Threads

O D

Channel

DIMMA Report

Threads

O D

Channel

Local Local
QoS QoS

Network QoS

Resources Resources

Matthew Faupel
Matthew.Faupel@ansa.co.uk

ANSA © 1997 APM Ltd

—A

Converging Trends

Multi-media

g

Distribution Object

Orientation

—A ANSA © 1997 APM Ltd ———

Multi-Media ORB

e Object Request Brokers give distributed object
orientation

BUT

e Multi-media support creates additional requirements

—A ANSA © 1997 APM Ltd ———

ORB Reqguirements

e Support for specifying flow interfaces
e Control over resources used
e New protocols easily added

e Minimum necessary footprint

—A ANSA © 1997 APM Ltd

DIMMA Goals

e Microkernel (component based) ORB for
applications

e ... requiring “soft’ real-time QoS and MM flows
e Control over resource sharing
explicit binding allowing QoS to be specified
... plus supporting engineering mechanisms
e Flexibility
Support a wide range of QoS policies
Lightweight <-> full function instantiations
Simple to add new protocols

_ﬁort a variety of programming—personalities”

Results

e DIMMA 1.0 (Nov 96)
= microkernel ORB with MM extensions
« JET (CORBA) & ODP programming personalities
« flow interfaces
= application multi-tasking
= lIOP & ANSA Flow protocol (multicast UDP)
e DIMMA 1.1 (Apr 97)
= Configurable tracing
=« Improved JET <-> CORBA compliance
= Restructured source and build system

—A ANSA © 1997 APM Ltd ———

Results

e DIMMA 2.0 (May 97)
= QoS controlled explict binding
= populated resource control framework
= Improved protocol framework
= added resource control to lIOP and ANSA Flow
= dynamic protocol loading
e DIMMA 2.01 (Sep 97)
= Improved performance and robustness
= protocol independent QoS specification
= iImplemented as C++ code for Solaris 2.5

—A ANSA © 1997 APM Ltd ———

DIMMA Features

FIOWS and om User Executables
Explicit ’:’b =
B | Nn d in g Personality

» |Stubs Other Interface

ODP Library

Resource Kernel Extensibility
Control

Other Protocol

|| V2

Other Protocol

Modularity

—A ANSA © 1997 APM Ltd ———

Resource control

Why Resource Control?

e Real-time and multi-media need specific QoS
= required end to end at the application
« must be maintained during varying load

e Implies resources available when needed

e But resources often scarce and hence shared

=> Sharing must be controlled

—A ANSA © 1997 APM Ltd ———

Which Resources?

Local Local
QoS QoS

Network QoS

Channel Channel

Resources

)

Resources

)

—A ANSA © 1997 APM Ltd ————————

Channel Multiplexing

Objects sharing channel Plus multiple Invocations

°s oo

—A ANSA © 1997 APM Ltd

CPU Multiplexing

Invocation concurrenc

Shared read/demux Thread \T /

1 —
=

W

—A

Vanilla ORB Capsule

e

R

e

: S

0

L3 % "
2| r

n C

n e

e S

Protocol |
I K—j

Resourcing the Channel

Qo

Binder

L v O

Binder|—> % —
a
n —
n
e
| —(Buffers)

Protocol

Components

e Generic resource control through allocators
« factories
= Pools
e Threading framework
« null thread
= normal thread (task)
= Sscheduled light-weight threads
e May be composed to form a range of policies

—A ANSA © 1997 APM Ltd

Example Configurations

Client Server Client Server
,:Object

(Task Factory)— '
—(Client SessiorD —(NuIICIient Session)

_‘—(Task Pool]

&=

Default QoS High performance

—A ANSA © 1997 APM Ltd ———

@R

Implementation Pitfalls

e Failure to observe strict separation of concerns

allowing mechanismto determine policy

functional overlap preventing fine grain control
e Implicit assumptions

e.g. memory management policy
e Regarding all resources as equal

e.g. active tasks are not like passive buffers

—A

ANSA © 1997 APM Ltd

Flows and Explicit Binding

IDL

CORBA
Personality
—® Stubs
ODRP Library

Kernel

AnsaFow

UDP

ANSA © 1997 APM Ltd

Flow Support

flow Video {
voi d NewFranme (in long frame_no,

. in string i mage); e |IDL eXtenSiOnS

I nterface Video_Binder {
exception Al readyBound {};

Vi deo bind (in Video Binder peer) ® FlOW PrOtOCOI (AnsaFIOW)

rai ses (Al readyBound ;

}s

i nterface Videobi ndvanager {
Vi deo_Bi nder binder ();
1

—A ANSA © 1997 APM Ltd ———

Server Endpoints

Client Client

Server Endpoints

Low QoS

ANSA © 1997 APM Ltd

Specifying QoS

e QoS is required between application endpoints
e ... 0N a per connection basis

=« e.g. different client instances using the same
server interface may desire different QoS.

e QoS is determined at bind time
e ... requiring additional binding apparatus
« ... taking QoS attributes

—A ANSA © 1997 APM Ltd ———

Endpoint Implementation

e Endpoints computationally visible as Invocation Refs

e Avoids introducing another computational type

e Allows EP to be treated just like any other InvRef
exported to Trader
passed out of the capsule as an operation
parameter

e Any Invocation Ref may be explicitly bound

—A ANSA © 1997 APM Ltd ———

Observations

e Complete QoS control requires:
=« OS and network protocol support
e ENngineering transparency trade off at all levels
= QoS enabled binders become protocol specific

= applications may need to be aware of
engineering mechanisms

= Implications for dynamic loading of protocols
= ... unless hidden by QoS mapping

—A ANSA © 1997 APM Ltd ———

Engineering QoS

e Engineering QoS can be supported by protocols

protocol converts “generic” QoS parameters to
their own specific protocol parameters

allows applications to specify QoS requirements
In protocol independent fashion

defers protocol choice to runtime

—A ANSA © 1997 APM Ltd ———

Extensibility

Other Interface

Other Protocol

Other Protocol

ANSA © 1997 APM Ltd

Extensibility

e Front-end separated from kernel so new
“personalities” can be added

e Protocol binders have well defined interface

e Support for adding new protocols at runtime

—A ANSA © 1997 APM Ltd

Modularity

CORBA
Personality

Stubs Other Interface

Other Protocol

Other Protocol

ANSA © 1997 APM Ltd

Modularity

e Small kernel

e Only desired front-end and protocol components
need be linked In

e Protocols layers can be reused (e.g. TCP and UDP
layers).

—A ANSA © 1997 APM Ltd ———

Performance

Performance Improvements

e Replace iostream marshalling with custom
eliminate low level mutex locking
compile time decisions (use of templates)

e IIOP optimisation

replace marshall/unmarshall of IOP headers at
different protocol layers

no context switch for high performance QoS
configurations of lIOP client sessions

e TCPread-ahead
minimise ‘recv’ system call overhead

—A ANSA © 1997 APM Ltd ———

Performance

ms
2000
1800
1600
1400
iggg Orbix 2.1
800 MT no QoS
600 ST no QoS
200 ST full QoS
0
1-way 1-way RPC RPC
no null no null
param string param string

—A ANSA © 1997 APM Ltd ———

DIMMA Summary

e Unique, flexible ORB supporting RT and MM
e Implementation framework for
« threading
= resource control mechanisms
= protocol composition
e Layered architecture
= clean interfaces allow multiple “personalities”
= reuse encouraged
e APIproviding transparency between RPC and flows

—A ANSA © 1997 APM Ltd ———

DIMMA Summary

e Explicit binding with specified QoS

= abstract Engineering QoS binder

= protocol specific QoS binders
e Wide range of possible QoS

= protocol read/multiplex task policy

= session dispatch task policy

=« channel multiplex policy

= buffer pools and specific buffer sizes
e Dynamic protocol loading

—A ANSA © 1997 APM Ltd

Documentation

Overview - APM.1995

Tracing - APM.1980

Build and Installation - APM.2036
Writing an application - APM.2037
Design and Implementation - APM.2063
Performance Analysis - APM.2046

e ...plus other workshop presentations available

—A ANSA © 1997 APM Ltd

