4

C Cluster
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remove call

AWT Objects
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for AWT
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200U
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callbacks

Figure 76 AWT Wrapping

Finalize Methods

Before a Java object is garbage collected, its f i nal i ze method is called. This
may be used by a malicious or erroneous program to ‘capture’ the finalizer
thread and use it for its own purposes, leading to all of the problems outlined
above. The current implementation ignores this issue, but a simple fix is to
give the finalizer thread low privileges, removing the utility in this attack. A
cluster could still use this to upset the thread auditing, but not in a way that
would be to their advantage.

Resource Usage

34.5

One issue that clustering does not address is resource usage. A thread in one
cluster may use up all the available memory or CPU resource. There is no
way of preventing this without operating system support. Strongly
encapsulated clusters are lightweight processes. They do not have the
resource controls that full processes do. However, cluster can be run in
different real processes, and two correct cluster will communicate identically
(albeit more slowly) if they are running on separate processes than in the
same process. In a distributed application running distrustful clusters, this
approach should be used to limit the risk associated with running potentially
malicious code.

Cluster Security Manager

The cluster security manager is illustrated in It has two parts. The
shared portion uses the identity of the calling thread to determine which
cluster the call originated from. It then calls the per-cluster security manager
to determine whether an operation should be allowed.
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35 MOBILE NAMING

35.1 Introduction

In general, clusters support mobile names. These are names which used to
identify cluster that may migrate from network address to another. This may
occur, for example, if a host crashes and a service is restarted on a different
host. Mobile names contain two pieces of information; the last known address
of the service (a FlexiNet name) and a reference to a ‘relocation’ service that
can provide current addressing information.

In general, either of these pieces of information may be omitted. If the last
known address is not specified, then the relocation service is always
contacted. If the relocation service is not specified then a ‘well known’ service
is used. In the current implementation both the last known address and
relocation service are always specified in mobile names.

When resolving a mobile name in order to make a call, an optimistic client
will first try the last known address, whereas a pessimistic client will first
contact the relocation service. The relocation service cannot promise accurate
information — the named interface may be moving faster than it can be
resolved — and it is up to a particular client to decide if and when to give up.

35.2 Interface

The relocation service can be implemented in a number of ways. The interface
to it is straightforward and has the following methods:

Mobi | e ust er Nane resol ve(d obal I D cl usterl D)
t hr ows Not FoundExcepti on
Determine the last known address for a specified cluster. This call
returns a structure consisting of the (new) cluster id, the last
known address and the mobile namer to be contacted in future.
This is to allow a mobile name to be moved from one instance of
the relocation service to another, and allows a cluster to be
assigned a new identity (to deal with clashes).

bool ean remapNanme(d obal | D cl usterl D,
Mobi | eC ust er Nanme newNane)
Inform the relocation service that a particular cluster has a new
current address. This may also specify a new mobile namer that

12-Feb-99 FlexiNet Architecture 202



35.3

has taken over management of this cluster, and a new identity for
the cluster, to be used in future.

voi d dropNane(d obal I D cl usterl D)
Discard all knowledge about a particular cluster. This is usually
used when the cluster has been destroyed.

Generally, the identity assigned to a cluster will not change over its lifetime.
This allows the relocation service to optimise storage of information about a
cluster. However, the possibility of renaming is introduced to prevent security
attacks whereby two or more clusters with the same identity are created in
logically remote servers, and then moved to the same location.

A Toy Relocation Service

The current implementation of FlexiNet relies on a ‘toy’ relocation service
that trivially implements the above interface. It is not crash resilient, and in
some obscure cases will leak memory. More importantly, it is not secure.
Malicious clients may cause errors be creating several clusters with the same
identifier.

The implementation is based on a simple hashtable, which maps cluster ids
to mobile cluster names. For clusters which have never been assigned a new
identity, and that still use the original instance of the relocation service, then
this stores exactly one entry per cluster, regardless of the number of moves. It
takes exactly two additional (remote) method lookup for a client to access a
cluster that has moved. The first call is the failed invocation using the old
address, the second call is the lookup at the relocation service.

For a cluster that has moved to a new relocation service, but has not changed
identity (or has done both at once), then one entry is stored in each instance
of the relocation service. At worst, clients will have to contact each of these in
turn before correctly locating a cluster. However, if moving between
relocation services is rare (as is expected) then clients will generally have
references to the correct relocation service.

Clusters are rarely assigned a new identity. This is only done when two
identifiers for different clusters are found to ‘clash’. In the toy
implementation, this is only detected if a cluster is moved/recreated at a
location where a cluster of the same identity already resides. If the relocation
service is asked to store two different mappings from identifier to address,
then it will discard the first one. This is clearly incorrect behaviour and is the
primary security attack against this implementation.

The relocation service therefore only ever has knowledge of one cluster with a
particular identifier. If this cluster changes identifier, the toy relocation
service simply stores a record within the hashtable that maps from the
original cluster identifier to the new identifier. On resolution, this leads to an
extra (local) lookup to determine the cluster’s address.
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35.4 Failings of the Toy Approach

The toy implementation has many advantages over some schemes, such as
tombstones. However it also has a number of failings when used in a large
distributed system.

* It is insecure. An attacker could arbitrarily add, remove or change
information to disrupt normal activity. In addition, accidental or
malicious clashing of identifiers will lead to errors.

®* It is not robust. Even if the records were stored persistently, an
instance of the relocation service is a single point of failure for clusters
it manages. This is mitigated somewhat by optimistic strategies and
the use of many instance of the relocation service.

The use of many instances of the relocation service partitions the
object population, and each instance is only responsible for a
proportion of the whole. By using an appropriate number of instances,
the effect of failure can be reduced. In addition, as the relocation
service is only contacted by clients to locate clusters that have moved,
the effect of a failure will be limited to those cluster that have moved
since last being contacted by their clients.

We have designed a more complete relocation service that has the following
features. This is outlined in chapter . The first three features are also
provided by the toy implementation.

1.

We arrange that a client can locate the appropriate relocation service for a
cluster rapidly, without having to search.

We allow naming records to be moved between relocation services so that
an optimal location can be chosen for the record (e.g. following the
movement of a cluster around the network).

Different instances of the service may be implemented in different ways,
or turned for different performance/robustness/scalability trade-offs.

We control what entities are able to update the records - only hosts from
which a cluster is moving may update the record for the cluster. This
prevents fraudulent changing of naming records by “spoof” hosts or
clusters.

We detect and handle all potential ‘identifier clashes’, whether accidental
or malicious. This closes the security loop hole, removes the reliance on a
statistical probability (that randomly choosen numbers are unique), and
therefore allows us to use smaller identifiers, as the possibility of a clash
is no longer fatal.

We ensure that records relating to deleted clusters, or those that have
been moved to a new instance of the service can be archived and never
need updating. We allow these records to be ultimately deleted.
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36

MOBILE OBJECTS

36.1

Introduction

36.2

A ‘mobile object’ abstraction was added to FlexiNet as part of the work on the
“FollowMe” project. As such, this abstraction was tuned towards the needs of
autonomous mobile agent systems [HAYTONOS].

The mobile object abstraction provides a means for a cluster to move from one
capsule to another. This movement is initiated by a thread within the cluster,
and is co-ordinated by a specialised cluster manager. When a cluster moves,
it 1s the responsibility of the cluster itself to cleanly shut down any executing
threads. These may then be restarted in the new location.

Over and above the abstractions provided by ‘vanilla’ clusters, and mobile

naming, all that is required of a mobile cluster implementation is a procedure
for co-ordinating a move, and a mechanism to migrate a cluster’s state.

Orchestrating Mobility

If a cluster is to be migrated from one host to another, then the move must be
atomic. That is to say, there must be no processing of the cluster between the
point at which the cluster state is recorded, and the point at which the cluster
state 1s recreated on the new host. In addition, from the moment when the
cluster is recreated, the old version must be discarded.

To ensure this, we must halt all processing within the cluster prior to
attempting a move. As it is not possible to pause a thread, and then restart it
on another machine, in order to suspend processing, we must halt all threads.
As mobile cluster use strong encapsulation, threads are created within a
cluster in two circumstances: when a thread within the cluster explicitly
creates another thread, and when an invocation enters the cluster in order to
process a method invocation from an external client. We must wait for all of
these threads to terminate before processing a move request.
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36.2.1
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Figure 78 Thread Statesfor a M obile Cluster

The mobility API provides an interface to aid a cluster in shutting down all
its threads. When a move is requested, the mobile cluster manager blocks all
future incoming calls, to prevent new threads being created for that reason. It
then monitors the number of threads within the cluster, and waits until all of
these exit. The thread state transition diagram is shown in During
normal operation, the cluster moves between states Ao and An, which
represent active states with i threads. Once a move has been requested, the
cluster is transferred to a pending (P) state. In pending states, new incoming
invocations are blocked, and threads may only be created explicitly. The
cluster manager will wait until there are no active threads within the cluster
before performing the move. It is the responsibility of the cluster to ensure
that all threads terminate.

The other states in Figure 78| are related to the co-ordination of cluster
migration. They ensure that the move is fail safe.

Initiating a move

In order to move, a thread within the cluster invokes a pendMbve or
syncMove call. Both of these request a move ‘as soon as possible’, the
difference being whether the move is handled by the current thread
(synchMbve) or a newly created thread (pendMove). When a move call is
invoked, the object enters a pending state. This obtains a lock preventing
external invocations from entering the cluster.

The cluster will move between P states as threads are created and destroyed.
When it enters state Po it will undergo a series of transitions that result in
the creation of a new cluster in a different capsule. The original cluster will
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36.3

then be discarded (it enters state X). If an error occurs during this process
and it can be safely inferred that the new cluster has not been created, then
this cluster is returned to state Ai. If the move was initialised by a call to
syncMove, then the error status is returned as an exception. If the move was
initiated by a call to pendMove, the cluster is restarted by calling the
rest art method, and the exception is passed as a parameter.

The newly moved cluster is an exact replica of the original, and in addition all
references to interfaces exported by the original cluster are re-mapped to the
new one (effectively the original cluster has moved).

The cluster is started in state A1 by a call to r est art . Prior to this, the lock
is released in order to unblock any pending invocations. If a cluster wishes to
restart in a locked state, for example in order to allow it to initialise transient
state, then it may obtain an addition lock prior to calling pendMove or
synchMve.

Capturing Cluster State

The process of capturing a cluster’s state is in principle straightforward. A
reference to the ‘root’ cluster object is passed by value. This leads to the
serialisation of all of the cluster’s state, which will be transparently recreated
on the destination machine. There are however a number of subtleties that
must be considered.

® It is possible for a cluster to export an interface that is not reachable
from the root object. To ensure that these parts of the cluster are also
passed, a ‘super root’ object is constructed that contains a table of
exported interfaces. This table is maintained by a specialised Cache
binder, Cl ust er Cache.

* Interfaces exported from the cluster must be served by the new cluster.
The mobile namer will ensure that invocations are directed to the new
cluster, and the d ust er Cache must re-export each of the interfaces,
when the cluster is recreated to ensure that the invocation reaches the
correct object. This is done by granting the previously allocated names
to the replica objects in the new cluster.

* Interfaces exported by the Cl ust er Manager should not be re-exported,
as the Cl ust er Manager is not itself copied, and its role is taken by an
equivalent abstraction in the destination cluster (which may enforce a
different management policy). The Cl ust er Cache maintains a list of
such exceptions.

* The normal serialiser, Ref Seri al i zer distinguished whether to pass
by reference or value based on the distinction between interface and
reference types. For cluster migration, a better distinction is between
parts of the cluster (objects) and references to external interfaces
(proxies). A different serialiser, St ubSeri al i zer , is therefore used.
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36.4 Copying a Cluster

Copying, rather than moving, a cluster follows exactly the same procedure as
syncMove. The copy operation blocks until there are no other threads and
the new cluster has been created, or a failure is detected. After successful
synchronisation, or failure, the original object enters state A: and the copy
operation terminates. The newly created copy commences operation with a
call to copi ed in state A.

Callee cluster instance

Success,
Failure
Timeout or
Interrupt

Instance
Failure
i++

Key
I:> Remote call | Initial T+ Thread Plus
L Locate R  Release Lock
Increase Lock S Spawn E  Execute
W Wait T-  Thread Minus
] Decrease Lock O  Obtain Lock J  Join
V  Validate Instance

Figure 79 Method Invocation State Transition

36.5 Method Invocation

When a thread from outside a (mobile) cluster attempts to invoke a method
exported by an object in inside a cluster, it must block if the callee cluster is
in the process of moving. The state diagram in indicates the process
followed by the infrastructure. It should be noted that the callee is able to
interrupt a thread making a call, but that this will not affect the caller. This
prevents the caller from blocking the callee’s progress. This is significant if
the callee and caller represent components of mutually distrustful systems.
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37 PERSISTENT OBJECTS

[ 1

37.1 Introduction

This work was conducted as the ‘Information Space’ workpackage of the
FollowMe project. The architectural goal of the Information Space is to extend
the range of transparencies available through FlexiNet by providing
persistence transparency (robust objects).

37.2 Incremental Approach

The approach taken was to produce an architecture for Information Spaces
which could be implemented incrementally. Persistence transparency is the
core requirement, with failure recovery, mobility and replication
transparencies to be implemented later. Additional facilities, which may be
required, include customised concurrency control, customised serialisation of
objects and transactional capabilities.

37.2.1 Evolving a design

A simple approach to storing objects is to abstract a file system as an object
store service. Clients can be given a remote interface reference to this service
and send objects by value to the store, giving each object a name. The objects
can later be retrieved by specifying the same name. An abstract interface to

such a service is shown in

public interface CopyStore

{
public void copylnto(String nanme, Cbject obj);
public Cbject | ookupCopy(String nane);
public void renove(String nane);
public String[] |istCopyNanes();
public Cbject[] IistCopies();
}

Figure 80 A Simple Interfaceto an Object Store

This has uses, but does not provide transparent persistence or help multiple
clients to share the storable objects. A client has to copy the object out to

4-May-99 FlexiNet Architecture 210



37.3

examine or change it, then copy it back in. If multiple clients do this then
some client's versions may be overwritten.

For a higher-level, more object-oriented approach, the stored objects should
be treated as first class objects. They should be able to offer services to clients
through exported interfaces, in exactly the same way that standard (non-

persistent) objects do. A Java interface allowing such ‘storables’ to be created

is shown in
public interface StorableStore

public Iface newStorable(d ass cls, Object[] args);
public void delete(lface storable)

}

Figure 81 A 'white box’ Store Interface

The newsSt or abl e method of this interface creates an object that is
transparently persistent. The interface to the storable returned to the caller
can be used as a normal reference. However, behind the scenes, the
infrastructure arranges that the effects of each invocation are stored before
the result is returned to the client.

Storables and Clusters

Persistence Manager
(Storable’s MetaObject)

intercept method;
Client read from disk; Storable
/7 1f necessary
invoke method;

write to disk;

Figure 82. Encapsulated Storable

As clients must use the store’s interface to manufacture storable objects, and
clients are returned an interface reference to the new storable, a desirable
isolation between clients and storables is achieved. Clients are not given
object references to the storables, allowing the implementation of the
storable's interface to be fully encapsulated. This is exactly the separation
provided by the Cluster abstraction.

Conceptually, the store interposes a persistence manager between the client
and the storable. The persistence manager reflects the storable's interface,
interposing persistence behaviour before and after invocations. The
persistence behaviour recovers the storable from disk if necessary, applies the
invocation, saves the storable back to disk, then returns results to the client

(Pigure 82).

In practice, the Store's persistence manager 1s realised as a
Cl ust er Manager . This acts as a meta-object for the destination object.
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37.4 Managing Persistence and Failure

When a storable is created, the client is returned an interface reference to the
storable, which is sufficient to allow it to be used. However, if the client were
to crash before persistently recording this interface reference (for example in
another storable) then it would be impossible for a reference to the storable to
ever be re-obtained (for example to delete it).

In addition, the administrator of the physical storage may wish to browse the
storables and recover disk space. To support both these requirements, each
storable is associating with a ‘meaningful’ name supplied by the creator. This
allows recovery after failure, and allows client to supply names that are
meaningful to a (human) administrator.

To aid with the management of storable names, a directory interface is
introduced. Directories form a tree structure and each store is associated with
a directory tree. The copyl n and newSt or abl e methods are associated with
the directory, rather than the store, allowing additional parameters to be
passed to specify meaningful names for the created storable. A
newDi r ect ory method is also provide for creating sub-directories

83).

1 parent

Mangagement Store Directory

Policy child
] 0-n
1
creates and names
owned and managed by O-n
0-n Storable

Figure 83 Class Diagram of Stores, Directories and Storable Objects.

37.5 Managing Stores

A store as described above is the owner and manager for all the storables in
its directory tree. The Store is a logical grouping of storables, and different
stores will be configured with different management policies for their
storables. There may be a requirement for many stores to use the same
physical storage area (disk).

A physical storage area, such as a physical file system or database may be
shared by many applications, agent systems or agents. To allow applications
1:(2ll share storage areas, a management layer needs to be introduced
8
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37.6

public interface StoreManager

{

public Store newStore(String nane) throws | SException;
public Iface newStore(String nane, dass cls,

hj ect[] args)
throws Instantiati onExcepti on,
| SExcepti on;

public void renmove(String name);

public String[] listNames() throws | SException;
public Iface[] listStores() throws | SException;
public Iface | ookup(String nane) throws | SExcepti on;

Figure 84 StoreM anager Interface

A St oreManager provides a name space of St or es, and is responsible for a
region of physical storage. The physical storage may be a disk or a database
(Figure 85). The newStor e(name) method creates a new store with the
default implementation and management policy. The newsSt or e( nane,

cl ass,

ar gs) method allows custom stores to be created with different

behaviours.

StoreManager

creates and names| 1
0-n

Mangagement

Policy Store

Figure 85 Class Diagram of StoreM anager sand Stores

Interfaces

The key external interfaces to the Information Space are:

St oreFactory

Store

This offers newStore and renove methods for creating and
destroying stores. A store is a receptacle for storable objects,
typically objects that are to be managed as a collection (for
example objects belonging to one user).

This encapsulates a set of storables. Storables are stored objects
(or groups of objects). Each storable is associated with a directory
entry, primarily for management purposes. A storable may be
accessed via its directory entry or via an interface reference
returned upon its creation. The St or e interface has only one
significant method, getRootDirectory. All stores and
directories are reachable from this.
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Directory
This offers methods for creating and destroying storables. Its
methods can be grouped as follows:

- ‘Black box’ storable methods (copyl nt o, | ookupCopy, etc.),
for copying objects by value into and out of the directory. These
methods are analogous to file operations.

- ‘White box’ storable methods (newsSt or abl e,
| ookupSt or abl e, etc.), for creating empty storable clusters. A
‘white box’ storable is transparently persistent. That is to say
that the creator is passed a reference to (an interface on) an
object within the storable, and may the access it as it were a
local Java object. This reference may be passed to other clients,
or even stored within other storables. The fact that the object is
both remote and persistent is make transparent.

— Directory methods (newDirectory, |ookupDirectory,
get Par ent, etc.), for creating and managing a hierarchy of

directories.
St or abl e

This is the management interface of a storable, and includes
operations such as copy and dest r oy.

shows the relations between these classes. See the extensive

JavaDoc in the code for a full description of these interfaces.

=
=

StoreManager

creates and names| 1

0-n
1 parent
Store Directory
child
) 1 0-n
creates and names
owned and managed by 0-n
0-n Storable

Figure 86 Class Diagram of Stores, Directories and Storables

37.7 Design

The design of the Information Space is in terms of clusters and capsules.

There are three levels of grouping. Each St or eFact ory manages a number
of Stores. Each Store manages a number of Storables, and each
St or abl e contains a number of separate Cbj ect s. Working in reverse, the
objects that constitute one storable must be kept separate from those in other
storables, both for security reasons, and in order to identify a boundary for
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persistence. Storables therefore correspond to the FlexiNet (and ODP) notion
of a cluster. Stores are consequently factories for storables, i.e. capsules in
FlexiNet/ODP terms. The St or eFact ory, as a factory for stores is an ODP
Nucleus. In FlexiNet terms, this is just another capsule.

Storable
\

Figure 87 Stores and Storables

Storable Storable
O
O O

— — — — — — — — — — — —

_——————

Each cluster is encapsulated so that it may be treated as a unit. In practical
terms, this means that no objects are shared between clusters, and the
cluster abstraction therefore defines a boundary that may be used when
serialising a storable to disk.

At a computational level, clusters and capsules communicate with each other,
and with remote clients via location transparent communication. In
engineering terms, this is achieved by each Cluster and Capsule having a
separate ‘Cluster Comms’ communications system managing its personal set
of imported and exported references. It would be inefficient for each Cluster
Comms to be implemented entirely separately, so to allow sharing, all the
Cluster Comms within a capsule are multiplexed over a Capsule Comms,
which manages low level communication, such as access to the network, and
multiplexing. In an insecure implementation, different capsules may also
share the same Capsule Comms, however in a secure implementation, where
each store is ‘owned’ by a different client, it is more robust, and
straightforward for each capsule to have a separate Capsule Comms.
Capsules are therefore entirely separate from each other (and may even
reside in different processes or on different physical machines). In addition to
the Cluster Comms and Capsule Comms, the other related engineering
component is the Cluster Manager. This is a management object with each
cluster, which provides two management interfaces, a public interface for
initialising a cluster and a private interface for use by the capsule. In the case
of a storable, these interfaces are Storable and Storabl eManager
respectively. gives a more detailed view of the internal relationship
between a store and its Storables.
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37.7.1

37.8

Storable

OO

Storable

e

@O

ClusterComms |

Storable

OO

[ StoreableManger
tOTen

Storable

e

@O

@O

@O

CapsuleComms CapsuleComms

Figure 88 Implementation of the Store and Stor ables

Underlying Storage

The underlying storage is supplied by implementations of Dat aDi r ect ory.
The Dat abDi rect ory interface abstracts the provision of storage for byte
arrays. A description of this is given in section E ;éél

Components

37.8.1

In this section, the primary components in the Information Space are
described in turn.

StoreFactorylmpl

A StoreFactoryl npl creates and manages St or el npl s. The information
needed to recreate the stores after a crash is held in a Met aSt or eFact ory
object, saved as a black box storable in the store factory’s directory. This
directory is independent from the stores’ directory hierarchies. The
Met aSt or eFact ory object is saved under the name st orenane. nsf. The
information needed for efficient lookup of stores created is held in a
Hashtable of St or eFact or yEnt ri es, hashed by store name.

The principle subtlety in the implementation of St or eFact oryl npl is the
need to create new stores in their own capsule, and to preventing the sharing
of any Java objects between the store factory capsule and the store capsules.

The implementation of newSt or e checks for the existence of a st or enane
directory and st orenane. msf object. If they exist, the store is recreated
based on the previously saved parameters. (This is used for restart after
failure.) If the store really doesn’t exist already, then an appropriate root
directory is created and i ni t St or e is called to initialise a new capsule for
the store. | ni t St or e ‘wraps’ the proto-capsule to isolate it from the rest of
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37.8.2

the system, and to turn it into a true capsule, thereby preventing the
accidental sharing of objects between capsules. The wrap operation returns
an interface to the capsule of type StoreManager. Once wrapped,
St or eManager . i ni t may be called to initialise the capsule.

Note that a similar wrapping process in undergone to wrap the
St or eFact oryl npl itself, however this is slightly simplified as the
St or eFact oryl npl is the only capsule (at that time) so does not need to be
encapsulated from anything else.

Storelmpl

St or el npl is the store capsule implementation. It performs several roles,
which are separately defined in the interfaces it implements.

* As a Capsul eManager, its Dbehaviour 1is inherited from
Capsul eManager | np.

* As a St oreManager it allows the store factory to initialise and destroy
it.

®* Asa Store, external Clients can gain access to its directory hierarchy.

* As a Part NaneHandl er, it restores Storables that have not yet been
loaded from disc.

* As a Part NaneHandl er, it restores Directories that have not yet been
loaded from disc.

* As an XSt or e, it offers back door services to its Directories.

Analogously to a StoreFactorylnpl, it keeps information about the
St or abl es and Di rect ori es within it. This is held in a Met aSt or e object,
saved as a black box storable in the Store’s net a directory. This is a directory
just for this purpose, and is independent from the store’s directory hierarchy.
The Met aSt or eFact ory object is saved under the name St or enane. nst .
(The StoreFactoryl npl actually initialises the St orel npl with a neta
directory that shares the same file system directory as itself, so the Store
Factory’s st or enane. nsf meta information and the Store’s st or enane. nst
meta information appear in the same file system directory.)

The Met aSt ore object holds two mappings and their inverses, one from
absolute directory name to directory interface Id, and one from absolute
storable names to C ust er Addr ess. (See the interface definition of directory
for a definition of absolute names in a directory hierarchy). These mappings
allow St orabl es and Di rectories to be recreated at their old addresses
after a crash, whether they are looked up by name in a directory, or
referenced by a location and persistent transparent object reference.

The Met aSt ore object is saved whenever it changes, that is whenever a
‘white box’ storable or directory is created or destroyed.
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37.8.3

As with St or eFact oryl npl , the principle subtlety in the implementation of
Store is the need to create new Storabl es in their own clusters. The
St or el npl uses its Capsule Comms to ‘wrap’ each Storable and is returned
an encapsulated St or abl eManager interface. This interface is used for most
communications with the Storable. However, the St or el npl needs to use the
unwrapped St or abl eManager interface to bypass encapsulation when a
Storable is being destroyed. Similarly, the St orabl eManager wuses an
unwrapped XDi r ect ory interface to its directory for efficient access to the
storage.

Directorylmpl

Directorylnpl relies on a DataDirectory object for creating sub-
directories and storing storables. It also keeps a hashtable of its black box
storables, white box storables and sub-directory members, indexed by name.

It implements copyl nt 0 by serialising the object onto a buffer, and then
using the Dat aDi r ect ory to store the buffer’s byte array. Note that to obtain
a deserialiser, the directory needs to be given a reference to its Cluster
Comms. This means that the store should not be initialised to construct its
root directory until after it has been wrapped with Capsule and Cluster
communications.

It delegates implementation of newStorable, restoreStorable and
renoveSt orabl e to its Store, through the Store’s XSt ore interface.
Storel mpl implements newSt or abl e by creating and wrapping a new
St or abl eManager | npl .

After creating, restoring or removing a sub-directory, Directoryl npl
informs the store through the store’s XStore interface. This allows the
St or el npl to keep its meta information up to date.

Di rectoryl npl prepends a byte to each St or abl e in its Dat aDi rectory,
signifying whether the Storable is a black box or a white box object. This
means that the directory does not need to keep an extra meta information
object in its Dat aDi r ect or y to signify this. The directory can efficiently read
the first byte of each Storable after a crash and work out which are black box
and which are white box objects.

Locking of directory members is fairly complicated. Locking is needed in case
two clients try and change a directory simultaneously, or try to access a white
box storable simultaneously. The locking needs to be at a fine granularity so
that independent entries in a directory can be accessed simultaneously.

A directory creates a Lock for each of its members. The lock for a white box
storable is shared with the storable’s StorableManager. This allows the
StorableManager to lock the storable from when method activity starts until
after the changed Storable has been stored. The storable cannot be deleted in
this interval. The lock for a sub-directory is shared with that directory. This
allows a parent to lock its child, remove all its members and then remove it.
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37.8.4

37.8.5

When a store is destroyed, or a directory is recursively removed, the lock
acquisition recurses down the directory hierarchy. The lock for a deleted
object can be killed (moved to a dead state). Any waiting activity then fails to
acquire the lock, leading to an exception propagating back to the client.

StorableManagerimpl

St or abl eManager | npl performs several roles, which are separately defined
in the interfaces it implements:

* As a (dusterManager, its Dbehaviour 1is inherited from
ClusterManagerl np and augmented to implement persistence
transparency.

* Asa Storabl eManager it allows stores to initialise and destroy it.

* As a Storabl e (an extension of C ust er), external clients can create
objects and copy them to new directories.

The persistence transparency is implemented in endCal |, called by the
Cluster Comms after a call to the storable has finished. EndCal | waits for
thread activity in the cluster to finish, and then stores the cluster state. This
is obtained by a call to  ust er Manager | np. get Cont ent s, and consists of
the root object itself (possibly null), the table of exported interfaces, and the
distinguished interface on the root object returned after the object was
initialised. This is precisely the information needed to restore the storable
after a crash. The St orel npl keeps the storable’s cluster address in its
MetaStore object, so the table of exported interfaces only needs to map the
interfaces to their Ids. The work of restoring all the interfaces at their old
identifiers is done by C ust er Manager | np. set Cont ent s.

The Cl uster St at e is serialised into a buffer using a ‘by value’ serialiser
obtained from the Cluster Comms.

Start Cal | differs from ClusterManagerimp’s startCall because it locks
the Storable, serialising calls to the cluster. EndCall then waits for thread
activity to finish, meaning that the Storable is in a stable state to be stored.

The buffer used for the cluster’s state is segmented, with a one-byte segment
for the Directorylmpl's flag, and the rest for the Storable. The
StorableManagerimpl passes the buffer to the directory wusing its
XDirectory  interface, and the directory fills in the flag byte and saves the
buffer’s byte array to its DataDirectory

Implementation of Directory and StoreManager

For flexible implementation of Directory and Store, a layer of abstraction
needs to be introduced between them and the storage area. DataDirectory
forms such a layer
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Figure 89 Class Diagram for DataDirectory

37.8.6 Implementation of DataDirectory

The current implementation of DataDirectory is FSDirectory (File
System Directory), which uses a file system for its implementation
90‘. An alternative implementation might be use a database.

DataDirectory <J=2 FSDirectory —— w Fg?riztsé?;n
parent |
1
o b 0-n
member FileSystem
Pveel File
saved as

Figure 90 Class Diagram for FSDirectory

37.8.7 Implementation of FSDirectory

FSDi r ect or y needs to make named sub-directories, and save byte arrays as
named files. Two issues are atomic write of data, and file naming.

A naive implementation of ‘write’ might leave an inconsistent state of a crash
occurred part way through overwriting a previous storable representation
with a new one: the copyln operation of DataDirectory must be atomic.

This is achieved by writing the data to a new file name, then renaming the
new to the actual file name. The rename must be done in two steps (first
renaming the old to an old file), because not all file systems support atomic
rename over an existing file (NTF'S does not). The state diagram for copyln is

shown in [Figure 91
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The names supplied FSDi r ect ory to it are arbitrary Java strings. They may
not be valid file names. A St ri ngMapper is used to map Java strings to file
names. The current implementation simple converts each Java character to a

Figure 91 State Diagram for Atomic Write

two-byte hexadecimal code.
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38 TRANSACTIONS

38.1 The Runtime Execution Model

Figure 92|illustrates the runtime model of the transaction framework.

* An enterprise bean instance is an object whose class was provided by
the enterprise bean developer.

* An EJB object is an object whose class was generated at deployment
time by the EnterpriseBeanBox. The EJB object class implements the
enterprise bean’s remote interface. A client never references an
enterprise bean instance directly; instead, a client always references
an EJB object whose implementation is provided by the container.

* An EJB home object provides the life cycle operations (create, remove,
find) for its EJB objects. The class for the EJB home object was
generated by EnterpriseBeanBox at deployment time. The home object
implements the enterprise bean’s home interface that was defined by

the EJB provider.
( N

EJB home
Enterprise ),
bean instance
EJB objects a,
Bean class 1

client

EJB home
. Enterprise )’
bean instance
EJB objects B’
Bean class 2
N y

container

Figure 92 The EJB Container M odel
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38.2

Transaction Model

38.3

Because the transaction architecture provides implicit transactions, an
enterprise bean developer or client programmer is not exposed to the
complexity of distributed transactions. The burden of managing transactions
is shifted to the container and the underlying transaction system. The
container implements the declarative transaction scopes. It also, together
with the underlying transaction system, implements necessary low-level
transaction protocols, such as the two-phase commit protocol and transaction
context propagation.

Transaction Context Management

The scope of a transaction is defined by a transaction context that is shared
by the participating objects. A transaction context records all the information
related to the transaction, namely the name and identifier of the transaction,
the participating objects, and the status of the transaction. Each client may
only exist in one context at a time, but EJB objects may be involved in many.
(This is an extension to the standard EJB model). The transaction service is
available in every context. (.

Container

Context

Alpha
Client Container
A

Container

Client

Transaction B

Service

Figure 93 Transactional Contexts

When a container processes a client request on an enterprise bean, it must be
told the sender’s transactional context. The container may need to access and
update the transaction context, for example to check the status of the
transaction and/or to register a resource to the transaction. In the local case,
a transaction context is associated with each thread. Therefore, when
invoking an operation remotely the related transaction context must be read
from the client thread, and propagated to the peer thread on the server

(Figure 94).
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38.4
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Figure 94 Contextsvia Threads

To provide transparency, it would be ideal if the transaction context could be
propagated implicitly. For example, we could make the underlying remote
method invocation mechanism pass a transaction context to the server side
automatically when it deals with a remote method invocation. This requires
support from the underlying remote object platform. Because of the flexibility
of FlexiNet, we can customise the basic FlexiNet protocol to provide this
capability.

Implementation of Transaction Context Propagation

In our implementation, when a transaction is created by a client thread we
create a transaction context object and associate it with that thread. We may
use smart proxies to pass copy this information from client to server thread.
As the transaction platform is generic, we must use generic proxies to achieve
this.

We arrange that the client uses a Tr ansact i onal Pr oxy whenever accessing
a transactional object. When a method is invoked on the client stub, this is
passed to the Transacti onal Proxy, which reads the transaction context
related to the calling thread and pushes this into the stack of ‘additional

arguments’. This is illustrated in
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public class Transacti onProxy extends SinpleCGenericProxy

{
/1 for TransactionProxyGenerat or
public Transacti onProxy(Name n)
{ super(n); }
[l for serialization
publ i c Transacti onProxy()
{}
public void invoke(lnvocation i) throws BadCal | Exception
{
/]l determ ne the current transaction context
Coor di nat or coordinator =
Thread2Tr ansacti on. get (Thread. current Thread());
/'l save this on the stack of extra agunents
i . push(Coordinator.class, coordinator);
/1 continue the invocation
super . i nvoke(i);
}
}

Figure 95 The Transactional Proxy

On the server side, we arrange that a Tr ansact i onal Skel et on is invoked
in place of the real target object. This reads the transaction context from the

stack, and assigns this to the current thread. The invocation is then invoked
on the object ‘for real’. This is illustrated in

The use of proxies and skeletons in this case is extremely straightforward,
and exactly follows the procedure outlined in section
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public class TransactionSkel eton inplenments CenericCal

{
private Object target;

public Transacti onSkel et on( Obj ect target)

this.target = target;
}

public void invoke(lnvocation i) throws BadCal | Exception
{

/1 initially, assune no context

Thread2Tr ansacti on. put (Thread. current Thread(), null);

if(!i.stackEnpty()) // in a transactional context

{
try

/'l read context from stack of extra argunents
Coor di nat or coordinator =
(Coordinator) i.pop(Coordinator.class);

Thread2Tr ansacti on. put ( Thread. current Thread(),
coordi nator);

catch (Exception e)
{ /1 ignore exceptions (context left as null)
}

}

/!l invoke the nethod
i .invoke(target);
}
}

Figure 96 The Transactional Skeleton

38.5 Summary

The transactional architecture was developed in parallel with, and on top of,
the core FlexiNet architecture. It takes advantage of the same concepts of
reflection and component technologies to provide a flexible, scalable and
adaptive system.

Like most component models, it enables users to develop portable,
customisable components, and assemble them into applications. It enables
rapid application development and deployment using standard components
and off-the-shelf tools. Moreover, unique to our architecture, by supporting
reflection it allows a server component container to be easily customised, for
example, in order to cater for new application demands, or to adapt to a new
environment. We also allow application developers to provide application-
specific information, declaratively and separately from application code. This
allows the transactional container to improve system performance.
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SERVICES
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39 CLASS REPOSITORIES

39.1 Background

When the components of a distributed application communicate with each
other using remote method invocation, then they may pass objects by value.
The object-oriented paradigm allows for object subclassing, and so a service
expecting an object of class Foo, may in fact, be passed an object of type
FooSub. This facility is essential when building the generic services. For
example, a Pl ace is a service with a recei ve method that takes as an
argument an object of a (sub class) of Mbbi | ed ust er.

Whenever an object is created, the JVM must first load the necessary code to
implement the object’s class. This class must either be available on the local
class path, or be accessible by some other means. Without special
mechanisms, a service is only able to load classes available locally. This
severely restricts the interoperability between applications and services, and
adds an additional degree of complexity to application deployment and
upgrade.

In newer versions of Sun’s RMI, there is some provision for remote class
loading in order to tackle this issue. However, there is one significant
limitation. If, by chance, two client of a service both make use of the same
class name to refer to different classes, then the class loading system is
unable to distinguish between them, and unexpected behaviour will result.
Although apparently an obscure and insignificant limitation. This is likely to
arise in two different circumstances.

® If programmers are undisciplined or unlucky in the choice of class
names (for example, if they build applications in the default package)
then they are likely to choose the same names for different classes.
Names such as Appl, Test and Hel | oWor | d are obvious candidates.

* If programmers rely on particular versions of a class that has been
upgraded or modified. By chance, a service might load an early version
of a class, as requested by one client, and cannot then load a later
version of a class, as requested by a second client. In practice, the
service will not even be able to identify which version of a class it
requires: there must be at most one version of each class available to
it.
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The FlexiNet class repository has been designed to manage classes so that
(remote) services may load classes as required. In particular, it does not
suffer from the limitations of the RMI scheme. Its key features are

* C(lasses are loaded from a ‘nearby’ repository one at a time, reducing
the overhead of loading entire jars from distant servers.

* Application programs do not need to act as class repositories
themselves, so there is low per-process overhead. This is particularly
significant for weakly connected machines (e.g. portables).

* Repositories are federated in a scalable manner. Each repository only
serves local clients (e.g. same sub-net); remote clients are served via
traditional web-server needs.

* Repositories act as caches for remote jars. This reduces wide-area
traffic, and provides a single point for management of foreign classes
(for example signature checking).

* Applications can load and use any classes that fit within the typing and
semantics of the application. The application is statically typed, and
there can be no runtime type errors due to network class loading —
even if class names are poorly chosen.

®* There is zero impact on application code. Applications need not be
aware of the class loading system, and need not be written differently
because of it.

® C(lasses on the local class path will be used in preference to network
classes, if available. This reduces the load on the class repository, and
taken to an extreme, allows applications to run without a class
repository being available.

39.2 Class Loading Overview

In this section we describe a number of case studies, and use these to
illustrate the key requirements of a networked class repository.

39.2.1 Base Case — No Repository

When distributed components communicate via remote method invocation,
then may use pass objects of any class available on both machines.
shows two machines, each with a single Java process, and a number of Jars of
class files available via the class path. The left-hand process is using classes
from the black and white jars. The right hand one is using classes from the
white and grey jars. The processes may communicate using remote method
invocation as expected. However, if during this communication, one machine
tries to send the other a class from a jar that is not available on the remote
machine; then the communications will fail.
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Send white classes
- OK, white available on
both machines

N
< .

Send grey classes

I T - Fail, gray not available I T
on destination machine

Figure 97 Communication Without a Repository

39.2.2 Communication Backed by a Class Repository

Figure 98[shows the same two hosts communicating as before. However in
this example, the classes are stored in Jars on a remote repository that is
available to both machines. The two processes may communicate freely, and
classes will be retrieved from the repository as and when needed.

An alternative solution would be to place all jars on all machines. This
approach does not scale in general, but might be appropriate in special
circumstances, for example if the machines had a shared filing system. A
specialist class loading system would still be required in order to overcome
issues relating to Jar versions.

Class
Repository

Classes retrieved
on demand

Proceses may

Classes retrieved
on demand
communicate

freely A

N

I—l—’ﬁ I—l—’ﬁ

| |

Figure 98 Communication Backed by a Repository
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39.2.3 Wide Area Communication

If there are many sites or organisations that wish to communicate, it is
unrealistic for them to all share the same class repository. A single, global,
repository would be a single point of failure, and would be prone to overload.
In addition, for management reasons it is likely that each organisation would
prefer to maintain its own class repository. For example, a repository might
contain software that was proprietary or licensed.

Although they might not share class repositories, processes in different sites
may still need to communicate and share classes. This is an analogous

problem to the communication between hosts without a class repository. This
is illustrated in

Figure 99 Communication Between Sites

4-May-99

FlexiNet Architecture 231



39.2.4 Federation Using Web Servers

Web servers provide the ideal mechanism for publishing classes for use in
other sites. They are a mature technology, and are already used for providing
a gateway to information stored a sites protected by firewalls. In addition, the
auditing and access control mechanisms they provide are exactly what is
required when publishing Java classes. illustrates how web
servers are used by the class repository architecture.

If a class is requested from a repository, and that repository does not contain
a copy of the class; then the repository contacts the class’s web server. To
support this, every class identifier sent in a remote method invocation
contains details about the web server containing the original class. The class
repository may then download the entire jar containing the requested class. It
then validates the jar and stores it for later use. Certificates are checked and
site policies relating to the use of imported classes will be consulted.
(Certificate checks are not currently implemented).

Downloading an entire jar is the appropriate granularity to reduce the load
on the web server, and to maximise throughout over the Internet. Once the
jar has been downloaded it may be treated like any local jar in the repository,
and classes may be served from it. A class repository may later delete the jar
to recover disc space, as it can always be retrieved from the web server later.
In this sense, the class repository is acting as a web cache for Java Jars.

Jars

downloaded

on demand ——_ — ~
\
| —
HHHHHHH
Ao

Web Server I

B

Proceses may
communicate
freely

Figure 100 Federation Using Web Servers
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39.3 Architecture

The class repository architecture has two main components. The repository
itself is shared between a number of client processes. Each client process
contains class manager which co-ordinates its use of the repository. Java
class files are collected into bundles which are stored in the repository. Each
class manager maintains a proxy bundle for each bundle in use. Additional
proxies are created as and when needed.

During normal operation, classes are loaded from the appropriate bundles by
implicit calls made by the JVM on behalf of the client application. When the
client communicates via FlexiNet, then a special class serialiser is used to
serialise information about each required class. In the destination machine, a
class deserializer can convert this information into real classes, by explicitly
calling the class manager. This in turn will contact its local repository as
required. If a class is requested from a repository that it does not possess,
then it contacts the appropriate web server, and downloads the Jar
containing the class using http. The key components and interfaces are

illustrated in

- = == — = — = SN
/Class Repository |
| | Zip — |
: Bundle *J
| Class 2 |
hp—t  Repository - Bundeimp)--» BunFc)IIe Jar | |
| | Implementation |1 n :
— | )
Web Server | 1 S or | |
| Bundle I
4 ]
\~——<CIassRepositoryI———————————————/
association
\I |/Cluster / Rrocess \
D Bundle |
I | Class Proxy |
| ! Manager Bundie |
: : Implementation |1 N Bundle I
| | Proxy :
I:l Object | | class loading |
C) Interface : | Bundle Bundle |
| | | Class Class Application |
(= ) Subclassed| | | Serializer DeSer. Code |
Interface | | A A |
| | ClassSerializer (CIassDeSerializer) |
I I |
| : FlexiNet |
et | Communication I
} I Infrastructure |
—_— N - _/}

Figure 101 Class Repository Architecture
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39.3.1

39.3.2

Bundles

Jars stored in the class repository are abstracted by Bundles. This allows
other collections to be stored (for example directory based collections) and
gives additional design freedom. Each bundle has an identifier, which is
globally unique. For j ar and zi p files, this identifier is a secure hash of the
bundle’s contents. This ensures that the identifier is unique, prevents reuse
of names due to human error, and is used to aid the secure download of
bundles over insecure communications.

Each bundle also contains a list of other bundles that it imports. Bundle
imports are analogous to Java import statements. Each bundle lists all of the
bundles that contain classes required by the classes within it — in effect the
set of ‘library’ bundles that are needed. The intention is that reusable code is
placed in separate bundles from application specific code, so that a class
repository may cache small bundles that contain frequently used classes. This
approach is similar to JDK 1.2 ‘Jar extensions’, and the format of the import
statements within the Jar manifest is compatible with it. The format is
extended to include the identity (secure hash) of imported bundles in addition
to their URLs. This allows secure retrieval of imported classes.

It is envisaged that a later implementation might allow more complex import
statements that allow a runtime choice to be made. For example an import
statement that requested “AWT version 2.0 or above” would allow a class
repository more choice when servicing a request. There is more research
needed on the format and impact of such import statements.

A bundle may have other meta-data associated with it. Currently this,
together with import statements, is stored in the manifest file (META-
| NF/ MANI FEST. MF) in a format compatible with . j ar manifests. The current
implementation of the class repository ignores all manifest sections other
than those specifically designed for it.

Class Managers

Each FlexiNet process (or cluster) has a local class manager object associated
with it. This provides a context for class loading. It is used by the
serialisation and deserialisation code to read and write class identifiers, and
to obtain classes from the class repository. The class manager is not itself a
class loader, instead it managers a number of bundle proxies, each of which is
a class loader. Each bundle proxy loads classes related to a particular bundle,
and uses other bundle proxies to load classes imported from other bundles.

Although one class loader per bundle may seem excessive, it is necessary, as
two bundles may both contain different classes of the same name. In cluster
based applications, each cluster has its own class manager, to allow different
clusters to obtain different instances of classes — this is required for strong
encapsulation, in order to prevent sharing of static data. In addition, to
reduce the overhead of different class instances, a single shared class
manager is used to service requests for bundles that may be safely shared.
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39.3.3

These must be explicitly marked as sharable (within the manifest), as
sharing is a potential security risk unless the classes are ‘cluster aware’.

Local Classes

The class repository scheme does not (and cannot) completely replace the
system class loader. For example the code required to access the class
repository must itself be loaded somehow. Typically, the JDK and FlexiNet
will both be loaded from the system class path. As the class path will vary
from machine to machine, it would be inadvisable to treat local classes as a
special case, and instead each locally loaded class should be made available in
a bundle on the class repository. Bundles may be marked as ‘shadowable’
meaning that (some of) their contents may be available locally. For
shadowable bundles, the local class path is searched first, before the class
repository is contacted. Shadowed bundles must be sharable (as all clusters
can access the system class loader). A secondary limitation is that it must be
possible to determine which bundle a locally loaded class really belongs to.
This involves (at worst) a search of all shadowable bundles in the class
repository. Shadowable bundles must therefore contain classes with
unambiguous class names — or it would not be possible to work out which
bundle contained the appropriate class.

An example snapshot of a JVM is shown in Here there are two
clusters, A and B each of which has its own Class Manager. The clusters are
both sharing classes managed by the shared class manager. In the example,
cluster A has access to classes A,B,C from bundle JDK, classes D,E,F from
bundle Fl exi Net classes G and H from bundle Li b and classes I and J from
bundle AppA. Cluster B has access to A-F and K.

(Cluster A ) [Cluster B R
Cluster A Cluster B
Class Class
Manager Manger
J
Shared
Class
Manager
Shadow
Manager
Figure 102 An Example use of Bundles Within a JVM
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39.4

If bundle AppA or Li b also contained a class called K, then this would be
loaded on demand, and would not affect the execution of Cluster B. Similarly,
if Cluster A was passed a reference to a different class called ‘H’ then this
would necessarily live in a different bundle. A’s cluster manager would create
a bundle proxy, and the class would be loaded correctly. The fact that A would
be using two different classes with the same name seems counter-intuitive,
but is perfectly correct.

Each bundle in the example contains a reference to other bundles that it

imports. For example, the definition of class G might contain references to
classes E and B.

Engineering Details

39.4.1

Class Serialisation

The following information must be passed to uniquely identify a class

® The identity of the bundle containing the class. This is a secure has of
the bundle’s contents (MD5).

* An identifier for the class within the bundle. The fully qualified class
name is used for this. In an early implementation, classes within a
bundle were sorted, and an integer identifier was used. This approach
was rejected because of the additional complexity and overhead caused
by mapping shadowed classes.

In order to ensure that the bundle can be located by the destination host’s
class repository it is also necessary to pass location information. For this, the
URL of the bundle is passed. It up to (human) management to ensure that
the bundle remains available at this URL during the its lifetime.

To minimise the amount of information written when serialising a particular
object graph we note the following possibilities for optimisation.

* A graph will typically consist of many objects of classes in the same
package

* A large graph will typically consists of many objects of classes in
different packages, but within the same bundle

* A large graph will typically consist of many objects of a given class.

To take advantage of these observations, the class serialiser uses three
dictionaries, one for package names, one for bundles and one for classes. The
dictionaries are initially empty, and the following algorithm is used.

* Lookup the class in the class dictionary. If it is present, write the index
and exit, if not add to the end of the dictionary and write the class
name (unqualified).
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39.4.2

39.4.3

* Lookup the bundle in the bundle dictionary. If it is present, write the
index, if not add to the end of the dictionary and write the bundle
identity and URL.

* Lookup the package name in the dictionary. If it is present, write the
index, if not add to the end of the dictionary and write the package
name.

The Deserializer created an analogous set of dictionaries, and uses these to
decompress class information as it deserialises it.

FlexiNet without Class Repositories

FlexiNet can (and by default is) used without a class repository. During
remote method invocation, the bundle each class belong to is set to unknown.
All classes are loaded from the local class path, and ambiguous class naming
is not allowed (i.e. the class path should not contain two classes of the same
name). It is envisaged that this arrangement will be used for application
development, and class repositories will only be used at deployment time. It is
possible for two processes to communicate if one uses a class repository and
the other does not, but in general, this is to be avoided.

Class.forName

The use of class repositories is, for the most part, transparent to the
application programmer. There is however, an issue with unrestricted use of
Cl ass. f or Nane. This will attempt to load a class from one of two locations:
the class loader used to load the calling class, and the system class loader. In
applications that make use of many class loaders (for example if many
bundles are used) then it might be necessary to load named classes from
other locations. This issue will occur in any system making use of multiple
class loaders, and is not FlexiNet specific. The following code fragment is an
enhanced version of Cl ass. f or Nanme that will allow classes to be loaded from
the same location as any existing class or object. Note that in JDK 1.2, an
equivalent method is provided in class C ass.

static O ass O ass_forNane(Qhject context, String nane)
t hrows Cl assNot FoundExcepti on
{

Cl ass c;

i f(context instanceof C ass)
¢ = (O ass) context;

el se
c = context.getd ass();

Cl assLoader | = c.getd assLoader ();

i f(l==null)

return cl ass. for Nane(nane);
el se

return | .l oadd ass(nane);
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39.4.4

39.5

ClassLoader Resources

In JDK 1.1, it is possible for an application to store resources such as images
or samples together with class files. These may then be accessed via

URL ClassLoader.getSystemResource(...)
and
URL ClassLoader.getResource(...)

The class repository implements this interface by acting as an http server for
these resources (as resources are loaded via URLs). This implementation
choice is less efficient than a FlexiNet based protocol, however it was
unavoidable as getSystemResource  and getResource  return URLs. It
should be noted that as http is used to communicate with the (local) class
repository when loading resources, this may be less secure that the protocol
used to load classes.

Bundle Integrity

The scheme for identifying bundles been designed to ensure that the wrong
bundle cannot be accidentally used. This covers misnamed bundles, corrupted
bundles, or those that have been maliciously modified (either on the original
web-server, or during communications). The integrity scheme relies on the
use of the bundle’s secure hash code as an identifier for it. It is illustrated in

=
[
id, = #(contents) Junim
imports = (URL,,ID,) uoooooo
class X
class Y Web Server
class Z
URL ©
° URL, Jar, ey b

id, = #(contents) @

imports = {}

class Q -

I w == ==
P Class ’.é;#(Jara) id,, ?#(Jar) == id,
Repository
A urI URL L IoadCIass Iass X Y.0
Ioad(URL id,) A.imports = {ID (X,id,) X=ID, X
Client
© load(X URL, id,) Class ® load(Q, URL,, id,)
\ > Manager \ >

I

Figure 103 Secure Class L oading

4-May-99

FlexiNet Architecture 238



Under normal use, the loading of classes proceeds as illustrated in
We will walk through this in stages.

1) First, a client class manager is requested to load a class. Three
parameters are supplied, the name of the class (X), the URL of the bundle
containing the class (URL,) and the unique identifier for the bundle (i d,)

Client
©® load(X URL, id,) Class
\ > Manager

2) As the class is not already loaded, the Class Manager first attempts to
load a record representing the bundle from the client’'s local class
repository. We will assume that all communication with the class
repository is authenticated. Usually the class repository and client are
within a firewall, removing the need for further mechanisms, but in
general, an arbitrary technique can be used to insure the authenticity of
information transferred across this link. (Note. This is a standard Flexi-
Net remote method invocation, so may be secured by using a secure
FlexiNet protocol).

Class

Repository

e
load(URL, id,)

Client
Class
Manager

—

3) We will assume the class repository does not already have the class (f it
does, skip to stage 6). The class repository downloads the bundle from the
specified URL using (insecure) ht t p.

=
—

id, = #(contents) (UM
imports = (URL,,ID,) 1000000
class X
class Y Web Server
class Z

©

URL, Jar,

Class

Repository
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4) Once downloaded, a secure hash of the bundle is created, and checked
against the identifier supplied by the client. This ensures that the bundle
was not tampered with during download.

Class

?#(Jar,) ==id,
(4]

Repository

5) The class repository examines the bundle and downloads and verifies the
transitive closure of all imported bundles in a similar manner. (Note. The
repository may have already downloaded some of these when servicing
other requests).

[=

| —
id, = #(contents) HHHHHHH
imports = { [ooooog
class Q Web Server

class W
class E

Class ?#(Jar,) ==id,

Repository

6) The class repository supplies the original client with a meta-data record
for the bundle. This includes the identity of all imported bundles, but not
their URLs (this will be obtained later).

Class

Repository

e

A.id =id,

A.url = URL,
A.imports = {ID;}

Client
Class
Manager

I
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7)

8)

9)

The client obtains meta-data records for the transitive closure of the
imported bundles (again, some may have already been loaded for other
reasons). Note that the client may load these using only their identifiers —
the URLs are not required as the Class Repository has already loaded the
bundles.

Class
Repository

Client
Class
Manager

—

The client is now able to load classes, one at a time as required, from the
class repository.

For each class loaded, the repository informs the client of the actual
bundle it came from (it may be a bundle imported from the requested
bundle). This ensures that the client can manage classes and share them
when appropriate. It also ensure that the client has the (Bundl el D,
URL, d assNane) tuple for each loaded class.

Class

Repository

e+l T
loadClass class X
(X,id,) X=ID, X jY'Q

Client
Class
Manager

]

10) If the client requests a subsequent client to load a class, it can supply all

the necessary information.

Client
Class ® load(Q, URL,, id,)

Manager \ >
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39.6

Discussion

39.7

It is not possible for an aggressor to replace a real class or bundle with an
alternative, without first compromising the client or class repository. It is not
sufficient to subvert the web server or the web server to repository
communication.

We assume that the original request to the client to load a class is authentic
and the client decided to agree to the request. In practice, the client may ask
for additional meta-information from the repository, such as certificates
relating to the bundle’s authorship. In this case, it is the repository, not the
client, which performs cryptographic checks on supplied certificates, but the
client interprets these certificates, and has the option not to load a class. This
removes the burden of cryptographic processing from the client, which is
important if the client has limited resources. It also allows organisation wide
policy to be enforced at the Class Repository — for example the repository may
disallow the use of certain classes.

In general, the class repository is shared between many clients, and caching
in the client and repository will reduce the amount of communication.

Special Cases

39.7.1

In some special circumstances, the class repository may be used to securely
load classes, even if the secure identity of the containing bundle is not known.
This is particularly useful when bootstrapping from a command line, or when
bridging to less secure technology.

Special Case 1

The system remains secure if the initial ‘loadClass’ request to the client does
not contain a bundle ID if the following assumptions hold

* The Class Repository has previously loaded and validated the Jar at
the named URL, and the contents of the URL have not changed
or

* The Class Repository can securely load the Jar at the named URL
without the need to validate it.

These circumstances are likely to arise if the client is requested to load a
‘local’ application which exists on an intra-net web server, or that has been
permanently installed on the class repository (rather than just cached). It is a
useful special case, as it allows simple command line use of the class
repository (e.g. Java CRHarness File://MProg.jar mnain).

The class repository can be configured to allow this special case, but to
disallow use of a URL without ID when this would be insecure.
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39.7.2 Special Case 2

If a standard Jar is loaded using this system, then it will contain the URLs of
imported Jar’s but not their identities. This is because the JDK1.2 ‘Jar
extensions’ makes no provision for securing imported jars. We employ a
special tool to ‘seal’ a jar by adding security information about imported jars
to the jar's Meta directory. This is backward compatible with standard jars.

If the system is used with such ‘insecure’ jars, then it will remain secure if
the following assumptions hold

* Jars loaded in this way have no imports that have not already been
loaded into the class repository, and the jars at the import URLs have
not changed since they were loaded into the repository

or

®* The class repository can securely load the Jar at the named URL
without the need to validate it.

The class repository can be configured to reject insecure jars for which these
assumptions do not hold.

Note. The Class Repository implementation is complete except that it does not
read bundle identities from Manifest import statements. In addition, the seal
tool has not yet been written.
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40

TRIVIAL TRADER

40.1

Introduction

40.2

The Trivial Trader is a name server used by FlexiNet applications and
services to locate each other. Services may publish an interface by entering a
record into the trader giving a textual name for the service, and a reference to
the exported interface implementing the service. Clients may then query the
trader and obtain references to services.

It is important to note that the trader is not an integral part of FlexiNet.
Services may publish interfaces by other means, such as by passing them to a
third party service, or even by outputting a stringified form of a FlexiNet
name to the screen (although the latter case is to be avoided). The trader is,
however, a commonly used service. In particular, the static class Fl exi Net
may be used to obtain a reference to the trader. This is obtained by parsing a
Java system property, which is supplied as a command line argument or by
other means.

Naive Design

The current trader implementation is extremely trivial. It maintains a simple
dictionary of (service name, interface) pairs. It is not persistent, not does it
perform access control. In particular any client may add, delete or overwrite
entries within the trader. For these reasons, and the fact that complex
queries are not supported, the trader is called the trivial trader. For any
significant use of FlexiNet, this would have to be replaced with a more robust
and comprehensive service.

There are two subtleties with the trader design.

® The trader is able to restart at a previous (well known) address. It does
this by explicitly initialising the FNet Test test bench with a
stringified FlexiNet name.

® The trader actually stores byte arrays rather than interfaces. This is to
overcome various security and scaling issues described in the following
section. This subtlety is hidden by the use of a smart proxy to access
the trader.
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40.3 Scaling Issues

The Trader is a general purpose service, and is expected to be used to store a
large number of interface from a variety of different services. If implemented
naively this would lead to the trade having to load and resolver a large
number of different interface classes. This would have the following
unwanted side effects.

* The trader would have to generate stubs for a large number of
interfaces, despite the fact that it would never actually use these
stubs.

® The trader would have to load a large number of interfaces classes, and
a large number of (object) classes imported by these interface classes.
This would lead to bloat, and security issues if the classes were not
trusted.

®* The trader would have to load and resolve a number of names that
represented Smart Proxies (if a stored interface exploited Smart
Proxies)

® The trader would have to support a large number of protocols, one for
each protocol used by a name stored in the trader, even if
communication with the trader itself was always made using the same
protocol.

These issues can (and are) all avoided by using a Smart Proxy to access the
trader. This serialises and deserialises interface references into a byte array.
The trader itself therefore only has to store untyped data. As the clients of
the trader who wish to use an interface already have to load and resolve the
interface and related stubs and protocols, this introduces no significant
overhead.

40.4 Trader Proxy

The trader proxy is a smart proxy that performs serialisation and
deserialisation. To do this, it must obtain a reference to ‘Binder Top’, so that
names can be generated/resolved as required. This is obtained from the
binding context stored in the Smart Choi ce binder, during resolution. An
overview of the proxy is given in Note that clients of the trader do
not need to be aware that they are using a proxy.
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class TraderProxy extends SmartProxy inplenents FNet Tr ader

public Trader trader;

/1 called during resolution of the SmartProxy
protected void init(BinderDB ctxt)

{
bi nder Top = ct xt. get Bi nder Top() ;
}
public void put(String nane, Obj ect obj,d ass cls)
{

/! Create a byte array & serializer

Byt eArrayQut put Stream ba = new Byt eArrayCQut put Stream();
Serializer s = getSerializer(new DataCQutput Strean(ba));
/'l wite the interface to the byte array
s.witeObject(FlexiNet.tag(obj,cls),I|face.class);

/! put the byte array into the trader

trader. put (nane, ba.toByteArray());

}

public Chject get(String nane)
{
/! get the byte array fromthe trader
byte[] data = trader.get(nane);
/1 create a deserializer
Byt eArrayl nput Stream s = new ByteArrayl nput Strean(data);
DeSerializer d =getDeSerializer(new Datal nput Strean(s));
/!l read fromthe byte array
return (Proxy) d.readObject(Iface.class);

Figure 104 A Simplified Trader Proxy

40.5 Discussion

The trader is both trivial and complex. As a trader, it is extremely simple,
and does not have the feature set that might be expected of a full trader.
However, as a distributed service, it has been designed to scale. The use of a
proxy allows this scaling without recourse to ‘special techniques’. The trader
is a standard FlexiNet program, and as such, can easily be replaced by an
application specific trader.
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41

BASIC API

41.1

Introduction

41.2

The computational API for FlexiNet is extremely small. This is as should be,
as the main purpose of the FlexiNet framework is to provide transparency.
Once a programmer has a reference to a remote service, they may use it, more
or less, as if it were a local reference. The FlexiNet computational API is
therefore only concerned with the small number of aspects of the reference
that cannot be made completely transparent to the programmer.

For a particular FlexiNet component, protocol or binder, there may be
additional APIs to control configurable aspects of that component. For
example, defining security policy for secure bindings; creating and managing
clusters in a cluster based system or setting binder specific QoS. These
aspects have been discussed in the relevant chapters.

In addition to the ‘programmer API’, the binders and protocols available to a
particular process may be configured using the ‘Testbench’ interface. This is
described in chapter ﬁl

FlexiNet Initialisation

The trader (currently the trivial trader) is used as a bootstrapping
mechanism for FlexiNet applications. A program may trivially obtain a
reference to the trader, and may then use this reference to discover references
to other services, or to publish its own service. This is the only FlexiNet-
specific call in the majority of application code.

A reference to a trader may be obtained using the following call
FNet Trader trader = Flexi Net.getTrader();

Note. In a cluster environment, static methods should not be used from
within clusters, and this call should only be made from the initial (nucleus)
capsule. This may then pass the reference into other clusters if required. If
a cluster security manager it used, this should be enforced.

The interface to the trader is given in
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41.3

public interface FNet Trader

{
/!l Add an interface to the trader.
/1l name - A textual name for the interface
/1 obj - The object which inplenents the interface
/!l cls - The class of the interface
public void put(String nane, Obj ect obj,dass cls);
/1 Add the first interface inplenented by an object
/1 to the trader. (first as defined by Java spec.)
public void put(String nane, Gbject obj);
/1 Lookup an interface name and return the interface
public Chject get(String nane);
/! Renpove an interface fromthe trader
public void delete(String name);

}

Figure 105 The Trader Interface

Configuring a Binding

41.3.1

For most applications, bindings are created implicitly and used ‘as is’. The
binders themselves and the binding graph are pre-configured to use the
appropriate protocols and QoS settings, and application code is not polluted
with this information. This pre-configuration may be done using the
Testbench interface.

It is sometimes necessary for a service to explicitly specify the protocol or
configuration to be used for a particular binding on a per-client or per-object
basis. This is required for protocol-sensitive services if the correct protocol
cannot be trivially determined by a binder (for example by examining the
service object).

Equally, a client may post-configure a binding by changing the QoS settings
relating to it. However, a client is more limited, as they may not (normally)
affect the server-side of the binding. Typical client configurations might be to
change the authentication information implicitly passed in a secure binding
or to change the buffering policy on the client side of a binding. If the name
resolved to generate the binding consisted of a set of choices, (for example for
replica servers, or different protocols) then the client might change which
choice was used. Such ‘tinkering’ is highly protocol dependant and should be
used with care.

Use of Proxies for Server Side Binding Configuration

A server may create a ‘tagged proxy to a local interface, indicating desired
QoS properties. By passing a reference to this proxy, rather than the local
interface, then the server can arrange that a particular binder, or binding
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configuration is used, when a client binds to the endpoint. This is analogous
to the way in which a server passes a smart proxy to specify application-level
binding configuration (see section 17.3). It provides the same functionality as
explicit binding interfaces found 1 r middleware offerings. An example is

given in Fi%ure 106.

Foo f = new Fool npl ();

/1 create a tagged reference to f that indicates a
/1 specific protocol should be used when a client
/1 binds to f.

Fl exi Props qos = new Fl exi Props();
gos.setProperty(“protocol”,”"Rainbow”);

Foo rainbowF = (Foo) FlexiNet.tag(f,Foo.class,qos)
/1 put the reference in the trader

FlexiNet.getTrader().put(“MyService”,rainbowF);
Figure 106 An Example Use of Explicit Binding Configuration

Note. The format of the QoS properties, and their meaning is entirely
binder dependent. At present, no standard format has been adopted for
QoS specification.

41.3.2 Use of QoS Control Interface for Client-side Binding Configuration

A client that has a proxy for a (remote) interface may use the QoSControl

interface (if supported) to configure the binding that the proxy represents.
The degree of configuration will depend on the particular binder/protocol used
by the proxy. The QoSControl interface has two operations; modifying the

QoS on an existing proxy; and creating a new proxy with different QoS. This
interface is shown in

public interface QoSControl
/1 set the QoS of the object
/1 return false on failure
public boolean setQos(FlexiProps qos);

/1l create a clone of the object with differnet
/!l QS. Return null on failure
public Object gosClone(FlexiProps qos);

Figure 107 The QoSControal I nterface

An example use of the QoSControl interface is shown inm This is
part of the cluster implementation, and creates a new client-side binding to
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the same server endpoint (interface), but that uses a different serialisation
policy when serialising parameters to method invocations.

public Cbject getByVal ueReference(ject original Ref,
G ass ifaced ass)

/'l check QoSControl is supported
if(!original Ref instanceof QoSControl)
return null;

/'l create desired QoS properties

Fl exi Props gqos = new Fl exi Props();

gos. set Property("serialize.interfacesAsObj ects",
new Bool ean(true));

/'l create a qgos-clone. (WII return null if the
/1 QoS cannot be net/is not understood).
return ((QoSControl) original Ref).qosC one(qos);

Figure 108 An Example Use of the QosControal I nterface

41.4 Passing Interface References

Normally, a reference to an interface may be passed using FlexiNet simply by
referring to it by its interface class (as described in section . However, for
security reasons, a client receiving an interface passed in this way will be
unable to widen the interface — i.e. cast it to a subclass. This is because a
malicious client might use this mechanism to gain access to other interfaces
on the same service object. If this client behaviour is to be allowed, then the
service must explicitly indicate this, by tagging the returned interface with
its intended class. The client may then freely cast the returned interface to
this class, or any of its superclasses. This concept was described in detail in
section It is particularly relevant when a client or service wishes to
pass a reference generically (i.e. as an instance of class Object). To
distinguish between generically passed objects and generically passed
interfaces, the class | f ace is introduced. This may be used in the definition
of a class/interface to indicate that particular field or parameter must be of
interface type (and must be tagged with its interface type). The | f ace class is
provided purely to allow additional type-safety. Its use is entirely optional.

An interface may be tagged to allow widening in the same was as it is tagged

for QoS control. An example is shown in [Figure 109. The | face class is
shown in [Figure 110] Although it is not actually a superclass of all interfaces,

it may be used as if it were. An example is shown in
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Foo f = new Fool mpl ();

/1 tag to allow w dening
Foo tf = (Foo) FlexiNet.tag(f, Foo.class)

remoteHash.put(“myfoo”,tf);

// sane or different client
Object o = remoteHash.get(“*myfoo”);

Foo f = (Foo) o; /'l no special action on w dening
Figure 109 Tagging to Allow Widening

public interface Iface

/] return the concrete class of this interface
public Class getifaceClass();

}

Figure 110 The Iface Class

// a trader-like interface
public interface NamingService

{

public void register(String name,lface service);
public Iface lookup(String name);

}

/1 Aclient of this interface
Foo f = new Foolmpl();
namer.register(“myfoo”,FlexiNet.tag(f,Foo.class));

/] a second client of the interface
Foo f = (Foo) namer.lookup(“myfoo”);

Figure 111 An Interface Making use of ‘Iface’

41.5 Local Reflection

As FlexiNet is heavily based on reflection, an API is provided to allow a
programmer to use FlexiNet style reflection on local objects, even if FlexiNet
is not used for remote invocation. Details are given in section
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41.6 The Full FlexiNet programmer API.

A summary of the API described in this chapter is shown in

public class Fl exi Net

{
/] obtain a reference to the trader
public static FNetTrader getTrader();

/1l tag an interface to allow wi dening by a client
public static Iface tag(Qbject obj,dass cls);

/[l tag an interface to allow wi dening, and specify QoS
/1 constraings on bindings created using this tag.
public static Iface tag(Qbject obj,d ass cls,

Fl exi Props qos);

/1l reflect a |ocal object
public static Iface reflect(GenericCall netaQbject,
O ass interfaced ass)

/1 reflect a |ocal object, and store QoS information
/1 for use by the netalbject
public static Iface reflect(GenericCall netaQbject,
Class interfaceC ass,
Fl exi Props qos)

/'l unexport an interface that was previously exported

/1 Subsignently renote use of this interface will fail
public static void unexport(Cbject obj,dass cls);

Figure 112 The FlexiNet Computational API

41.7 Running FlexiNet applications

FlexiNet applications are Java applications that make use of FlexiNet.
Various parts of the FlexiNet infrastructure will use Java properties
(environment variables) to determine configuration information. In general, a
user must only ensure that the property fl exi net.trader is defined, and
contains a stringified reference to the correct trivial trader. This is most
easily set on the command line. For example:

java —Dflexinet.trader=rrp:(192.5.254.101:1234)(0)
MyApplication argl arg 2 arg3

The trader itself will read this property and attempt to run at this address. If
the property is unset, the trader will choose a random address, and output
this to the screen. Typically, a user will run the trader once at a random
address, and then use this address in future. Note that the address is host
specific, so a trader cannot be started on a different machine, at the old
address. Example applications using FlexiNet are described in chapter
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42

THE FLEXINET TESTBENCH

42.1

Introduction

42.2

The testbench architecture has been designed to allow the binding graph used
by a program to be changed. An application may explicitly request that a
particular configuration is used, and this may be overridden by a command
line argument.

A FlexiNet testbench is a static class that defines and configures a binder
graph. The static class FNet Test is used to choose and initialise a particular
testbench. This is then used by the application, via calls to FNet Test or
Fl exi Net . get Trader ().

In addition, an application may dynamically augment the binder graph using

FNet Test. This adds a new generator to the binder represented by
Bi nder Top using a call to addGener at or . FNet Test also provides other test

and debugging related access to the binder graph. The application
programmer interface to FNet Test is shown in

Format of a Testbench

A testbench is a class containing a method with the following signature:
public static Binder init()

It may also contain a second init method which takes a single bootstrap string
as an argument.

When called, the i nit method should create a binder graph and return a
reference to the top of the graph. The i ni t method will only be called once.

Typically, a testbench is created to test use of each new binder. This
testbench creates a binder graph consisting of (only) a generator and resolver
for the new protocol, and sufficient other binders to allow the protocol to be
tested. This usually consists of a Cache and Smart Choi ce binder. Other
testbenches test combinations of binders, or binders configured with
particular QoS parameters.
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public cl ass FNet Test

{
/[l initialize FlexiNet, optionally specifying a test
/!l harness to be used if there is no command |ine
/1 argunment; and a bootstrap string for that harness.
public static boolean init(C ass defaul t Bi nder Factory)
public static boolean init(d ass defaultBinderFactory,

String bootstrap)

public static boolean init(String bootstrap)
public static void init()

/! aliases for nethods in class FlexiNet
public static void dropNanes(Object obj,C ass cls)
public static FNetTrader get Trader ()

/! generate a stringified nanme for an interface
/! used for debugging, or if there is no trader avail able
public static String nane((Cbject obj, Cass iface)

/'l resolve a stringified nane. Used for debuggi ng,
/1 or if there is no trader avail able
public static Object resolve(String nane, d ass iface)

/'l return a reference to BinderTop, for debuggi ng
public static Binder getBinderTop()

/1 add a generator to binderTop
public static bool ean addCener at or (Generat or g)

/1 Add know edge of a new class | oader

/1 This is only required if the TestHarness specified by
/1 a command-|ine argunment nust be | oaded fromby a

/1 different class |oader that FNetTest itself.

public static void addCodeBase(d assLoader | oader)
public static void addCodeBase( Cbj ect obj)

Figure 113 FNetTest API

The testbench abstraction is designed to aid debugging of new protocols. It is
envisaged that an alternative abstraction will be created to support deployed
FlexiNet applications.
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42.3 Existing Testbenches

The following testbenches are included in the FlexiNet distribution. These
fall into two categories; those that support a single protocol, and those that
support a number of protocols

Single Protocol Testbenches

Magent aTest
This is the default testbench. It provides a binder graph that
supports the RRP protocol (“rrp”), by using the Magent a binder.
This is configured to use the Class Repository (if available) for
serialising references to classes.

G eenTest
This testbench supports the REX protocol (“rex”) using the G een
binder. It uses the default setting for green.

Yel | owTest
This supports the REX protocol over TCP (“tcprex”) using the
Yel | owbinder with default settings.

Cri nsonTest
This supports RRP with SSL (“rrpSSL”) using the Crinson
binder. Cri nson also supports RRP without SSL (“rrp”).

Bur gundyTest
This supports RRP (“rrp”) using the Burgundy binder. Bur gundy
is a variant of Magent a that uses blueprints for configuration.
Bugundy uses the class repository by default, so Bur gundyTest
contains no additional binder configuration.

Negot i at or Test
This supports the negotiation protocol (“neg”) wusing the
Negot i at i on binder.

I 1 OPonl yTest
This supports IIOP (“iiop”) using the || OPBi nder. It uses the
‘basic’ IDLMapper.

| 1 OPobj ByVal ueTest
This supports IIOP (“iiop-v”) using the | | OPBi nder . It uses the
object-by-value IDL mapper.

Multi-Protocol Testbenches

Magent aG eenTest
This supports RRP without class repository support (“rrp-lite”) for
the generation and resolution of names, and will resolve
interfaces exported using REX (“rex”). RRPlite is supported
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through use of the Magent a binder. REX is supported via the
G een resolver (a resolve only variant of G een).

Bl ackTest
This supports the RMP group messaging protocol (“rmp”). As this
protocols is only useful for group-based communication, RRP
(“rrp”) 1s also supported for normal operation. RMP must be
specified explicitly as a QoS parameter.

I | OPandG eenTest
This supports IIOP using the basic IDLMapper (“iiop”) via the
| 1 OPBi nder, and will resolve “rex” interfaces using the Green
resolver.

G eenAndl | OPTest
This testbench supports a “rex” binder and resolves “iiop”
interfaces. It uses Green and |1 OPBi nder. For interfaces
resolved using IIOP, interface references passed across the
interface have IIOP names generated for them. A graph
containing two Caches is used, as explained in section |I 4.3.1}

42.4 An example Testbench

The G eenAndl | OPTest testbench is shown in[Figure 114. The binder graph

it generates is shown in [Figure 115
public class G eenAndl | OPTest

{
public static Binder init()

{

/1 create conmponents

Cache topCache = new Cache();

Cache iiopCache = new Cache();

Smar t Choi ce choi ce = new Smart Choi ce(t opCache);

Green green = new Green();

Binderl 1 OP iiop = Binderll| OP.create(topCache, t opCache,
i i opCache, 0,
| DLmapper Basi c. mapper, nul | );

/1 build a graph

topCache.init( green, choice );

iiopCache.init( iiop );

green.init( topCache );

choi ce. addResol ver( green );

choi ce. addResol ver ( iiopCache );

green. addGenerator( iiopCache);

/1l return the root of the graph

return topCache;

Figure 114 An Example Testbench
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BinderTop

BinderTop
used to generate
and resolve names

BinderTop used to
generate FlexiNet
names to be embedded
in IORs and to resolve
names extracted from
IORs

local BinderTop
used to generate
IORs

Figure 115 The Binder Graph Constructed by the Example Testbench

42.5 Specifying a Testbench

An application can be made to use a none-default testbench in one of two
ways.

®* The application can contain an explicit call to FNet Test. i nit. This
will be used instead of the default testbench, but is overridden by the
second mechanism.

® The Java property “f | exi net . bi nderi ni t” can be set to the name of
a testbench class. This is most easily set by a command line augment,
for example:

java —Dflexinet.binderinit=UK.co.ansa.flexinet.
protocols.rex.binders.green.GreenTest MyApp argl arg2

42.6 Cluster Testbenches

Clusters use cluster binder graphs rather than ‘standard’ binder graphs. The
testbench function is subsumed by a CapsuleComms. The default
CapsuleComms class used is JustMangenta  which supports the RRP
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protocol with class repository support (“rrp”) and is equivalent to the non-
cluster Magent aTest testbench. This is done using the Bl ueC ust er Bi nder
and Magent aCapsul eBi nder components.

The only other cluster testbench in the current distribution is Bl ueG een.
This supports a variant of REX for cluster naming (“rex-¢’) using the
Bl ueC ust er Bi nder and Bl ueCapsul eBi nder and standard REX (“rex”
for resolving names. This is done using a G eenCl ust er Resol ver and a
G eenCapsul eResol ver.

Capsul eConms classes are more complex than the corresponding
testbenches, as they must support other functions, such as the creation of
clusters. However it is not difficult to create additional Capsul eComms
implementations by using the existing implementations as templates.

The Capsul eConms uses by an application may be chosen by calling
Nucl eus. i nit or setting the Java property f | exi net. capsul ecommsinit.
The format and semantics of these calls is the same as the standard
testbench initialisation.
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43 EXAMPLE PROGRAMS

43.1 Introduction

A number of test and example programs are provided with the FlexiNet
distribution. These serve the dual roles of illustration of existing components
and test suite for new components. Virtually all of the test programs can be
configured to use a different binder or protocol by supplying a test bench
parameter on the command line (see section [£2.5].

Detailed instructions on how to run each test make be found in a ReadMe.txt
file within the appropriate directory.

The examples are arranged into a number of sub-directories:

sinpl e

t rader

pr oxy

bi nder s

appl et

clusters

This contains simple examples that illustrate/test limited features
of FlexiNet. They may be used for testing features such as simple
invocation, message size, reference passing etc.

These examples all make use of the FlexiNet interface to obtain a
reference to the Trader, which must be running. This is then used
to pass a reference from server to client. These examples are
trivial applications, and form a basis upon which larger
applications can be built.

This sub-directory contains a number of smart proxy and generic
proxy examples.

This sub-directory contains a number of examples designed to
illustrated the features of particular binders, protocols or binding
graphs. It includes the worked example from chapter

This contains a small number of applet examples. FlexiNet can be
used with applets in theory. In practice security restrictions and
bugs can make this difficult.

This contains a number of examples using clusters. These include
mobile object examples, and persistent object examples.

transacti ons

This contains the transaction example from chapter
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43.2

Trivial Remote Invocation Examples

43.3

These examples are all in the simple subdirectory. They use the FNet Test
interface to output a server’s address to the screen, so that it can be passed as
a parameter to the client. This reduces the amount of infrastructure that
must be working in order to use these examples. This makes them ideal for
testing new protocols or binders.

Test Cal | This is the simplest FlexiNet test. A server process is started
which creates a single service interface. The client process is then
started and binds to this interface and performs some simple
invocations. Only primitive types are passed as parameters.

Test Ref Passi ng
This tests simple reference passing. Two processes are used, a
client and a service. The service publishes an interface, and the
client uses this to obtain an interface to a second service within
the same server. It then performs a simple invocation on this.
This is a useful test of the serialisation of interface references.

Chi neseWhi spers
This test is a more complex version of TestRefPassing. It tests
nested callbacks from server to client. The client creates an object
A and then passes a reference to it in a call to the server. During
this call, the server invokes an operation on A. This is a simple
concurrency test, and illustrated processes acting as both client
and server.

Bul kTest This test may be used to check support for large invocations. A
simple service provides a string append function. The client calls
this repeatedly with ever increasing string sizes until the
maximum Java string length is reached.

Examples Using the Trader

These are simple application programs. They are written in the style of
‘standard’ applications, and make use of the trader for publishing/discovery of
services. These examples are a good starting point for a developer who wishes
to use FlexiNet, rather than develop components for it.

Test Tr ader
This is a simple test of the trader. A service is started, which
enters the name of an interface into the trader. The client is then
started. This contacts the trader and obtains the interface to the
published service. It then performs a simple invocation on this.

BankExanpl e
This is the example illustrated in Chapter P] It is a simple bank

4-May-99

FlexiNet Architecture 261



service and client. The client adds and withdraws money from the
account and on one occasion receives an overdrawn exception.

Test Per f or mance
This is a simple performance test for FlexiNet. The client
performs a large number of invocations on the server, in bursts of
1000. It then displays the average time the invocations took. It is
interesting to use this example with a number of clients and a
single server. This may be used to determine how well a
particular protocol or resource policy scales.

RM Per f or mance
This is an equivalent program to TestPerformace, but written
using Sun’s RMI, rather that FlexiNet. It may be used to compare
performance, and coding style.

SoakTest This is the ‘big daddy’ of protocol testers. It allows a large number
of different clients to contact the same server. The server
maintains state for each client, and checks that they behave as
expected. Both the clients and server may pause between/during
the processing of a call. This will test the timeouts and keep-
alives of a protocol (for example RRP will close an idle
connection). In addition to this, both client and server actively call
the garbage collector, so that memory usage can be monitored to
aid protocol debugging.

43.4 Proxy Examples

These examples illustrate the different forms of generic and smart proxies
available in FlexiNet. The first three of these are described in Chapter 16.

Smar t Pr oxy
This is an example use of a Smart Proxy to a read-only service.
The proxy performs caching, to reduce the number of remote
invocations.

Si mpl eGeneri cProxy
This is the same example as SmartProxy, but makes us of a
generic proxy via the SinpleGenericProxy interface. It
illustrates the difference in coding style. For this example, smart
proxies are more straightforward.

Generi cProxy
The same example again, using a generic proxy using the
GenericProxy interface. This is the most flexible proxy interface
available, but is overkill for this example.

Mul ti Proxy
A simple service offering four different instances of a service, each
using a different proxy.
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43.5

Applet Examples

43.6

Note. FlexiNet can only work in applets if the applet is able to access the
network. In these examples, a special class is used to allow this access. Even
so, the examples will only work under the following circumstances

® The applet must be run in a full JDKI1.1 environment with no
(restrictive) Securi t yManager .

¢ FlexiNet itself must be loaded locally

These examples are very prone to minor changes in FlexiNet or the Applet
environment, as the applet environments are still relatively buggy with
respect to ‘advanced’ JDK1.1 features like introspection and inner classes. In
principle, FlexiNet can run in an applet environment without these
restrictions, but more work is required to identify and overcome the
idiosyncrasies of the current applet viewers and browsers.

Appl et Test
A version of Test Cal | that uses an applet for client and server.

Appl et Test Ref Passi ng
A version of Test Ref Passi ng that uses an applet for client and
server.

Binder Examples

43.6.1

43.6.2

These examples illustrate particular binder functionality. The majority of the
other examples can be run using any binder (Magenta is used by default).

SSL Examples

The SSL binder (Crimson) can be used with any of the other non-cluster
examples. A text file in the Test Code/ bi nder s/ SSL directory explains how
this is done.

IIOP Examples

The IIOP binder may used with any of the test code, providing it is using the
objects-by-value IDLMapper. However, specific test code is provided to
illustrate standard CORBA examples.

Gid This is a standard CORBA example. It creates a grid of values on
a server, and a client then manipuates these.

bj ByVval ue
This is a demonstration of the use of the CORBA objects-by-value
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43.6.3

43.6.4

43.7

RFP. A number of objects are passed by reference and by value
between a client and server.

Speci al s This tests the handling of various CORBA ‘specials’ such as in-out
parameters an enumerations.

Lamport Clocks

The construction of an example binder is illustrated in chapter The
corresponding source code is in the Test Code/ bi nder s/ Lanport C ocks
directory.

Class Repository

This is a simple example use of the class repository. It explains how to create
bundles for use in the repository, and how to use it. It contains a simple
example program that will fail if used without the repository.

Cluster Examples

43.7.1

43.7.2

There is one ‘vanilla cluster’ example, and a number of examples for mobile
and storable clusters.

Vanilla Clusters

Cl ust er Test
This example consists of a single application program. When run,
this creates a local capsule, and a cluster within that capsule. The
capsule then communicates with the cluster to perform a simple
invocation. This tests the basic clustering mechanism. With
tracing enabled, the non-trivial behaviour can be seen.

Mobile Object Examples

Tweet i ePi e
This is a simple non-graphical mobile object example. A ‘place
server’ process creates a Place that mobile objects can move to.
The ‘client’ process then creates a second place and a mobile
object (a bird) which ‘flies’ between the two places. In addition,
the client process periodically invokes operations on the bird, to
illustrate mobile naming in action.

Tama = (Tamagotchi)
This is a complex, graphical demonstration. In essence, a factory
is created for ‘Tamagotchi’ mobile objects. These have a standard
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43.7.3

43.8

AWT interface, and may also be requested to move between
places on a pre-defined itinerary. Internally, the Tamagotchi code
performs many consistency checks, making this both a
demonstration and a piece of test code.

Event Test
This is a demonstration of the ‘event’ subsystem developed for use
with mobile objects.

Magi cPl ace
This is a demonstration of how Places, or other Capsules, can be
subclassed to provide specialist functionality. The place created
conforms to the standard Place interface, but performs additional
auditing of mobile object activities.

Persistent Object Examples

Bl ack This is a simple example of ‘black box’ use of the Information
Space. Objects are stored by copying them into an information
space, and then retrieved by a second client by copying them out.

Wite This demonstrates ‘white box’ use of the Information Space. A
persistent account object is created by one client. A second client
updates this. Neither client need be aware that the object is
actually persistent.

Wi t ePages
Another ‘white box’ test.

| browser This provides a simple graphical interface that may be used to
browse an Information Space.

Transactional Examples

This contains a single example BankTest that was described in chapter
As this illustrates both the assembly and execution of a bean-based
application, it is correspondingly more complex than the other examples.
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44 LAMPORT CLOCKS - AN EXAMPLE BINDER

44.1

Introduction

44.2

As an worked example of binder engineering, a simple binder is designed and
illustrated in this chapter. This binder, Lanport Bi nder, is based on the
Magenta binder, but adds an additional layer used to pass sequencing
information between client and server, and to produce debugging information.

The Lamport Binder uses the concept of Lamport Clocks [LAMPORT78]. The
basic scheme is as follows:

* Each process maintains a logical clock. The clock is logical in that it
starts at zero and ‘ticks’ only when some even happens.

* Each message sent contains the sender’s clock value.

®* On receipt of a message, the local clock is advanced (if necessary) to
ensure that the receive timestamp is larger than the send timestamp.

* Whenever an ‘interesting event’ occurs, the local clock is read, and
incremented. This ensures that no two local events occur at the same
time.

The information from the timestamps is used to print debugging information
of the form

client invoke @

server received invocation @

server replied @

client received reply @

The code described in this chapter is available in the “Lanport C ock” test
code directory.

Approach

For simplicity of example, we construct our binder from scratch. In practice,
this binder could be a subclass of Bur gundy. If this approach were taken,
only the method set Requi r ement s would be required in the subclass, the
rest being inherited from Burgundy.
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44.3

Our binder is going to support a variant on the “rrp” protocol. At the low
level, this will be precisely “rrp”, however as we are adding an additional
argument to every call and return, our protocol is strictly incompatible with
rrp. We therefore choose a different protocol name, “rrp-lamport”.

The Magenta and Burgundy binders are complicated by two facts:
* They can be bootstrapped at a previous address, cluster address or port

®* They support the parsing and stringification of names that include
cluster or mobile namer information.

For simplicity of example, we will avoid both of these issues. Although our
binder will be able to handle mobile names and cluster-based addresses for
remote services, it will be unable to use mobile names for local interfaces, nor
parse or stringify these names. In addition we avoid the bootstrap code as it is
complex and covers many cases. Our binder will always use a random port. If
the alternative approach of subclassing Bur gundy were taken, then these
limitations would be avoided.

Components

44.4

There are three components in our new binder environment:

® The TinmerLayer which performs the actual work — maintaining
Lamport Clocks, and printing debugging information.

® The binder (Lanport Bi nder ) which creates a binding stack containing
this layer.

* A testbench to allow use of the LamportBinder (Lanport Test)

These will be described in turn.

Timing Layer

4441

This layer is summarised in [Figure 116. It has two static methods (both
called get Lanport Ti ne) which maintain the local clock. The other methods
fall into two categories; initialisation methods and operation methods.

Lamport Clock Methods

These methods implement the Lamport clock abstraction. They are show in
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public class TimnglLayer
i npl enents Cal | Up, Call Down, Unifornttartup

{
/1 static data & nethods for Lanport C ock
protected static int |anportd ock=0;
public synchroni zed static int getlLanportTinme()
public synchroni zed static int getLanportTi me(
i nt renoteTi ne)
[l per-instance data
protected Cal | Down down;
protected Call Up up;
[l initialization methods
public static void setRequirenents(Bl ueprint props)
public static Object createUninitialised()
public int initialise(Blueprint props)
/1 operation nethods
public void call down(lnvocation data)
public void callup(lnvocation data)
}

Figure 116 Overview of TimerLayer

public synchroni zed static int getlLanportTinme()

| anport G ock++;
return | anportd ock;

}

public synchroni zed static int getLanportTi me(int renoteTine)

| anport d ock = Mat h. max( | anport d ock, renot eTi ne) ;
return getLanportTi me();

}

Figure 117 Lamport Clock Methods

44.4.2 Initialisation Methods

The Ti ner Layer is controlled using blueprints. It has three initialisation
methods that together implement the Uni f or nSt ar t up interface. These are

illustrated in

set Requi renent s
This defines Blueprint properties indicating constraints on the
layers above and below this in the stack.

createUnitialised
This simple creates a new instance of the layer

initialise
This reads property values from the supplied blueprint, and sets
the per-instance fields within the layer.
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public static void setRequirenents(Blueprint props)
t hrows Constrai nt Contenti onExcepti on

{
props. constrai n("up", Call Up. cl ass);
props. constrai n("down", Cal | Down. cl ass) ;
}
public static Object createUninitialised()
{
return new Ti m ngLayer();
}

public int initialise(Blueprint props)

up=(Cal | Up) props. get ("up");
down=( Cal | Down) pr ops. get (" down") ;
return Bl ueprint. COWLETE;

}

Figure 118 I nitialisation Methods for TimerLayer

44.4.3 Operation Methods

These are the methods called during normal operation of the binder.
Cal | down is called on the client in order to process an invocation. This leads
to a nested call of Cal | up on the server. Both methods make use of the
‘additional argument stack’ stored in the invocation. When sending a
message, the sender pushes the current time onto the stack. When receiving a
message, the receiver pops the sending time off the stack. Because of this
used of the stack, this layer must exist above the serialisation layer in the
protocol stack. If this were not possible, a variant on the layer could be
devised that used its own buffer segment for storing the Lamport Time. The
Fragmentation layer in the Green protocol is an example of such a layer. The
Call Up and Cal | Down methods are shown in . For brevity,

exception handling is omitted.
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public void call down(lnvocati on data)
t hrows BadCal | Excepti on
{

/1 start of invocation
int local Time = getLanportTime();
Systemout.printin("INVOKE @" + local Tine +

" " + data);
dat a. push( I nt eger. cl ass, new | nteger (Il ocal Ti ne));
down. cal | down(dat a) ;
/1 reply recieved
Integer i = (Integer) data.pop(lnteger.class);
int renoteTine = i.intValue();
| ocal Time = get Lanport Ti me(renoteTi ne);
Systemout.println("RETURNED @+ | ocal Tinme +

" (sent @ + renoteTinme+")");

}

public void callup(lnvocation data)
t hrows BadCal | Excepti on

{
/! invocation received
Integer i = (Integer) data.pop(lnteger.class);
int renoteTine = i.intValue();
int local Time = getlLanportTi ne(renoteTine);

Systemout.println("RECIEVED @ + |ocal Tine +

" (sent @ + renoteTinme+")");
Systemout. println("I NVOCATION = " + data);
up. cal l up(data);
/'l invocation has been processed, send reply
| ocal Ti me = getLanportTime();
Systemout.printIn("RETURN @ + |ocal Ti ne);
dat a. push( I nt eger. cl ass, new | nteger (Il ocal Ti ne));

Figure 119 Operation Methods for TimingL ayer

445 A Binder Using TimingLayer (LamportBinder)

The binder used with Ti mi ngLayer is a simplified version of Burgundy. As
explained in section , this simplification of to aid explanation. A binder
constructed using blueprints, such as this, must support all of the following
methods:

Methods that create an instance of the binder using Blueprints:
static void set Requi renment s( Bl ueprint b)
static Object createUninitialised()
int initialise(Blueprint props)

Standard binder methods — generate and resolve names:
Nane gener at eNane (Object obj,C ass cls, Fl exi Props qos)
bool ean grant Name (Qbject obj,d ass cls, Nane nane,
Fl exi Props qos)
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hj ect resol veNane(Nanme nanme, O ass cls, FlexiProps qos)

Utility methods that are part of the Binder interface:
bool ean resol vesProtocol (String p)

bool ean addGener at or (Generator g)

voi d dr opNanes (Obj ect obj, Cass cls)
String stringifyNane (Name nane) throws BadNane
Nane par seName (String nane) throws BadNane

These sets of methods will be considered in turn.

44.5.1 Binder Construction using Blueprints

Of the three Uni f or nSt art up methods, set Requi renents is by far the
most complex. This must define all of the layers that make up the protocol
stack, and give ‘suggestions’ on resources that they may use and how the
layers are related to each other. The statements are ‘suggestions’ because it is
possible for the creator of the binder to override any of these suggestions,
with any other suggestion that meets the constraints specified by that
component. Where the binder itself wishes to constrain a value it uses the
blueprint const r ai n method.

The initialisation methods are shown in |E igure 120| and |E igure 121[ |Figure |

120f shows createUnitialised initialise and the first part of
set Requi r enent s. This part is responsible for identifying sub-parts of the
binder (layers and resources). The second part is shown in This
shows dependencies between the components. The differences from Burgundy
are minor and relate to the introduction of the additional layer. They are
highlighted in the figures.

Two sets of properties are worthy of further comment:

®* The buffer set up makes use of a set of constants; RRSEGVENT,
CLUSTERNANVESEGVENT, NAMESEGVENT and DATASEGVENT. These are
defined to the values 0,1,2,3 in the static initialisation of the class, and
represent the buffer segments used by the various layers in the stack.
Using segmented buffers helps keep layers independent.

* The default action of the serial layer is overwritten by setting a number
of properties to change the class of the serialiser used. This is a clone
of the code in Bur gundy. This is to force the serial layer to use the
class repository, if available. Similar customisation can be made to any
component, including the binder itself.
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public static Cbject createUninitialised()

{
}

return new Lanport Bi nder();

public int initialise(Blueprint props)

{

}

clientTop = (Cal | Down) props.get ("l ocatel ayer");
nanmeLayer= (Tri vNameLayer) props.get("nanel ayer");
bi nder Top = (Bi nder) props. get (" bi nder Top") ;
RRPLayer rpclLayer=(RRPLayer) props.get("rpclayer");
baseAddress = rpclLayer. get Addr();

return Bl ueprint. COWLETE

public static void setRequirements(Blueprint b)

{

t hrows Constrai nt Cont enti onException

/1l The context in which this nay be used
b.constrain ("binderTop", Bi nder. cl ass);
/1l set up buffers
b. constrai n("buffer.outputfactory"”, Qutput Buf f er Fact ory. cl ass);
b.link("..tenpl ate." +RRSEGVENT ,"rpclayer. segnent si ze") ;
b.link("..tenpl ate."+CLUSTERNAVMESEGVENT

, "cl ust er nanel ayer . segnent si ze") ;
link("..tenpl ate. " +NAMESEGVENT |, "nanel ayer. segnent si ze");
link("..tenpl ate. " +DATASEGVENT |, "buffer. datasi ze");
.constrai n("buffer.inputfactory" ,InputBufferFactory.cl ass);
dink("..tenpl ate” ,".outputfactory.tenplate");
/1 Suggest suitable buffer abstraction and maxi mum si ze
b. suggest (" buffer. datasi ze" ,1024*128);
b. suggest (".inputfactory” , Basi cl nput Buf f er Fact ory. cl ass);
b. suggest (". out put fact ory" , Basi cQut put Buf f er Fact ory. cl ass);
/1l Suggest a threading policy

O OCUTUT

b. suggest ("t cp. naxt hr eads™
b. suggest ("t cp. naxwai t er s"
/1l set up session manager
b. requi re("sessi onmanager "

, 6);
, 6);

, Sessi onManager | np. cl ass) ;

b. suggest (" sessi onmanager . f act ory"”, RRPSessi onFact ory. cl ass);
b.link ("sessi onnmanager. factory.layer” ,"rpclayer");
b.link ("sessi onnmanager. factory. manager"”, "sessi onnanager");
/1l Layer of the shared protocol stack

.require("l ocatel ayer” , Locat eLayer. cl ass);
.require("clientcalllayer” ,dientCalllLayer.class);
.require("servercalll ayer” , Cal | Layer. cl ass);

.require("l anportl ayer" , Ti mi ngLayer. cl ass);
.require("serial™ , Seri al Layer. cl ass);
.require("nanel ayer” , Tri vNarmeLayer. cl ass);
.require("clusternanel ayer"” , Si ngl el ust er MuxLayer. cl ass);
.require("rpclayer™ , RRPLayer. cl ass) ;

OO TCUOTUOUTUTUT

Figure 120 I nitialisation Methods (part 1)
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/1 Links down the stack (client)

b.1ink ("l ocat el ayer. down" ,"clientcalllayer");

b.1ink ("clientcal Il ayer.down" ,"lanportlayer");

b. link ("lamport!| ayer. down" ,"serial");

b.1ink ("serial.down" , "nanel ayer");

b.link ("nanel ayer. down" , "clust ernanel ayer");

b.link ("clusternanel ayer.down", "rpcl ayer");

/1 Links up the stack (server)

b.link ("rpclayer. up" , "clust ernanel ayer");

b.link ("clusternanel ayer.up" ,"nanel ayer");

b.link ("namel ayer. up” ,"serial");

b.1ink ("serial.up" , "l anport| ayer");

b. link ("lamport!| ayer. up" , "servercalllayer");

/1 set segnents for use by the various |ayers

b.require("serial . datasegnent" , DATASEGVENT) ;

b. requi re("nanel ayer. nanesegnent " , NAMESEGVENT) ;

b. requi re("cl usternanel ayer. cl ust ernanesegnent ",
CLUSTERNAMESEGVENT) ;

b.require("rpcl ayer. dat asegnent" , DATASEGVENT) ;

/1 layers using the session manger

b.link ("clientcal Il ayer. sessi onmanager " , "sessi onnanager "

b.link ("rpcl ayer. sessi onmanager " , "sessi onnanager "

/1 layers using buffers
b.link ("serial . out put bufferfactory" , "buf fer
b.link ("nanel ayer. out put buf ferfactory", "buffer
b.link ("clusernanel ayer. out put buf f erfactory"

, "buffer.
b.link ("rpclayer.out putbufferfactory" ,"buffer

.out put factory"
out put fact ory"

out put fact ory"
out put fact ory"

b.link ("rpclayer.inputbufferfactory" ,"buffer.inputfactory");

/1 Serial layer extra setup

b. suggest ("serial .serializerFactory", Ref Seri alizerFactory.class);

b.link ("..generator" , " bi nder Top") ;
b. suggest ("..cl assSerial i zer Factory"

, O assBundl eSeri al i zer Factory. cl ass);

b. suggest ("seri al . deseri al i zer Fact ory"

, Ref DeSeri al i zer Fact ory. cl ass);

b.1ink ("..resolver" , " bi nder Top");
b. suggest ("..cl assDeSeri al i zer Fact ory"

, O assBundl eDeSeri al i zer Fact ory. cl ass);

/1 RPC Layer extra setup

b. suggest ("rpcl ayer. port™ ,"0");

b.link (". maxt hr eads" , "tcp. maxt hr eads") ;
b.link (". maxwaiters" ,"tep. maxwai ters");

Figure 121 Initialisation Methods (Part 2)

44.5.2 Standard Binder Functions

The three standard binder functions, gener at eNane, grant Nane and
r esol veNane are shown in The first two make use of the name
layer to manage multiplexing of a number of interfaces over a single shared
base address. The third function trivially creates a new stub and links it to
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the top of the stack. No additional resolution of the name is made until a
method on the stub is invoked.

publi ¢ Name generateNane (Object obj, dass cls,
Fl exi Props qos)

{
if (gos !'= null) // cannot handl e QoS, hand off
return next Generator. generat eNane(obj, cl s, qos);
int id = nanelLayer. generatePart Nane(obj, cls);
return new TrivName(protocol, baseAddress,id);
}

public bool ean grant Name (Object obj, dass cls,
Nane name, Fl exi Props qos)

if((gos==null) && (name instanceof TrivName))

TrivNanme tname = (TrivNane) nane;
if ((baseAddress.equal s(tnane.ref)) &&

(naneLayer. grant Name(obj, cls, tnane.id)))
return true;

/I fall through if we can’t grant this name
return next Generator.grant Nanme(obj, cls, nane, qos) ;

}

public Cbject resol veNane (Nane nanme, C ass cls,
Fl exi Props qos) throws BadNane
{

if (gos !'= null) //cannot handle QoS
return null;

// return a new stub, linked to the top of the stack
return Stub.stub(cls, clientTop, nane);

}

Figure 122 Standard Binder Functions

44.5.3 Additional Binder Methods

The rest of the binder methods are straightforward and are illustrated in

Figure 123| Equivalent (or identical) methods are found in the majority of
binders. The purpose of these methods is described in sections and
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String protocol ="rrp-lanmport"”;
public bool ean resol vesProtocol (String p)

{

return (protocol.equals(p)); // only resolve one protocol

/'l we are one of a list of generators, initially
/1l termate this list with a null generator.
CGener at or next Generator = new Nul | Generator();
publ i c bool ean addCGener at or (Gener at or Q)
{

/! add a generator to the front of the I|ist

g. addCener at or ( next Gener at or) ;

next Generator = g;

return true;

}

public void dropNanmes (Object obj, dass cls)

{
nanelLayer . dropNanes(obj, cls); /'l nanes we gener at ed
next Gener at or . dr opNanes(obj,cls); // recurse down |i st

}

public String stringifyNane (Nanme nane) throws BadNane
{
/! ignore other generator’s nhanes
i f(!nane. get Protocol (). equal s(protocol))
return next Generator.stringifyNanme(nane);

if (!name instanceof TrivNane)
throw new BadNane(); // sanity check

/! the stringified nane is of the form protocol: (addr)(id)
Tri vName mane = (Tri vNane) nane;
return protocol +": ("+RRPLayer. stringifyName(mane.ref)+
") (" +Tri vNameLayer. stringifyPart Name(mane. i d) +
Il)ll;
}

public Name parseNane (String nanme) throws BadNane
{
i f(!protocol.equal s(NaneUtil.getProtocol (nane)))
t hrow new BadNanme(); // sanity check

String addressPart
String idPart

NaneUti | . get Part Nane( nane, O0);
NaneUtil . get Part Nane(nane, 1);

Addr ess baseAddress = RRPLayer. parseNane(addressPart);
int id = TrivNaneLayer. parsePart Nanme(idPart);

return new TrivNanme(protocol, baseAddress, id);

Figure 123 Additional Binder Methods
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44.6 A Testbench for Lamport Binder

Figure 124]shows a complete testbench for the Lamport Binder. This sets the
binder graph to a simple graph containing three components. A Cache binder
(as Bi nder Top), a Smart Choi ce resolver (to allow the use of proxies and
dynamically loaded protocols), and a LanportBi nder. This is the only
generator, and is also a resolver used for the “rrp-lamport” protocol.

Note that as Lanport Bi nder does not understand bootstrap strings, this
testbench can only be used for applications that can run at an arbitrary
address. In particular, it may be used for the trader, but the trader will run
at a different address each time it is started. This limitation is overcome if
La-rrport Bi nder is built as a subclass of Bur gundy (as described in section
44.2).

public class Lanport Test

public static Binder init()
{
try
{ _
Cache bi nder Top = new Cache();

/1 set up blueprints
Bl ueprint bp = new Bl ueprint (Lanport Bi nder. cl ass,
new C assConstrai nts(LanportBi nder. cl ass));

bp. set (" bi nder Top", bi nder Top) ;

/1 build LanportTest using blueprints
bp. construct();
Bi nder | anport = (Binder) bp.get(null);

/1l set up rest of binder graph

Smart Choi ce choi ce = new Smart Choi ce( bi nder Top) ;
bi nder Top.init( lanport, choice );

choi ce. addResol ver (| anport) ;

return binderTop
catch (Exception e)

return null;

}
}
}

Figure 124 A Testbench for LamportBinder

4-May-99 FlexiNet Architecture 276



44.7 A Simple Example

In this section, we demonstrate how to use the Lanmport Bi nder in a trivial
example, Test Cal | (section .

1. Ensure that the Lanport Bi nder, FlexiNet and the Test Cal | directory
are on the class path.

2. Run the server:

java —Dflexinet.binderinit=LamportTest Server
3. Run the client

java —Dflexinet.binderinit=LamportTest Client server_addr
The trace of an example run is shown in

bash !Em
$ java - Dfl exi net. bi nderini t=Lanport Test Server

* Flexi Net & MOWare copyright (c) 1997,1998 APM Ltd on behal f of

* the sponsors for the tine being of the ANSA Consortium

Server address: rrp-lanport: (192.5.254.58:34072) (0)

Server Ready

(server) RECIEVED @ (sent @)

I NVOKE = A | np@ldce0810. add(<arg>)=<nul| res> i s=SSession[id=1, renote=1]
(server) RETURN @

(server) RECIEVED @ (sent @)

I NVOKE = A | np@ldce0810. add(<arg>)=<nul|l res> i s=SSession[id=1,renote=1]
(server) RETURN @

(server) RECIEVED @O0 (sent @)

I NVOKE = A | np@ldce0810. add(<arg>)=<nul|l res> i s=SSession[id=1,renote=1]
(server) RETURN @1

$ java -Dfl exi net. bi nderinit=LanportTest Cient "rrp-lanport:(192.5.254.58:34072)(0)"
* Flexi Net & MOWare copyright (c) 1997,1998 APM Ltd on behal f of

* the sponsors for the tinme being of the ANSA Consortium
----------------------- pre call --------

(client) INVOKE @1 rrp-lanport: (192.5.254.58:34072)(0). add(<arg>)=<null res>
s=CSessi on[ i d=1, r enot e=0]

(client) RETURNED @ (return sent @)

add(2,3) =5

----------------------- pre call 2-------

(client) INVOKE @5 rrp-lanport: (192.5.254.58:34072) (0).add(<arg>)=<null res>
s=CSessi on[i d=1, r enot e=1]

(client) RETURNED @ (return sent @)

add(4,5) =9

——————————————————————— pre call 3-------

(client) INVOKE @9 rrp-lanport: (192.5.254.58:34072) (0).add(<arg>)=<null res>
s=CSessi on[i d=1, r enot e=1]

(client) RETURNED @2 (return sent @1)

add(4,5) =9

Figure 125 An Example Use of LamportTest
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PART NINE:
ADVANCED TOPICS
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45 INTRODUCTION

In the following two chapters, we outline the design of two advanced FlexiNet
sub-systems. These are paper designs, and full implementations of the
systems have not been constructed. They are the fruits of two advanced
research activities under the ANSA/FlexiNet umbrella.
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46 MOBILE AGENT SECURITY

46.1 Introduction

We have identified six basic areas of security concern when mobile objects are
used in an open or insecure environment.

1. Host integrity - protecting the integrity of a hosting machine and data it
contains from possible malicious acts by visiting objects.

2. Cluster integrity - it should be possible to determine if a cluster has been
tampered with, either in transit or by a host at which it was previously
located. We may wish to allow hosts to modify parts of a cluster (e.g. data)
but not others (e.g. code).

3. Cluster confidentiality - a cluster may wish to carry with it information
that should not be readable by other clusters, or by (some) of the hosts
which it visits.

4. Cluster authority - a cluster should be able to carry authority with it, for
example a user’s privileges, or credit card details. To provide this we need
both cluster integrity and cluster confidentiality.

5. Access control - a host should be able to impose different access
privileges on different clusters that move to it. Clusters and hosts should
also be able to enforce access control on exported methods.

6. Secure communications - clusters and hosts should be able to
communicate using confidential and/or authenticated communication.
Some applications may also require other security communication
features, such as non-repudiation.

Of these six areas three have already been tackled, namely host integrity (via
strong encapsulation and cluster security managers); access control (via
FlexiNet reflection and/or SSL certificates) and secure communication (via
SSL). The remaining areas require that a Cluster may carry secret
information (to support confidentiality) and that this information cannot be
modified or separated from the cluster (to support integrity).

The approach to these problems is to devise “secure objects”. A secure object
is an object that encapsulates state that may only be accessed or updated at
particular hosts, according to a pre-configured security policy stored in the
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46.2

object. The secure object is protected cryptographically, so that a malicious
host cannot ‘break’ the object to gain access, and so that illicit modifications
made by a malicious host can be detected at any later host. A mobile cluster
may contain one or more secure objects, and use these to carry anything of
value. To prevent the secure object from being disassociated with the cluster,
the infrastructure allows the secure object to validate its containing cluster
prior to allowing access. This may include a check on the cluster’s code
(classes) and/or a check on the state of any (unprotected) fields within the
cluster. A malicious host may fake this validation, but this will give it an
advantage over other attacks.

General Overview

A “secure object” is a cluster of objects within another cluster such as a
mobile cluster. The secure object uses a security management interface on the

host that it currently resides on and is accessed via an access interface by the
containing cluster (Figure 126).

Secured
Objects

Signature “
Matrix

Secure Carrier Object

Access Interface

Host's
Cluster Security
Managment

Interface

Figure 126 A Secure Inner Cluster

The “secure cluster” is an “inner cluster” that is treated as an object by the
top level cluster and therefore moves when the outer cluster moves.

The inner cluster does not share any objects with the outer cluster and the
semantics of calls on its interfaces are call by value (i.e. copies are made of all
arguments passed in and all results passed out).

Inner clusters are implemented as a specialisation of a standard management
class that has specialised serialisation methods for serialising and
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deserialising the inner cluster’s state. These perform cryptographic encoding
and decoding of the state.

The inner clusters are used to create secure carrier objects. A secure carrier
object contains a collection of named objects, referred to as the secured objects
in the carrier, together a cryptographic access control matrix, a policy object
and a signing matrix. The policy defines a state integrity check on the
contained objects and the top-level cluster. The signing matrix is a table of
principals against signatures. The carrier object supports the methods:

void initialize(O uster context)
Initialise the secure carrier object and inform it of its current
context (the cluster within which it resides). This method is called
by the infrastructure when the secure carrier object is first
created/deserialised. The carrier object may perform an integrity
check on its context, for example to ensure that it has not been
removed from its original cluster and associated with a new one.

void put (String name, Cbj ect object)
Put an object into the carrier and performs encryption and
signing using the host’s security infrastructure and the keys from
the cryptographic access control matrix and, if required, the hosts
signing key. (The actual encryption may be delayed until the
carrier 1s serialised).

hj ect get(String nane)
Return a secured object from the carrier using keys obtained from
the cryptographic access control matrix.

void sign(String objectNane)
Perform signing on the secured object in the carrier.

voi d dependant Si gn( Si gnat ur eRef erencelLi st |,
String object Nane)
Takes a list of signature references, 1 (see below), and a secured
object reference, s, and produces a signature on s that is valid if
and only if the signatures in 1 remain unaltered (see below).

bool ean check(String objectNane, Principle p)
Check whether a specified principal has signed the current value
of the secured object in the carrier.

The signing matrix is a mapping from object names to principles to signature
forms. It contains details of the object values that different principles are
willing to commit to, together with digital signatures to prevent tampering.
The signing matrix contains two different signature forms, simple signatures
and compound signatures.

Simple signatures are constructed by signing a digest of the name and value
of the object being signed. They are used to indicate that a particular
principle has set (or agrees with) the value of a signed object. Compound
signatures are used in dependant signing. This is where a principle makes a
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statement of the form “I will commit to this value if x remains committed to
this value”. A compound signature is a signing of the digest of an object name
and value together with the list of dependant values — i.e. a list of (object
names, principles) which represents which principles must remain committed

to which values. This is illustrated in Fi%ure 127.

Sig. Form = Signature [ Compound Sig.
Compount Sig. = Sig. Reference List X Sig.
Sig. Reference List = Null [1(Object Name X Principle) X Sig. Reference List

Figure 127 Definition of a Signature Form

Signature checking for compound signatures is recursive in that to check a
compound signature is valid requires recursively checking the signatures in
the signature reference list.

The basic operation of a secure carrier object is illustrated in

Signature *
Matrix
Encrypt &
Sign

Hoét’s
Security
Services

Figure 128 Operation of a Secure Carrier Object

The security model requires that the code of a secure object, the
Cryptographic Access Control Matrix (CACM) and the Policy (specification of
movement itinerary and signing behaviour associated with a secure object)
are signed by an accepted source. They must be mutually signed, so that the
code, CACM and Policy cannot be detached from one another. This requires
that the tuple

(secure carrier object class, CACM, policy)

is signed by an accepted authority. This is equivalent to applet signing. The
class may be referenced by a Java C ass object serialised by a FlexiNet
serialiser that uses the Class Repository. The serialised object will actually be
a secure reference to a class stored in the repository.
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shows component interactions.

Mobility Carrier Object Secure Host Security
Infrastructure Code Policy Services
_—
Cluster initialise each > |
Arrives carrier object check signature of
(Code,CACM,Policy) tuple
validate

outer cluster

> |
check check object
contents signatures

>
get(...) — |
check policy
_ > |
Decrypt using CACM
. > — > |
sign(...) perform signing
>
put(...) -
check policy
> |

encrypt using CACM

Figure 129 I nteraction of Security Components

The method (MobileCluster). get Pl ace returns an interface to host specific
services. This interface is extended to include the method
get Securityl nterface that returns the hosts security interface for mobile
objects. This interface provides for the encrypting, decrypting, signature
checking and signing of objects using the cryptographic access control matrix
and itinerary definitions passed as parameters to the functions.
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47

AN ADVANCED RELOCATION SERVICE

47.1

Introduction

47.2

The relocation service described in section suffers from three serious
defects.

® It is possible for an accidental name clash to prevent correct operation

* Name clashes can be created by a malicious client and used to attack
the system

* An aggressor may alter information in the relocation service, as there
is no authentication or integrity checks.

In this chapter, we described a more robust relocation architecture. This is
based on the original design, but is extended to deal with accidental and
maliciously generated clashes.

The approach taken is to allow clashes to occur, and to use a secondary
mechanism to deal with them. This mechanism is sufficiently cheap that
intentionally creating clashing names ceases to be an effective attack. The
new architecture has also been designed to allow the integrity of a naming
record to be assured, so that only the ‘owner’ may modify or delete it.

There are also optional extensions to support periodic refresh of references to
allow some naming records to be recycled. These extensions allow a trade-off
to be made between storage space in the name servers, and additional
background computation. Experience is required to determine if this trade-off
is worthwhile.

Basic Approach

Each named entity (FlexiNet Cluster) is identified by a tuple
(identifier, current address, reference to relocation service)

The current address is used to communicate with the entity. If the entity
moves, then an attempt to communicate with it will fail. The callee then
contacts the relocation service (Relocator) identified in the tuple and asks for
the latest address of the entity. It then updates its stored tuple, and uses this
new address. As each naming tuple contains an explicit reference to a
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Relocator, there may be many different Relocators. Typically, sufficient
instances will exist to spread the load of supporting a large population of
names. Which Relocator to use for a particular entity is determined when
that entity is first named (although the Relocator itself is not contacted until
later). It is possible to change the service associated with a particular entity,
and this is important over long time scales — if entities and their clients
migrate away from an instance of a Relocator.

Individual Relocators may themselves be replicated in a number of ways for
performance and/or availability. The naming scheme has been designed so
that this is orthogonal to the design of the naming architecture. However, if a
concession is that a Relocator previously associated with an entity plays an
ever-decreasing role in the resolution of its names, and need only store read-
only state associated with it. With the ‘lease’ optimisation, it may discard all
knowledge of an entity after a relatively short time.

As the population of names is divided between a number of Relocators, the
failure of one Relocator will only affect a small proportion of the total
population of names. As Relocators are only contacted when an entity moves,
or when a client attempts to communicate with an entity that has moved
since its last contact; the affect of a transient Relocator failure is limited.

Naming Records

47.4

The role of the Relocator is to store a mapping from entity identifiers to their
current addresses. Such a record is called an Address record. If the Relocator
associated with an entity is changed, then some clients may still have naming
tuples containing a reference to the original Relocator. That Relocator must
therefore store a Forward record indicating that it is no longer the Relocator
for the entity. A Relocator will store at most one Address or Forward record
per identifier.

Problems arise if two names clash. That is if two entities are accidentally or
maliciously given the same identifier. If these two entities exist on different
hosts, and used different Relocators, then the clash will not be detected, and
will not cause any problems. However, if the entities move to the same host or
to the same Relocator then the basic scheme will fail.

Types of Clashes

A naming clash occurs when two entities have the same name. It may be
detected in a number of different circumstances.

* A host creates an entity, and chooses a Relocator for it. When the entity
moves, and the Relocator is updated, it is discovered that the Relocator
already contains a record for a different entity with the same
identifier.

* An entity moves to a host that already contains an entity with the
same identifier, which uses the same or a different Relocator.
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®* The Relocator used by an entity is changed, and the new Relocator
already has an entry for an entity with the same identifier.

These may occur in combination, for example an entity may move host and

Relocator simultaneous and clash on the second two cases, or may move for
the first time, and clash on the first two cases.

Approach to Clash Recovery

47.6

The approach taken to handling clashes is to allow them to occur, and then
assign a new identity to the moving entity if it is found to clash with another
entity. As clients will already hold references to the entity with its previous
identity, these must be continued to be resolved. This is possible as all
(identifier, address, Relocator) tuples held by clients uniquely identify a
particular entity, even if other entities have the same identifier. We ensure
this by construction.

Relocators may contain two additional record types to deal with clashes. An
identifier within the Relocator may therefore map to one of four different
records

* An address record. This is the normal case. The address record
contains the current address of the entity.

* A forward record. This record contains the identity of the Relocator
that is now responsible for managing the entity (This Relocator may
itself forward the request).

* A remap record. This record contains the previous address of an entity
that has been assigned a new identity, and the new identity. This is
used to handle clashes detected in the Relocator itself.

* A universal remap record. This record contains the new identity of an
entity that has been renamed. This is used to handle clashes detected
on a host an entity moves to.

A particular identifier will in general map to a set of remap records and zero

or one other record, which will be an address, forward or universal remap
record.

Clash Resolution Algorithm

Identifiers are structured and have two fields. (R, N). R is a large random
number. The larger the random number, the less likely accidental clashes
are. However, as clashes can be dealt with, it need not be overly large. It is
expected that 48 bits will suffice for a global system, although analysis has
yet to be undertaken. The second field, N, is a counter, used to enumerate
entities created by a host. This removes the possibility of a host accidentally
creating two entities with the same identifier, and allows a host to detect a
possible clash between a ‘foreign’ name and one that it may created in future.
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47.6.1

47.6.2

116 bits is sufficient for N. If a host expects to create more than 216 names, it
can simply choose a number of different values for R.

A host therefore will never create identifiers that clash with other identifiers
that it generates. This is important as clash resolution takes place at the
Relocator, and the Relocator is only involved when (if) an entity first moves.

There are a number of different operations on the Relocator. We will consider
these in turn.

An Entity Moves for the First Time

This is the point at which the identifier is first presented to the chosen
Relocator. The source site first contacts the destination site and initiates the
move. The destination host validates that the entity identifier does not clash
with any entity currently at the host, or that may be created there in future.

If there is no clash at the destination host, the source host enters the
mapping (identifier,source address) = destination address into the Relocator.
If the Relocator does not have a record for that identifier, it stores an address
record, mapping the identifier to the destination address. The source address
information is discarded. This is the normal case. It is expected to occur 99%+
of the time.

If there is a clash at the destination host, or the Relocator already contains an
address, forward or universal remap record for the identifier, then a fresh
identifier is generated which does not to clash with the destination host or
the Relocator.

Note. If the Relocator contains one or more remap records for the identifier,
then it is not necessary to create a new identifier, unless the Relocator has
a remap record containing the destination address. The Relocator cannot
contain a remap record containing the source address, as a different entity
with the same identifier could never have existed on the source host.

If a new identifier is required then a remap record is created on the Relocator
containing the following tuple:

(source address, new identifier)

This will allow any clients who later contact the Relocator searching for the
identifier to be directed towards the new identifier. The clients will always
supply the correct source address, as the entity has never moved before. In
addition to the remap record, a mapping from the new identifier to an address
record is created.

An Entity Moves Again, but Stays With The Same Relocator

During a subsequent move, a clash on the Relocator cannot occur. If there is
no clash on the destination host, then the current address record on the
Relocator is overwritten with a new address record.
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47.6.4

If there is a clash at the destination host, then a fresh identifier is created.
The previous address record on the Relocator is overwritten with a universal
remap record that directs all clients searching for this entity to look under a
new identifier.

Note A universal remap record does not contain the source address, as
clients may supply any of the entities previous addresses as the source
address. Storing all possible values would be impracticable, but is
unnecessary, as the universal record will suffice. The algorithm can never
require that a Relocator stores two universal records for one identifier, as
universal records are only ever created to replace ‘address’ records, and
there is only ever one of these.

An Entity Changes Which Relocator It Is Associated With

In practice, this is only likely to occur as a side effect of moving, however
conceptually it is a separate operation. A clash will require that the entity is
assigned a new identifier, and this may be impracticable for engineering
reasons — however it if a change of Relocator is associated with a move, then
this is straightforward.

If the new Relocator contains no record for the identifier, then an address
record is created in the new Relocator, and the old Relocator overwrites its
address record with a forward record. This is the normal case.

If the new Relocator contains a record for the identifier then a fresh identifier
is created. The original Relocator replaces its address record with a universal
remap record, and then stores a mapping from the new identifier to a forward
record. The new Relocator stores an address record.

A Client Resolves An Address

A client will only ever contact a Relocator if the current address it has for an
entity is proved to be out of date. This may be checked by querying the entity
at the specified address. If there is no entity at the address, then the entity
has moved. If there is an entity, then both the identifier and Relocator for the
entity must be checked.

Note. Intuitively, only the identifier need be checked, however consider the
following attack:

1. An entity e; with identifier : moves to a host A. This is handled by
Relocator Ni.

2. A client C, obtains a name for this entity (i,h,N;).

3. The entity moves on. Later a second entity ez with the same identifier
moves to h. This is handled by Relocator N, so there is no clash.
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4. C uses the address h. The entity at this address has identifier i, but is
e2. However, the Relocator for ez is Nz. A check of the Relocator will spot
the discrepancy.

If the entity has moved from the address known by the client, the Relocator is
contacted. The client supplies the address where the entity used to be (the
previous address) and the identifier. The Relocator looks up the records for
the identifier and performs the following checks:

* If it has any remap records, then it checks to see if one applies to the
specified address. If it does, then it rechecks using the new identifier
specified in the record.

* If the Relocator has a universal remap record, then it rechecks using
the new identifier specified in the record.

* If the Relocator has a forward record, then it contacts the specified
Relocator, and makes a nested request to it.

* If the Relocator has an address record, then it returns the client a new
(identifier, address, Relocator) tuple, as any of these may have
changed from the client’s current values. The client may then use the
specified address. This will succeed, unless the entity has moved
whilst the lookup was taking place. It is up to the client whether to try
again or not.

* If the Relocator has no record, then the entity no longer exists.

Security Attacks

47.7.1

There are various attacks on the system. All of these can be countered, or
reduced to resource attacks that are no worse than trivial resource attacks.
To reduce corruption attacks in general, address records contain the identity
of the hosts that the address maps to. This is the only authority that may
cause this record to be changed. Other records (forward, remap, and universal
remap) need never be changed by a third party, so no authority information is
stored.

Attacks may be made one three classes of malicious agent

Attacks by a Malicious Host

A malicious host can destroy or corrupt any entities moved to it. This is to be
expected and is unavoidable. A host may also claim to have entities it does
not (to a client). This can only be used to attack use of entities that once
existed on the host. This is (arguably) no worse than a corruption attack on
the entity when it was at the host. For other entities, the client will only
contact hosts that it is directed to contact via the Relocator.

A malicious host may enter identifier to address mappings into a Relocator
that intentionally clash with existing mappings, or mappings that may be
correctly added in future. This will lead to the creation of additional remap
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47.7.2

47.7.3

47.8

records within the Relocator, but will only lead to (at worst) two remap
records per attack, in addition to an address record for the entered mapping.
This is not significantly worse than a straightforward bombardment’
resource attack, where a host simply adds millions of entries to a Relocator. It
will lead to an additional cost during lookup of the attacked identifier, of (at
worst) two records. This is again not significant.

These resource attacks are mitigated by the use of many Relocators. A
particular Relocator is likely to only support specific trusted hosts (for
example those within an administrative domain). This reduces the likelihood
of attacks. As the algorithm allows the creation of additional mutually
distrustful Relocators, it is reasonable to force an untrusted party to create
their own Relocator, rather than have them use a critical resource.

Attacks by a Malicious Relocator

A malicious Relocator is free to misdirect any of its clients, and corrupt or
discard any information stored in it. This is to be expected, and for this
reason, hosts should only use Relocators that they trust. Beyond this,
Relocators are not privileged, and in particular cannot affect the use of other
Relocators.

When the Relocator associated with an entity is changed, then either
Relocator can prevent the correct resolution of that entity. The Relocators
cannot otherwise adversely affect each other (other than by claiming a clash,
and forcing the creation of a universal remap record). Here, and in other
cases where parties must agree on a fresh identifier a simple iterative
algorithm is used, and if agreement cannot be found after a statistically
significant number of iterations, then the operation is abandoned. The
probability of, say, ten randomly chosen identifiers all clashing is extremely
low.

Attacks by a Malicious Client

A malicious client has little power. It may make ‘nuisance’ calls to a host or
Relocator, but cannot change information stored in the Relocator. Relocators
may therefore freely allow client access — providing the simple bombardment
attack can be countered. There is no need to authenticate clients.

Optimisations

There are three classes of optimisation to the standard algorithm.

Client Tracking
When a client is informed of the current identifier, address or
Relocator for an entity, it may store these, to reduce the cost of
subsequent lookups. This optimisation is assumed in normal
operation.
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Relocator Tracking

A Relocator may examine records it contains. It may search for
chains of records and shorten these, to speed subsequent lookups.
These may be local chains of Remap and Universal Remap
records, distributed chains of forward records, or combinations of
the two. When shortening chains, all entries are made to point to
the final entry (or latest entry in the current Relocator), however
no entries may be deleted as a client may still hold tuples
containing information they match.

A Relocator may examine records periodically, or as a side effect
of client lookups.

Leasing

A final optimisation allows a Relocator to ultimately discard
forwarding and remap references, at the cost of periodic
communication between all clients and Relocators. A Relocator
‘leases’ names to clients, and a client is responsible for contacting
the Relocator for a new lease, before the old one expires. As a side
effect of doing this, the client is supplied with up to date
information about the name. The Relocator may then discard
remap and forward records that have no outstanding leases.

This optimisation is significant as it allows a Relocator to
completely forget a name it no longer manages, and recover all
state associated with it. However, it requires co-operation from all
clients. This precludes the use of clients who are disconnected for
periods longer than the lease period. It is debatable whether this
complexity is justified, especially considering that forward and
remap references never need updating, and so may be archived by
a Relocator, reducing the gain from deleting them.

47.9 Destroying Entities

There are several issues surrounding the destruction of an entity. Two
alternatives may be taken:

® The Relocator(s) remove all knowledge of the entity

* The Relocator stores a ‘tombstone record’ indicating that the entity has
been destroyed.

The former approach is preferable, however it removes the possibility of
detecting clashes with destroyed entities. A client may have a name for an
entity e;, and then be unable to determine that is has been destroyed, and a
new entity ez is accidentally/maliciously using the same identifier and
Relocator. This may (or may not) be considered an important issue.

The second approach solves this problem, but at the cost of records that the
Relocator can never destroy.
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The ‘solution’ to this dilemma is to use time-limited identifiers. Each
identifier is extended to contain its creation date. This is then given a
lifetime. If during this lifetime, the entity is destroyed, then the Relocator
keeps a tombstone for it until after the lifetime expires. If the entity survives
until after its lifetime, then on the next change of Relocator, its identifier is
treated as having clashed. This is because the Relocator may have previously
had a tombstone for that identifier, which has been discarded. A sixteen-bit
creation time would allow a 180 years of daily timestamps. Given that the
Relocator is rarely changed this will lead to few additional remap records,
and no tombstone records that last more than a day.

For entities that use an authentication mechanism, this is not required, as a

client cannot accidentally use the wrong entity, and the reuse of identifiers
will not lead to problems.

Discussion

The algorithm presented is relatively complex, but straightforward to
implement, and efficient in use. More importantly, it does not require any
global co-ordination between the parties (clients, hosts and Relocators), and
has no reliance on ‘truly unique’ identifiers. This is a significant strength over
other systems that require co-ordination, or that assume hosts or domains
have unique identifiers or closely synchronised clocks.

The fact that the system copes with, rather than prevents, identifier clash
allows it to be more secure, and to be more resilient to accidental clashes.
This allows the use of small identifiers, where the likelihood of clash is
perhaps 1%, rather than large identifiers that are required in systems where
clash leads to failure and must be avoided at all cost.

The algorithm can also be used in a second form. Rather than store the
reference to the Relocator explicitly in the name tuple, it may be inferred
from the address field, with one Relocator used for all entities stored in a set
of hosts (for example a sub-net). This implies that the Relocator is changed
whenever an entity moves from one set of hosts to another, but is a
reasonable optimisation if this is a rare occurrence, and the size of the name
is considered more important.
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APPENDIX | - PACKAGE HIERARCHY

1.1 UK.co.ansa

Top level package prefix for ANSA related work. Classes in this package and
its sub-packages are Copyright © Citrix Systems (Cambridge) Ltd, on behalf
of the sponsors for the time being of the ANSA project.

1.2 UK.co.ansa.flexinet

FlexiNet packages and classes, as described the majority of this document.

1.2.1 UK.co.ansa.flexinet.core

Central concepts and abstractions.

* UK. co. ansa. fl exi net. core. nani ng
Naming concepts and abstract implementations.

* UK co. ansa. fl exinet.core. cal
Classes defining Invocations and the CallUp/CallDown abstraction.

* UK co. ansa. fl exinet.core.resource
Definitions of resources and pools.

1.2.2 UK.co.ansa.flexinet.basecomms

Standard implementation components used by the majority of binders and
protocol stacks.

* UK. co. ansa. fl exi net. baseconms. serialize
Serialisation abstraction.

- UK co. ansa. fl exi net. baseconns. seri ali ze. engi ne
Implementation of the basic serialisation engine.

- UK. co. ansa. fl exi net. basecoms. seri ali ze. ref

- UK. co. ansa. fl exi net. basecoms. serialize. stub

- UK. co. ansa. fl exi net. basecoms. seri ali ze. sun
Specialisations of the basic serialiser, that provide additional
functionality.
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- UK co. ansa. fl exi net. baseconms. seri al i ze. | ayers

UK. co. ansa. f| exi net. basecomms. seri al i ze. cl assnane
Class serialiser that uses a class’s name to identify it.

Layers of a protocol stack that relate to serialisation.

* UK. co. ansa. fl exi net. basecomms. | ayers
Commonly used layers of protocol stacks.

- UK co. ansa. f | exi net. baseconms. | ayers. echo

- UK co. ansa. fl exi net. basecomms. | ayers. trivnanme
- UK co. ansa. f | exi net. baseconmns. | ayer s. gnane

- UK co. ansa. fl exi net. baseconms. | ayers.tcp

- UK. co. ansa. f | exi net . baseconms. | ayers. udp

- UK. co. ansa. f | exi net. baseconms. | ayers. cal

- UK. co. ansa. fl exi net. baseconms. | ayers. sessi on

e UK. co. ansa. f | exi net. basecomms. bi nder s
Common protocol independent binders.
- UK co. ansa. fl exi net. basecomms. bi nders. cache

- UK co. ansa. f | exi net. baseconms. bi nders. choi ce
- UK co. ansa. fl exi net. baseconms. bi nders. generic

* UK. co. ansa. fl exi net. basecomms. socket

Socket implementations.

e UK. co. ansa. f | exi net. basecomms. st ub
Stub generation
- UK. co. ansa. fl exi

- UK. co. ansa. fl exi

net . baseconms. st ub. gener at or
net . baseconms. st ub. byt ecode

e UK. co. ansa. f| exi net. basecomms. buf f er
Segmented buffer abstraction.

- UK co. ansa. f| exi net. basecomms. buffer. basic
A concrete implementation used by most protocols.

1.2.3 UK.co.ansa.flexinet.protocols

A top level package for protocol and binder specifications. Each sub package
defines a particular protocol, binder or protocol family.

* UK. co.ansa. fl exinet. protocol s.rex
The REX protocol family.

- UK co. ansa. fl exi net. protocol s.rex. | ayers

- UK. co. ansa. fl exi net. protocol s.rex. | ayers. rex
Protocol stack layers required by REX binders.

- UK co. ansa. fl exi net. protocol s. rex. bi nders

- UK co. ansa. fl exi net. protocol s. rex. bi nders. green

- UK co. ansa. fl exi net. protocol s. rex. bi nders. yel | ow
REX-based binders.

* UK co. ansa. fl exinet.protocol s.requestreply
The RRP protocol family.
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- UK co. ansa. fl exinet.protocols.requestreply.layers
Protocol stack layers required by RRP binders.

- UK co. ansa. fl exinet. protocol s.requestreply. binders
RRP-based binders.

* UK. co. ansa. fl exi net. protocol s. gi op
The GIOP protocol family.

- UK co. ansa. fl exi net. protocol s. gi op. | ayers

- UK. co. ansa. fl exi net. protocol s. giop.serialize

- UK. co. ansa. fl exi net. protocol s. gi op. buffer

- UK. co. ansa. fl exi net. protocol s. gi op. corba

- UK. co. ansa. fl exi net. protocol s. gi op. uti
Resource implementations required by GIOP binders

- UK co. ansa. fl exi net. protocol s. gi op. bi nders

- UK co. ansa. fl exi net. protocol s. gi op. bi nders. gi op

- UK co. ansa. fl exi net. protocols. gi op. binders.iiop
GIOP-based binders.

* UK. co. ansa. fl exinet. protocol s. group
Group-based (RMP) protocol.
- UK co. ansa. f | exi net. protocol s. group. cal
- UK co. ansa. fl exi net. protocol s. group. | ayers
- UK co. ansa. fl exi net. protocol s. group. bi nders
- UK co. ansa. fl exi net. protocol s. group.test
- UK co. ansa. fl exi net. protocol s. group.java2uti

* UK. co. ansa. fl exi net. protocol s. negoti at or

Negotiation-based binder.
- UK co. ansa. fl exi net. protocol s. negoti at or. bi nders
- UK. co. ansa. fl exi net. protocol s. negoti ator.|ayers

1.2.4 UK.co.ansa.flexinet.cluster

Implementation of the ‘cluster’ abstraction. The top-level package contains
the abstract interfaces, and the sub-packages provide implementations.

* UK co.ansa.fl exinet.cluster.binders
Cluster and Capsule binder implementations.

* UK co. ansa. fl exinet.cluster.nam ng
Cluster related naming classes.

* UK co.ansa.flexinet.cluster.|ayers
Protocol stack layers relating to clusters.

® UK co.ansa.fl exinet.cluster.coms
Other communications components.

* UK. co. ansa. fl exi net. cl uster. manager
Implementations of cluster managers.

e UK. co. ansa. fl exi net. cl uster. awt
AWT-wrapper package.
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* UK co.ansa.flexinet.cluster.events
Cluster-friendly event package.

1.2.5 UK.co.ansa.flexinet.util

Utility packages and classes. These are components of FlexiNet that do not fit
into the rest of the package structure. Util has the following sub-packages.

* UK co.ansa.flexinet.util.properties
The FlexiProps scheme — mainly used for specifying QoS constraints.

® UK co.ansa.flexinet.util.queue
Priority queue and timer queue implementations.

* UK co.ansa.flexinet.util.pool
Various pool manager implementations, for different policies.

* UK co.ansa.flexinet.util.applet
Code to aid the use of FlexiNet in applets.

* UK co.ansa.flexinet.util.debug

Replacements for standard components that perform additional
tracing or validation.

® UK co.ansa.flexinet.util.thread
Thread resource abstraction, for thread pools.

* UK co.ansa.flexinet.util.cache
Various cache implementations (e.g. leaky bucket).

* UK co.ansa.flexinet.util.blueprint
Blueprint system used for binder specification and construction.

® UK co.ansa.flexinet.util.locale
Localisation system, including example code.

1.2.6 UK.co.ansa.flexinet.services

Standard FlexiNet services and utility programs.

* UK co.ansa.flexinet.services.trivtrader
The Trivial trader.

e UK. co. ansa. fl exi net. services. ssl cert
A utility program for generating SSL certificates.

* UK. co. ansa. fl exinet.services. classrepository
The class repository service. The top-level package contains definitions
for the basic components. There are three sub-packages.
- ...flexinet.services.classrepository.repository
The repository service itself.
- ...flexinet.services.classrepository.serialize

A class serialiser and deserialiser that pass references to classes
stored in the repository.
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- ...flexinet.services.classrepository.client
Client side class manager; a local interface to the repository.

1.3 UK.co.ansa.mobility

Packages relating to the ‘mobile object’ abstraction. This work was conducted
under the ‘Mobile Object Workbench’ package of the FollowMe project.

The top-level package contains the definitions for the main components.
These are specialisations of the cluster abstraction.

® UK co.ansa.mobility.secure
Mobile object security. In particular, per-cluster security managers.

* UK. co.ansa. nobility. namer

An implementation of the ‘mobile namer’ relocation service for (mobile)
clusters.

1.4 UK.co.ansa.ispace

Packages relating to the ‘information space’ abstraction. This provides
persistent objects accessible transparently, or via a directory interface. This
work was conducted under the ‘Information Space’ package of the FollowMe
project.

The top-level package contains the definitions for the main components.
These are specialisations of the cluster abstraction.

® UK. co. ansa.i space. test
Test code.

®* UK. co.ansa.ispace. util

* UK co.ansa.ispace.util.file
Utility code.

®* UK. co. ansa.i space. service
Definition of the ‘StoreFactorylmpl service.

* UK. co. ansa. i space. manager
Cluster managers for storables, and other management code.

1.5 UK.co.ansa.beanbox

This is a visual assembly tool for EJBs. It is based on the BDK beanbox, but
modified to support Enterprise Java Beans.
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1.6 UK.co.ansa.transaction

1.7 javax

The FlexiNet transactional system for Enterprise Java Beans.

UK. co. ansa. transacti on. concurrency

Two phase locking concurrency control implementation.

UK. co. ansa. transacti on. cont ai ner
EJB container for FlexiNet transactions.

UK. co. ansa. transacti on. j avaxl npl
UK. co. ansa.transaction.javaxlnpl.ejb

UK. co. ansa.transaction.javaxlnpl.jts
FlexiNet implementation of standard EJB interfaces.

UK. co. ansa. transacti on.refl ect
UK. co. ansa. transacti on.refl ect.transacti onal

UK. co. ansa. transaction.refl ection
Distributed transaction implementation.

UK. co. ansa. transaction.rm
proxies to support the passing of transactional context.

UK. co. ansa. transaction. util
Utility code.

1.8

An implementation of classes defined in the “Java Extensions” specification.

These are required for the FlexiNet transaction system.

sunw

1.9

A subset of Sun’s BDK distribution. Required for the FlexiNet transactional

beanbox, and beans it creates.

org.omg

Top level package for classes defined by the Object Management Group
(OMG). These classes and packages are defined in the OMG standard, and
include classes relating to the ‘Objects by Value’ RFP. A small number of

classes have been modified for use in FlexiNet.

org. ong. CONV_FRAME
org. ong. CORBA
org.ong. |1 0OP
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® org.ong. | COP
® org.ong.dCP
CORBA related classes required for IIOP binder

®* org.ong. CosTransacti ons
CORBA Object Services transaction classes required for the FlexiNet
transaction system.

1.11 Licensing and Libraries

The vast majority of the code in the FlexiNet distribution is a clean room
implementation and Copyright © Citrix Systems (Cambridge) on behalf of the
sponsors for the time being of the ANSA Consortium. FlexiNet is an ANSA
deliverable, and is covered by the standard ANSA Consortium licensing
terms. Code based on, or requiring access to, none ANSA code is listed below.

e Javal.l
FlexiNet requires access to many of the standard Java 1.1 classes.
These are not supplied as part of the FlexiNet distribution. FlexiNet
will also compile against Java 1.2, however there has been limited
testing in this environment, and in particular, the IIOP binder will not
function, as it requires a different version of the standard OMG
classes.

e JAIK SSL
Some parts of FlexiNet require the IAIK libraries in order to function
[TAIK]. These are not supplied as part of the FlexiNet distribution, but
must be licensed from TAIK. If the IAIK libraries are not available,
then the following classes will fail to compile, and SSL based protocols
and utilities will be unavailable.

- UK. co. ansa. fl exi net . basecoms. socket .

Confi gur abl eSocket Fact ory
- UK. co. ansa. fl exinet.services.sslcert.CertificateGJ
- UK co. ansa. fl exinet.services.sslcert. TenpKeyGU

* Java Bean Development Kit (BDK)

The Enterprise Bean Box is based on Sun’s BDK [SUNd]. The modified
version 1s supplied as part of the distribution (in package
UK. co. ansa. beanbox). The BDK licence is unclear about the legality
of distributing this outside of the consortium, and consortium members
as requested to consult the BDK licence before doing so. In addition to
the classes in UK. co. ansa. beanbox, the classes in package
sunw. beanbox are copied from the BDK distribution.

These classes are required for the construction of EJBs used in the
FlexiNet transactional framework.

®* OMG Classes (package or g. ong)
These classes are either taken from publicly available distributions of
OMG classes, or implemented from scratch based on OMG
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specifications. There are not believed to be any licensing issues related
to their use. They are used in the IIOP binder, and in the transactional

framework.

* Javax Classes (package j avax)
These are a clean room implementation based on published
specifications. They are used by the transactional framework.
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