
The following manual pages describe the C language interfaces for those

Part XI

Chapter 11

Internal Functions

functions internal to the ANSA support environment. None of the routines
in this section should be called directly by application programs. Calls to the
top level routines are generated by the preprocessor and stub generator.

All application programs should be compiled with the switch:

-I/usr/local/include

and then linked with:

/usr/local/lib/libansa.a

All the definitions needed by the stubs are collected together in
<ansa/ansa. h> which is automatically included by all stubs. Header files for
ANSA service interfaces should be kept in /usr/local/include/ansa so that
they can also be picked up by the standard -1 switch.

Internal modules should be compiled with the switch:

-I/usr/local/include/ansa/capsule

and should include the header file "capsule. h". Modules using certain
internal routines may need additional include files as specified in the
individual manual pages.

Please note that your installation may have put the include files and
libraries somewhere other than /usr/l ocal.

All interface types defined in <ansa/ansa. h> have a prefix of ansa_, in order
to avoid name clashes with application code. Within the interpreter this is
not necessary and the equivalent internal types without the prefix are
defined in the file “standard. h" which is included by "capsule. h".

The interface synopsis for each routine in the following manual pages is in
the proposed ANSI C standard format using function prototypes. However,
in order to maximize portability, the source as issued does not yet use
function prototypes.

ARM XI, II/ 1 (Release 01.00)

Internal
Functions ANSA Reference Manual BINDER(X1)

NAME
Binder - binds capsules together via their external interfaces

PURPOSE
The binder acts as a local agent for the trader; enabling server
capsules to advertise interfaces (via the trader) and create the
communications socket necessary to accept invocations of the
interface operations. The binder also enables client capsules to
locate server capsules supporting a particular interface (via the
trader) and to create the communications plug and channel
necessary to invoke the interface operations.

SYNOPSIS
#include <ansa/ansa.h>

#include "binder.h"

ansa_Status binder-export (InterfaceRef
String
String
String
Cardinal
InterfaceId
Dispatch
InterfaceRef

*trref,
type9
context,
instance,
concurrency,
id,

*dispatcher,
*ifref) ;

ansa_Status binder withdraw (InterfaceRef *trref, -
InterfaceRef *ifref) ;

ansa_Status binder-import (InterfaceRef *trref,
String type,
String context,
String constraints,
InterfaceRef *ifref) ;

ansa Status binder discard - - (InterfaceRef *ifref) ;

void binder-terminate (void) ;
ansa_Status binder_bindRef (InterfaceRef *ifref,

ansa_ChannelId *plugPtr) ;
ansa_Status binder_bindSvc (Cardinal concurrency,

InterfaceId ifid,
Dispatch *dispatcher
InterfaceRef *ifref,
ansa_ChannelId *plugPtr) ;

ARM X1,11/ 2 (Release 01.01)

Internal
Functions ANSA Reference Manual BINDER(X1)

DESCRIPTION
The binder-export function calls the nucleus to make a new socket
with the specified concurrency and dispatch routine. If a particular
(non-zero) socket is specified the binder will attempt to allocate it;
otherwise a suitable one will be chosen and its identity returned. It
then calls the trader to register the export and stores the details of
the export instance for use by binder-withdraw and
binder-terminate.

The binder-withdraw function cancels a preceding export by
requesting the trader to delete the relevant export entry and
requesting the nucleus to withdraw the socket.

The bindeyzmport function calls the trader to lookup the interface
and then calls the nucleus to make a plug for the server capsule’s
socket. If a particular (non-zero) plug is specified the binder will
attempt to allocate it; otherwise a suitable one will be chosen and its
identity returned.

The binder-discard function cancels a
requesting the nulceus to discard the plug.

preceding import by

The binder-terminate function withdraws all outstanding exports
done by the capsule.

The binder_bindRef and binder_bindSuc functions do the actual
work for binder import and binder export, respectively. They have
been broken out-to permit access from client stubs.

FILES

ERRORS

SEE ALSO
TRADER (X), Support Environment (X1, NUCLEUS (XI).

USAGE
The binder-export, bznder_withdraw, binder-import,
binder-discard and brnder_termznate functions calls are generated
by the preprocessor. The bznder terminate function is also called by
the system module after receiving a termination signal from the
operating system.

ARM X1,11/ 3 (Release 01.01)

Internal
Functions ANSA Reference Manual BINDER(X1)

FUTURE DIRECTIONS

CHANGE HISTORY

Date Release

1104188 Version 1.0

16!12/88 Version 2.0

Pages Changes

initial release

stackSi ze argument moved from
binder export to nucleus_tasks
buf fer?i ze argument from
bmder export calculated dynamically
concurFency argument added to
binder-export

lOi4/89 Version 2.5

argument types made consistent with
<ansa/ansa.h>
multiple protocol support added

InterfaceId support added
bindRef and bindSvc routines provided

ARM XI,1 l/ 4 (Release 01.01)

Internal
Functions ANSA Reference Manual BUFFER(X1)

NAME
Buffer - interpreter buffer management

PURPOSE
Provides buffer management functions for capsule message buffers.
These buffers are used by client and server stubs to marshal and
unmarshal the arguments or results of invocations.

SYNOPSIS

#include <ansa/ansa.h> /* or "capsu1e.h" */
#include "buffer.h"
void buffer_init (Cardinal header,

Cardinal data,
Cardinal trailer) ;

ansa_BufferLink buffer-make (Cardinal bytes) ;
void buffer-free (ansa_BufferLink descriptor) ;
void

void

buffer-reset (ansa_BufferLink descriptor) ;
buffer-swap (ansa_BufferLink old,

ansa_BufferLink new) ;

DESCRIPTION
Buffers are constructed from a linked list of one or more buffer
segments. A buffer segment is a contiguous area of memory
containing all or part of a message. Each buffer segment has an
associated control block called a buffer descriptor; this contains the
base address and size of the buffer segment, plus the base address
and size of that section of the segment which contains valid data.
Buffer descriptors need not be contiguous with their associated
buffer segment and may be linked together to form a buffer list.

The format of a buffer descriptor and a buffer link are defined in the
file <ansa/ansa.h> includedby "capsu1e.h".

typedef struct ansa_buffer_descriptor *ansa_BufferLink ;
typedef struct ansa_buffer_descriptor

I
ansa BufferLink link ; /* NULL = end of buffer list
unsigned long type ; /* unused
unsigned long *base ; /* word aligned segment address */
unsigned long size ; /* number of bytes in segment
char *data ; /* byte address of used section
unsigned long used ; /* number of bytes used
I
ansa_BufferDescriptor;

ARM X1,11/ 5 (Release 01.00)

Internal
Functions ANSA Reference Manual BUFFER(X1)

The buffer-hit function is called by each communications protocol
stack as part of its startup sequence. Buffer_init accumulates the

maximum header, data and trailer sizes in order to calculate the

size of a standard buffer and leave enough room for the largest
header and trailer in ail buffers.

The buffer-make function allocates, and returns a pointer to, a
single buffer descriptor with an attached data segment of at least

the requested number of bytes plus the largest header and trailer
used by the communication protocols loaded in the capsule. The

buffer is initialized with a used data section of zero bytes starting

after the largest buffer header. If insufficient memory was

available to allocate the buffer. a NULL pointer is returned. If a

buffer length of zero bytes is requested then a standard buffer,
which will hold an unfragmented message for any loaded protocol, is
supplied.

The buff f f er ree unction disposes of a buffer (and any buffers that

are linked to it).

The buffer-reset function re-initializes the buffer by setting the

fields of the first buffer’s descriptor to the values used by

buffer_mahe and freeing any linked buffers.

The buffer_swap function exchanges the buffer segments attached

to the old and new buffer descriptors and frees the new buffer, which
now consists of the new descriptor and the old segment, leaving the

new segment attached to the old descriptor.

FILES

SEE: ALSO
INSTRUCT (XI).

CSAGE:
The buffer management routines are used by the communications

protocols and automatically generated stubs.

FL’I’UKK DIHEC'I'IONS
Linked buffer support may be added to rex and the stub generator.

ARM X1,11/ 6 (Release 01.00)

Internal
Functions

CHANGE HISTORY

ANSA Reference Manual BUFFER(X1)

Date Release j Pages 1 Changes

l/04/88 Version 1.0

16/12/88 Version 2.0

initial release

function names changed according to
module naming conventions
argument types made consistent with
<ansa/ansa.h>
buffer segment functions replaced by
buffer swap
buffeyinit function added

ARM XI,1 I/ 7 (Release 01.00)

Internal
Functions ANSA Reference Manual CHANNEL(X1)

NAME
Channel - binds plugs to sockets

PURPOSE
Manages the capsule’s channel table, enabling the creation,
updating and deletion of entries for both plugs and sockets.

SYNOPSIS
#include "capsu1e.h"

#include "channe1.h"

void channel_init (void) ;
void channel-select (Channel Id index) ;
Status

Status

Status channel socket

channel_selectType

channel make -

Status channel-plug

Boolean channel-decrement

(ChannelId index,
ChannelType We) ;
(Channel Id index) ;

(Cardinal
Dispatch

(Protocol Id
Endpoint

(void) ;

concurrency,
*dispatcher) ;
protocol,
destination) ;

void channel-increment (void) ;
void channel-free (void) ;

void channel-cleanup (void) ;

The channel_imt function creates and initializes the channel table
with the dummy (zero) entry and one free channel. The dummy
entry is used by channeZ_make to initialize new channels.

The channel_seZect function makes the specified channel table entry
the current one by setting the global variables channel Index to its

index and channelptr to its address.

The channei_selectType function makes the specified channel the
current one only if it is the correct type. The type DUPLEX is
equivalenttoPLUG or SOCKET.

The channei_make function finds, initializes and selects a free
channel, extending the channel table if necessary. If index is non-
zero then that particular channe! is selected; otherwise the first free
channel is selected.

ARM XI,1 1, 8 (Release 01.00)

Internal
Functions ANSA Reference Manual CHANNEL(X1)

The channeZ_socket function fills in the currently selected channel
as a socket. The concurrency argument limits the number of
invocations which may be active on the socket; when this limit is
reached additional invocations are ignored until one of the current
invocations completes. When an invocation which would not exceed
the concurrency is received, then the dispatcher function is called.

The channeZ_pZug function fills in the currently selected channel as
a plug, which is bound via the specified protocol to the capsule and
socket specified in the destination argument.

The channel-decrement function checks if the concurrency limit has
been reached for the current channel; if so it just returns FALSE,
otherwise it decrements the available concurrency and returns TRUE.

The channel-increment function
concurrency of the current channel.

increments the available.

The channelfree function frees the current channel for re-use and
disconnects all the sessions which are using it.

frees all the channels and The channel-cleanup function
disconnects all of its sessions.

capsules’s

FILES

EKRORS

SEE ALSO
INSTRUCT (XI), NUCLEUS (XI), SESSION (XI).

USAGE
Channel init is called by the main program in the nucleus during
capsuleinitialization. Channel-make, channel-socket and
channelqlug are only called by nucZeus_socket and nucleusglug.
Channel-select and channeZ_seZectType are called by nucleus,
schedule and session. Channel-decrement and channel-increment
are only called by schedule before and after dispatching an
invocation. Channelf ree is only called by nucleus-withdraw and
nucleus discard. Channel cleanup is only called by the Terminate -
and Abort instructions during capsule termination.

ARM XI,1 l/ 9 (Release 01.00)

Internal

Functions ANSA Reference Manual CHANNEL(X1)

~YJIIHW rmuwrrorvs
Export stamps will be added.

CHANGEHISTORY

Date Release Pages Changes

1~04,‘88 1 Version 1.0 1 I initial release

16’12:‘88 / Version 2.o /

Completely redesigned as an internal

/ provided by the nucleus.
module with all external interfaces

ARM XI,lli 10 (Release 01.001

Internal
Functions ANSA Reference Manual ECS(XI)

NAME
ECS - synchronization support with eventcounts and sequencers.

PURPOSE
Provides primitives for controlling the relative ordering of
concurrent thread execution within a capsule.

SYNOPSIS
#include "capsu1e.h"
#include "ecs.h"

typedef struct ecrec {
Counter tag ;
ThreadId que ;

) ECRec ;

typedef struct sqrec {
Counter tag ;

) SqRec ;

typedef ECRec *EventCount ;

typedef SqRec *Sequencer ;

EventCount ecs_makeEventCount (Cardinal

Status

Counter

iv) ;

ecs_freeEventCount (EventCount ec) ;

ecs read - (EventCount ec) ;

void ecs await - (EventCount ec ,
Counter v) ;

void ecs_advance (EventCount ec) ;

Sequencer ecs_makeSequencer (Cardinal iv) ;

Status ecs_freeSequencer (Sequencer sq) ;

Counter ecs ticket - (Sequencer sq) ;

Counter ecs castcounter - (Cardinal c) ;

#define ecs_makeEventCountO ecs_makeEventCount ((Cardinal)O)

#define ecs_makeSequencerO ecs_makeSequencer ((Cardinal)O)

ARM X1,11/ 11 (Release 01.01)

Internal
Functions ANSA Reference Manual ECS(X1)

The ecs makeEoentCount function allocates and returns a pointer
of type LentCount to an ECRec record. The tag field is initialized to
the value of iv, and que is set to the dummy (zero) ThreadId. If
insufficient memory is available to allocate the record, a NULL

pointer is returned.

The subsidiary definition ecs_makeEuentCountO operates
identically, except that the tag value is initialized to zero.

The ecsfreeEuentCount function disposes of an eventcount if its
associated queue is empty and returns ok, otherwise resourceInUse
is returned.

The ecs_read function returns the current value of the eventcount
ec.

The ecs - await function suspends the calling thread if the value of
the eventcount ec is less than the parameter v. Threads are set into
the WAITING state and placed onto a queue associated with the
eventcount prior to scheduler-r ! being called.

The ecs advance function increments the current value of the
eventcount ec by one and reawakens one or more threads on the
associated queue which are awaiting the value just attained.

The ecs_makeSequencer function allocates and returns a pointer of
type Sequencer to an SqRec record. The tag field is initialized to the
value of iv. If insufficient memory is available to allocate the
record, a NULL pointer is returned.

The subsidiary definition ecs_makeSequencerO operates
identically. except that the tag value is initialized to zero.

The ec:;_f we e uencer function disposes of a sequencer and returns S q
ok.

The ecs ticket function returns the current value of the sequencer -
sq and increments its value by one.

The ecs_castC’ounter function returns the value of its argument of
type CardinalcasttotypeCounter.

ARM X1,11< 12 (Release 01.01)

Internal
Functions ANSA Reference Manual ECS(X1)

ERRORS

SEE ALSO
SCHEDULE (XI), THREAD (XI).

USAGE
These synchronization primitives are to be used in generated stubs
to provide support for declarative path expression interface
constraints.

FUTURE DIRECTIONS
This design is predicated on the use of non-preemptive scheduling
and relies on mutual exclusion guarantees given by the current
single processor environments of the testbench. Ports to multi-
processor machine environments will require explicit low-level
mutual exclusion mechanisms.

CHANGE HISTORY

Date Release Pages Changes

813189 Version 2.5 initial release

ARM X1,11/ 13 (Release 01.01)

Internal
Functions ANSA Reference Manual IDCACHE(X1)

NAME
Idcache - cache of InterfaceId to plug mappings

PURPOSE
These routines maintain a cache of InterfaceId to plug mappings.
Entries are made to the cache whenever an interface is imported or
if a remote invocation is made on an InterfaceRef which does not
have an entry in the cache.

In actual fact, the cache is indexed by InterfaceId and operation
number; such a structure permits multiple plugs per imported
interface.

Future releases may
made in the cache.

provide additional situations are

SYNOPSIS
#include <ansa/ansa.h> /* or "capsu1e.h" */
#include "idcache.h"

void idcache_init (void) ;
int idcache_add (InterfaceId id,

Cardinal
ansa_ChannelId %j ;

void idcache de1 - (InterfaceId id) ;

ansa_ChannelId idcache_map (InterfaceId id,
Cardinal op) ;

DESCRIPTION
idcache i ni t() initializes the cache, and is invoked during capsule -
initialization.

idcache - add() adds an entry to the cache corresponding to the
specified InterfaceId and operation number. If an entry currently
exists for that (InterfaceId, op) pair, all entries corresponding to
that particular InterfaceId are purged from the cache before making
the addition.

idcache de1 () purges all entries in the cache corresponding to the
specified InterfaceId.

idcache map0 scans the cache for the entry corresponding to the -
specified InterfaceId and operation number. If successful, the
corresponding channel is returned as the value of the function: if not
in the cache, the value (ansa_Channel Id)0 is returned.

ARM X1,11/ 14 (Release 01.011

Internal
Functions ANSA Reference Manual IDCACHE(X1)

FILES

ERRORS

SEE ALSO

USAGE
All uses of these routines in release 2.5 specify an operation number
Oin idcache_add() and idcache_map()calls.

FUTURE DIRECTIONS

CHANGE HISTORY

Date Release Pages Changes

10/4/89 Version 2.5 initial release

ARM X1,11/ 15 (Release 01.01)

Internal
Functions ANSA Reference Manual INSTRUCT(X1)

NAME
Instruct - executes the interpreter instructions

PURPOSE
Provides (or re-packages) those instructions required by ANSA
capsules but not provided by the host processor or operating system.

The distinction between instructions and operations is that
instructions perform those functions that must be provided by the
local capsule infrastructure and cannot be provided by separate
capsules. Instructions are not usually referenced directly by source
programs, but are executed by compiled or generated code.

On an ANSA processor, these instructions would be implemented in
hardware or microcode. In an ANSA operating system they would
be the system calIs.

SYNOPSIS
#include <ansa/ansa.h> /* or "capsu1e.h" */

#include "instruct.h"

ansa Status Call - (ansa_ChannelId plug9
ansa_BufferLink buffer) ;

ansa_Status Cast (ansa_ChanneId plug,
ansa_BufferLink buffer) ;

ansa_SessionId Request (ansa_ChannelId plug,
ansa_BufferLink buffer) ;

ansa Status - Collect _ (ansa SessionId promise) ;
ansa_Threadld Spawn (Dispatch *dispatcher,

ansa_BufferLink buffer) ;
ansa ThreadId Fork (Dispatch *dispatcher,

ansa_BufferLink buffer) ;
ansa Status - Join (ansa ThreadId -

ansa ThreadId Thread - (void) ;
void Pause (void) ;
void

void

Terminate (String
int

child) ;

message,
reason) ;

Abort (String module,
ansa Status reason) ; -

typedef void (Dispatch) (ansa_ChannelId socket,
ansa_BufferLink buffer) ;

,ZRM X1.11: 16 (Release 01.00)

Internal
Functions ANSA Reference Manual INSTRUCT(X1)

DESCRIPTION
The Call instruction transmits the request buffer to the capsule
bound to the other end of the channel referenced by the plug. The
calling thread is blocked until the corresponding response buffer is
received. The request and response buffers both use the same buffer
descriptor but the response buffer may have a different buffer
segment.

The Cast instruction transmits the request buffer to the capsule
bound to the other end of the channel referenced by the plug. The
calling thread is only blocked until the request buffer has been
processed.

The Request instruction transmits the request buffer to the capsule
bound to the other end of the channel referenced by the plug. The
calling thread is only blocked until the request buffer has been
processed. A promise is returned which may later be used by the
calling thread in a Collect instruction, which will block until the
associated response is available. The request and response buffers
both use the same buffer descriptor but the response buffer may
have a different buffer segment. Promises may be collected in any
order.

The Spawn instruction creates a child thread, which may be
processed concurrently, and which the parent thread never intends
to Join. The spawned thread will execute the dispatcher function
and unmarshall its arguments from the buffer. When the

dispatcher exits the spawned thread will terminate and the buffer
will be freed.

The Fork instruction creates a child thread, which may be executed
concurrently, and which the parent thread subsequently intends to
Jam in order to obtain its results. The forked thread will execute
the dispatcher function and unmarshall its arguments from, and
marshal1 its results into, the buffer. When the dispatcher exits, the
forked thread will block until its parent joins with it and then
terminate. The Fork instruction returns the thread identifier of the
child thread which may be used by the parent thread in a Join
instruction, which will block until the child thread has finished
executing and its response buffer is available. The request and
response buffers both use the same buffer descriptor but the
response buffer may have a different buffer segment.

ARM X1,11/ 17 (Release 01.00)

Internal
Functions ANSA Reference Manual INSTRUCT(XD

The Thread instruction returns the thread identifier of the calling
thread.

The Pause instruction polls for incoming messages and schedules
the calling task (and thread) on the end of the queue of tasks
waiting to run.

The Terminate instruction outputs a message on stderr of the
format:

:: capsule <id> terminated: <message> #<reason>

if the message argument is not NULL. It then performs the capsule
cleanup operations and exits with reason as the status code.

The Abort instruction outputs a message on stderr of the format:

<module> :: capsule <id> aborted: status <reason>: <text>

where the text string describes the reason. If reason is a system
error, it outputs a second line describing the system error. It then
performs the capsule cleanup operations and exits with reason as
the status code.

The Dispatch instruction is an up-call used by the interpreter to call
a dispatch procedure to service incoming invocations. Outgoing
response messages to incoming calls must use the same buffer
descriptor as the incoming request, but the buffer segment may be
changed. The outgoing response to a call is transmitted when the
dispatch function exits. Responses are not sent for casts.

FILES

ERRORS

SEE ALSO
Support Environment(X), BUFFER (XI), NUCLEUS (XI),

USAGE
Before a Call. Cast or Request instruction can be executed, a plug
must be created by nucleusglug. Calls and casts performed by the
same thread on the same plug are sequence preserving. Requests
are not sequenced.

Forked and spawned threads may be serialized if insufficient tasks
are provided (see nucleu.s_tashs) for their concurrent execution. In
particular, forked threads will be executed on their parent thread’s

ARM XT,11'18 (Release01.003

Internal
Functions ANSA Reference Manual INSTRUCT(X1)

task if they have not been assigned a task by the time their parent
executes the Join for them; and spawned threads may never be
executed if there are no free tasks and none of the existing threads
terminate.

Scheduling between threads (and the tasks executing them) is non
pre-emptive. The Pause instruction should be used in long compute
bound loops to allow the capsule to receive incoming messages and
service the other tasks.

Before a Dispatch instruction can be executed by the interpreter a
socket must have been created for it by nucZeus_socket.

The Abort instruction should only be executed by the internal
modules and, except for Pause, all other instructions should only be
executed by code generated by the preproccessor or stub generator.

FUTURE DIRECTIONS
Support for object groups will be added.

CHANGE HISTORY

Date Release Pages Changes

l/04/88 Version 1.0 initial release

16/12/88 Version 2.0 argument types made consistent with
<ansa/ansa.h>
non-blocking calls (Request and
CoZZect) added
multi-threading (Spawn, Fork, Join,
Thread and Pause) added
status code argument added to
Terminate

ARM X1,11/ 19 (Release 01.00)

Internal
Functions ANSA Reference Manual MPS TABLE(X1)

NAME
MPS - a generic interface for message passing services

PI KPOSE
Provides a standard interface between protocols such as REX and
GEX and locally available message passing services. A map
indicates which MPSs are loaded (aka the protocol stack). Each map
entry contains the address of a table containing the entry points for
each of the required MPS functions.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

typedef struct

c
Status (*mpsStartup) (CapsuleAdr *self,

Cardinal *extra);
Status (*mpsSendMsg) (char *pkt,

Cardinal psize,
CapsuleAdr *remcap);

Cardinal (*mpsReceiveMsg)(char *pkt,
Cardinal psize,

CapsuleAdr *remcap);

void (*mpsTick) (void);
void (*MpsCleanup) (void);
Cardinal maxSendUnit ;
Cardinal maxReceiveUnit ;
MpsTable;

MpsTable *mpsMap[] ;

DESCRIPTION
mpsStartup initializes the message passing service. It is called
during capsule initialization, it’s principal function is to ensure that
the MPS is functional and to acquire a unique address for this
capsuleiMPS combination. The port number may be specified in
self. Any necessary local resources (e.g. sockets under BSD style
networking) are also allocated.

On successful initialization two result values are provided, self
holds the capsule address used by this 3IPS and extra is set to the

number of bytes of header information which this YIPS requires.

ARkI X1,11/ 20 (ReleaseOl.Ol!

Internal
Functions ANSA Reference Manual MIPS TABLE(X1)

The port number
operation.

is notified to the interpreter via the protocol_open

The two message transfer routines take a pointer to a REX packet
buffer (pkt) and a pointer to a capsule address structure (remcap) as
par ameters. Each also takes a buffer size parameter, for
mpsSendMsg psize is the number of bytes to transmit, for
mpsReceiueMsg it is the maximum size of the buffer. The current
design relies upon REX to provide retry mechanisms to overcome
transient errors and so any error codes which are signalled should
reflect serious MPS failures.

mpsSendMsg attempts to send psi ze bytes of REX header and data
to the nominated capsule and host. , Returns transmitfailureor ok.

mpsReceiveMsg attempts to receive data waiting for this capsule
and returns the number of bytes received (0 means there wasn’t
any) and the capsule address of the source. If the data available
exceeds psize only the first psize bytes are copied into pkt, no
indication is given that this has happened and the MPS quietly
discards the excess.

mpsTick is called at irregular intervals to enable time related
activities to be scheduled, the minimum inter-tick period is
guaranteed by the interpreter.

mpsCZeanup is called to allow the MPS to do any
housekeeping before the capsule is shutdown.

necessary

The values of maxSendUnit and maxReceiueUnit are used by Rex to
determine how to fragment a message too large for a particular
MPS.

FtLES

EKROKS

SEE ALSO
MPSUDP(XI), MPSTCP(XI), PROTOCOL (XI), REX (XI).

ARM X1,11/ 21 (Release 01.01)

Internal
Functions ANSA Reference Manual MPS TABLE(X1)

USAGE
The functions for a particular MPS are called by an expression of the
form:

(*mpsMap[protocolIndex]->mpsTick)()

FUTUKE DIRECTIONS
This MPS interface has been developed on the socket interface to the
UDP/IP and TCP/IP protocols on various machines, other protocols
and different networking styles streams are being considered so as
to validate the general approach as well as the incorporation of
Error signalling.

CHANGE HISTOKY

Date Release

l/04/88 Version 1.0

16i12/88 Version 2.0

10/4/89 Version 2.5

Pages Changes

designed by E. Oskiewicz

designed by D. Oliver and E. Oskiewicz

addition of maxUnit fields to MPS
Table entry

ARM XI,1 I/ 22 (Release 01.01)

In tern al
Functions ANSA Reference Manual MPSIPC(XI)

NAME
MPSIPC - a message passing service interface to UNIX system V
named pipes.

PURPOSE
Implements the standard MPS interface between protocols such as
REX and GEX and UNIX system V named pipes. This provides
optimized transport for inter-capsule traffic when the capsules are
on the same UNIX host system.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

Status MPS_startup (CapsuleAdr *locp,
Cardinal *extra);

Status MPS_send (char *bufp,
Cardinal dlen,
CapsuleAdr *remp);

Cardinal MPS_receive (char *bufp,
Cardinal bmax,
CapsuleAdr *remp);

void MPS_decay (void);

void MPS_cleanup (void);

DESCRIPTION
MPS_startup initializes the IPC message passing service, tries to
create a named pipe in the /usr/tmp directory, and opens a file
descriptor to the named pipe. If successful, protocoZ_open is called
with the pin id equivalent to this file descriptor.

The named pipe is given the name ansa.%d, where the %d is replaced
by a formatted decimal number. If the port component of the
capsule address locp is non-zero that value is used, otherwise the
process id of the capsule is used. The remainder of locp is set to the
ASCII hostname.

On return, locp contains the complete capsule address and extra is
the size of the extra header required by this MPS for message
encapsulation (4 bytes).

ARM X1,11/ 23 (Release 01.00)

In ternal
Functions ANSA Reference Manual MPSIPC(X1)

MPS_send attempts to send dlen bytes of data in bufp via the
named pipe associated with the destination capsule remp. It always
returns ok, relying upon protocols such as REX or GEX above to
handle failures.

MPS_receiue performs a two-part read from the named pipe. First
the MPSIPC header is read to determine the remote capsule’s
process id, which is placed in remp, and the length of the message.
The message is then read into buf p and the number of bytes received
returned. If the message length exceeds bmax the capsule is
terminated, as this is a heinous protocol error.

MPS_decay is a null operation as MPSIPC has no relevant
housekeeping requirements.

MPS_cleanup is called just before the capsule expires to permit the
removal of the named pipe from /u sr/ tmp.

FILES

ERRORS

SEE ALSO
MPS TABLE (XI), REX (XI).

USAGE

FUTURK DIRECTIONS

CHANGE HISTORY

Date Release

16i12188 Version 2.0

Pages Changes

initial release

ARM XI.111 24 (Release 01.00,

Internal
Functions ANSA Reference Manual MPSTCP(XI1

NAME
MPSTCP - a message passing service interface to the ARPA
Transmission Control Protocol.

PURPOSE
Implements the standard MPS interface between protocols such as
REX and GEX and the Transmission Control Protocol (TCP) which
provides a connection-oriented transport service, layered above the
Internet Protocol (IP). This manual page describes MPSTCP for the
Berkeley socket abstraction.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

Status MPS_s.tartup (CapsuleAdr *locp,
Cardinal *extra);

Status MPS_send (char *bufp,
Cardinal dlen,
CapsuleAdr *remp);

Cardinal MPS_receive (char *bufp,
Cardinal bmax,
CapsuleAdr *remp);

void MPS_decay (void);

void MPS_cleanup (void);

DESCRIPTION
MPS - startup initializes the TCP message passing service and tries
to acquire a non-blocking socket with a queue for incoming
connection requests. If successful, protocol_open is called with the
pin id equivalent to this listening socket number.

If the port component of the capsule address locp is non-zero that
value is used, otherwise a port will be allocated by the system. The
remainder of locp is set to the IP host number of the machine.

On return, locp contains the complete capsule address and extra is
the size of the extra header required by this MPS for message
encapsulation.

MPS_send attempts to send dlen bytes ofdata in bufp via a socket
connected to the remote capsule remp, if no connection exists and

ARM X1,11/ 25 (Release 01.00)

Internal
Functions ANSA Reference Manual MPSTCP(X1)

resources are available a connection will be made. Always returns
ok and relies upon protocols such as REX or GEX above to handle
failures.

MPS_receiue’s behaviour is determined by value of the global
variable pin Index. If equal to the listening socket, and resources are
available, a request for connection is accepted and 0 returned.

Otherwise a connection exists and a two-part read is performed.
First the MPSTCP header is read to determine the remote capsule
address, which is placed in remp, and the length of the message. The
message is then read into bufp and the number of bytes received
returned. If the first read gets 0, then the connection is being
shutdown by the remote capsule and resources are released before
returning a value of 0. If the message length exceeds bmax the
message is discarded, but the actual length is still returned.

MPS_decay is called at regular intervals by the session handler
and initiates the close down of any connections which have not been
used during the previous interval.

MPS_cleanup is called just before the capsule expires to initiate
the close down of all connections and close the listening socket.

FILES

EKRORS

SEE ALSO
MPS TABLE (XI), REX (XI).

USAGE

FUTUKE I)IRECTiONS
The management of resources for all connection-oriented protocols
may be moved above the MPS interface.

CHANGE HISTOKY

AR31 X1,11/26 (Release 01.00)

Internal
Functions ANSA Reference Manual MPSTCP(X1)

I Date Release I Pages I Changes
I I

16/12/88 1 Version 2.0 1
I

initial release I

ARM X1,11/ 27 (Release 01.00)

Internal
Functions ANSA Reference Manual MPSUDP(X1)

MPSUDP - a message passing service interface to the ARPA User
Datagram Protocol.

PURPOSE
Implements the standard MPS interface between protocols such as
REX and GEX and the User Datagram Protocol layered above the
Internet Protocol (IP). This manual page describes MPSUDP for the
Berkeley socket abstraction.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

Status MPS_startup (CapsuleAdr *self,
Cardinal *extra .I;

Status MPS_sendMsg (char *pkt,
Cardinal psize,
CapsuleAdr *remcap);

Cardinal MPS_receiveMsg (char *pkt,
Cardinal psize,
CapsuleAdr *remcap);

void MPS tick - (void);

void MPS_cleanup (void);

DESCRCPTION
MPS_startup tries to acquire a nonblocking datagram socket, if the
user specifies a non-zero port in se 1 f that value is used; otherwise a
system provided port will be used. The port number is cached for
use with the other interface routines. The remainder of self is set to
the If’ host number of this machine; Extra is returned as zero, as
hlf?5Lf)P needs no additional encapsulation header space in the
buffers.

MPS_sendMsg attempts to send psize bytes of KEX header and
data to the nominated capsule and host. Returns transmi tFai lure or
ok.

MPS receweMsg accepts any data waiting for this capsule, it
returns the number of bytes received and the capsule address of the
source.

ARM X1,11/ 28 (Release 01.00)

Internai
Functions ANSA Reference Manual MPSUDP(X1)

MPS_tick and MPS cleanup are null operations as MPSUDP has
no relevant housekeeping requirements.

FILES

ERRORS

SEE ALSO
MPS (X0.

USAGE

FUTURE DIRECTIONS
Error signalling and the MaxMsg value need to be considered.

CHANGE HISTORY

Date 1 Release 1 Pages 1 Changes

l/04/88 1 Version 1.0 1

16/12/88 / Version 2.0 1

1 designed by E. Oskiewicz

I designed by E. Oskiewicz

ARM X1,11/ 29 (Release 01.00)

Internal
Functions ANSA Reference Manual NUCLEUS(X1)

NAME
Nucleus - resource allocation

PURPOSE
Provides an object-like interface to the host operating system and
capsule resource allocation functions. The nucleus also contains the
capsule’s main function.

SYNOPSIS
#include <ansa/ansa.h> /* or "capsu1e.h" */
#include "nuc1eus.h"

ansa Status nucleus tasks - - (Cardinal
Cardinal

extraTasks,
stacksize);

ansa_Status nucleus_socket (Cardinal concurrency,
Dispatch *dispatcher,
ansa_ChannelId *socketPtr);

ansa_Status nucleus_withdraw (ansa_ChannelId socket) ;
ansa_Status nucleusglug (ansa ProtocolId protocol,

ansa-Endpoint
ansaICapsuleId

destination,
client,

ansa_ChannelId *plugPtr);

ansa_Status nucleus_discard (ansa_ChannelId plug) ;
extern void body (int argc, char *argv[]) ;
ansa_CapsuleId nucleus_createCapsule (string type,

string arguments,
string properties) ;

void nucleus_deleteCapsule (ansa_CapsuleId id) ;

[)ESCRIPTlON
The nucleus-tasks function enables multi-tasking within the
capsule and creates extraTasks tasks with stacks of size stackSize
bytes. Tasks are anonymous and can be assigned by the interpreter
to execute any thread; but once assigned will not be re-assigned
until their thread terminates. Stacks must therefore be large
enough to execute any thread in the capsule and (because of nested
Forks) all of its offspring. All capsules start with one task, which
uses the main stack, nucleus tasks can then be called to increase the -
number of tasks. Because most systems only have mechanisms for
automatically expanding or detecting overflow on the main stack,

ARM XI,11~30(Release01.01)

Internal
Functions ANSA Reference Manual NUCLEUS(X1)

the sizes of any extra stacks should be generous. The nucleus
imposes a system specific minimum stack size; see “stack. h".

The nucleus_socket function allocates and initializes a socket. If
socketPtr addresses a zero index then a free socket is allocated and
its index returned, otherwise the specified socket is used. The
dispatcher argument specifies the address of the dispatch procedure
which is to service incoming invocations on the socket, and the
concurrency argument limits the number of invocations which may
be active on the socket at the same time.

The nucZeusgZug function allocates and initializes a plug. If
plugPtr addresses a zero index then a free plug is allocated and its
index returned, otherwise the specified plug is used. The
destination argument contains the (protocol specific) capsule
address and channel index of the socket, to which the new plug is to
be bound, and the protocol argument specifies the protocol stack to
be used for communicating with the socket. See "opt ions. h" for
those protocol stacks loaded in your capsule. The cl ient argument
must be zero or the calling capsule’s ID; it is there to allow for a
future out-of-capsule nucleus.

The nucleus_withdraw function cancels a prior nucleus_socket and
the nucleus_discard function cancels a prior nucleusqlug.

The nucleus also contains the function mazn for the capsule. This
performs capsule initialization and then calls the application
function body, passing on the arguments supplied to main by the
system. The capsule will not necessarily terminate when body exits,
because other threads may not have terminated and sockets may
still be active. The capsule will terminate silently with an exit
status of zero when all threads have terminated and all sockets have
been withdrawn. Premature termination with a message
specified exit status can be forced via the Terminate instruction.

and

The nucleus createcapsule fu
template specified by the type

nction creates a capsule
parameter, passing it the

from the
argument

string in the arguments parameter and initializing its environment
to the NAME=VALUE pairs specified in the properties parameter. If
successful, it returns the Capsu 1 e Id of the created capsule, otherwise
itreturns (ansa_CapsuleId)O.

The nucleus_deleteCapsule function causes the graceful termination
of the specified capsule.

ARM X1,11/ 31 (Release 01.01)

Internal
Functions ANSA Reference Manual NUCLEUS(X1)

FILES

ERRORS

SEE ALSO
BINDER (XI), CHANNEL (XI), INSTRUCT (XI).

USAGE
All capsules must supply a body function instead of a main function.
This will normally perform the application initialization, imports
and exports (which will result in calls to nucleusqzug and
nucleus_sochet) and create any extra tasks and threads required.
Server capsules would then normally exit the body function to await
incoming invocations on their sockets, but this is only required if no
extra tasks were created to service invocations concurrently with
body. Spawned threads will not be executed until a task becomes
free; in single-tasking capsules this means after body has exited.

FUTURE 1)IREC’I’IONS

CHANGE HISTORY

Date I Release I Pages I Changes

l/04/88

16/12188

10/4/89

Version 1 .O

Version 2.0

Version 2.5

initial release

function names changed according to
module naming conventions
argument types made consistent with
<ansa/ansa.h>
nucleus tasks and nucleusqlug added
Listen removed
mam moved to nucleus and replaced by
body in application

addition of capsule creation and
destruction routines

ARM X1,11/ 32 (Release 01.01)

Internal
Functions ANSA Reference Manual PIN(X1)

NAME
pin - local device control

PLJRPOSE
Provides a low level interface to the select system call for the
purpose of controlling local devices.

SYNOPSIS
#include <ansa/ansa.h> /* or "capsu1e.h" */
#include "protoco1.h"

void pin-open (PinId pin, void (*handler)()):

void pin-close (PinId pin);

DESCRIPTION
Pins are an abstraction of whatever local device identifiers are
provided by the host operating system (file descripters, sockets etc.).
They are not normally visible to applications programs and are
intended to increase the portability of the interpreter. Because the
interpreter polls or catches the interrupts of all local devices
attached to the capsule, special arrangements must be made for
applications which require direct control of local devices. Such
application device drivers must have intimate knowledge of the
device control mechanisms of the host operating system and are
therefore not portable.

The pin interface provides the minimum facilities for sharing the
device polling or interrupt mechanisms between the interpreter and
the application. All the device setup and control code must be done
by the application. The interpreter will merely notify the
application when there is incoming data available, it will not read it
or execute any other function on the pin.

The pi n-open function requests the interpreter to call
device hand 1 er whenever data is available for reading.

The pi n-c 1 ose function
device handler.

requests the interpreter to stop calling the

the supplied

FILES

ERRORS

ARM X1,11/ 33 (Release 01.01)

Internal
Functions ANSA Reference Manual PIN(X1)

SEE ALSO
PROTOCOL (XI), PROTOCOL TABLE (XI).

USAGE
A device handler with the following signature must be supplied by
the application:

void handler (PinId pin);

This handler is run as part of the interpreter and as such has no
thread or task dedicated to it. Therefore it must not use any of the
interpreter functions that assume a thread and task. The only
function that is safe to use is spawn.

If the handler wishes to use any other interpreter functions or be
scheduled with the rest of the application threads it must perform a
spawn function to acquire its own thread. If there are not sufficient
tasks available to run the thread its execution may be delayed for
some time. It is therefore advisable for the hand 1 er to close the pin
before doing a spawn in order to prevent multiple notifications of the
same event. The spawned thread must re-open the pin after it has
finished processing.

The following code fragments
read single key presses from s

void body0

illustra
tdin.

te the use of the pin handler to

(void)system("stty raw");
nucleus_tasks(l, 0); /* because we spawn a thread */
pin_open((PinId)O, handler); /* open pin for stdin */

.

pin_close((PinId)O);
(void)system("stty cooked");

void handler(pin)
PinId pin;

BufferLink buf;

/* remove handler to prevent repeat firings */
pin_close(pin);

ARM X1.11; 34 (Release 01.01)

Internal
Functions ANSA Reference Manual PIN(XI)

buf = buffer-make(O);
buf->data[O] = (char)pin;
buf->used = 1;

(void)Spawn(key, buf);
1

void key(skt, buf)
Channel Id skt;

BufferLink buf;

c
char rbuf[l28];

(void)read(O, rbuf, 1);
(void)write(l, rbuf, 1);

/* restore handler */
pin_open((PinId)buf->data[O], handler);

1

FUTURE DIRECTIONS

CHANGE HISTORY

Date
I

Release I
Pages

I
Changes

I

20/03/89 1 Version 2.5 1 I initial release I

ARM X1,11/ 35 (Release 01.01)

Internal
Functions ANSA Reference Manual PROTOCOL(XI1

NAME
Protocol - protocol stack handler.

PURPOSE
Provides housekeeping functions across all loaded protocol stacks.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

void protocol_init (void) ;

void protocol_open (PinEd new) ;

void protocol_close (PinId old) ;

void protocol_tick (void) ;

void protocol_cleanup (void) ;

DESCRIPTION
The protocoZ_mit function calls the startup function for each loaded
protocol stack.

The protocol open function adds the pin (UNIX socket, file
descriptor or similar i/o identifier) to the set on which incoming
messages can be read and processed.

The protocol_cZose function removes the pin from the set on which
incoming messages can be read and processed.

The protocol_tick function calls the MpsTick function for each
loaded MPS.

The protocol_cZeanup function calls the
loaded protocol stack.

cleanup function for each

F[LES

ERRORS

SEE ALSO
MPS TABLE (XI), PROTOCOL TABLE (XI), REX (XI).

ARM X1,11/ 36 (Release 01.001

Functions ANSA Reference Manual PROTOCOL(X1)

USAGE
ProtocoZ_init is only called by miin in nucleus. ProtocoZ_open and
protocoZ_cZose are called by the various MPSs. ProtocoZ_tick is called
by decaysession. Protocol_cleanup is called by the Terminate and
Abort instructions.

FUTURE DIRECTIONS

CHANGE HISTORY

Date I Release I Pws I Changes

16/12/88 1 Version 2.0 1 1 initial release

ARM X1,11/ 37 (Release 01.00)

Internal

Functions ANSA Reference Manual
PROTOCOL

TABLE(X1)

NAME
Protocol table - a generic interface for protocol handlers.

PURPOSE
The testbench is designed to operate on top of a wide variety of

protocols, the protocols available may vary but all are required to

provide the same basic service. A map indicates which protocols are
loaded. Each map entry contains the address of a table containing

the entry points for each of the required protocol functions.

SYNOPSIS
#include "capsu1e.h"
#include "protoco1.h"

typedef struct

Status (*startup) (void);
Status (*connect) (void);
Status (*receive) (void);
Status (*send) (void);
Status (*reply) (void);

Status (*cast) (void);
void (*reject) (void);
void (*disconnect) (void);
void (*cleanup) (void):
ProtocolTable;

ProtocolTable *protocolMap[];

DESCRIPTION
All operations are parameterless, the session and MPS to which the

current operation refers being held in a global data structures

indicated by session and protocol indices. In the case of the receive
operation the session is acquired when a valid incoming message

has arrived.

Startup is called to initialize the protocol and it’s protocol stack; it is
called once for each MPS in the protocol stack, no other protocol
operation will be invoked until all calls to startup have been made.

Each time it is called startup will notify the interpreter via

buffer_inzt of the buffer sizes required by this protocoliMPS
combination. An unsuccessful return code (= ok) indicates that this

combination is not available.

ARM X1.11, 38 (Release 01.00)

Internal
Functions ANSA Reference Manual

PROTOCOL
TABLE(X1)

Connect obsolete

Recezue is called to accept the next buffer from the current MPS. In
addition to the returned status code, a global variable sessionIndex
is set to a non-zero value if the interpreter has some action to take;
otherwise it is assumed that the protocol handler has swallowed any
message which arrived.

Send transmits a CALL message to the remote endpoint for the
current session. It does not block, the protocol handler will cope
with retries and acknowledgements. The interpreter will call
receive at some later time to collect the response.

Reply similar to send but transmits a REPLY message to the remote
endpoint for the current session.

Cast transmits a CAST message to the remote endpoint for the
current session.

Reject is used to make the protocol handler “forget” the last
message, it is intended to be used to erase any record of the arrival
of a CALL or CAST so that a retransmission can be processed as
though it were seen for the first time.

Disconnect tidies up the session prior to being discarded by the
interpreter

Cleanup is called once for each MPS immediately prior to the
capsule being shut down. The protocol should take the opportunity
to do any housekeeping required and to call the NPS cleanup
routine.

FILES

ERRORS

SEE ALSO
MPS TABLE (XI), PROTOCOL (XI), REX (XI).

USAGE
The functions for a particular protocol are called by an expression of
the form:

(*protocolMap[protocolIndexj->send)()

ARM X1,11/ 39 (Release 01.00)

Internal
Functions ANSA Reference Manual

FUTUREDIRECTIONS

CHANGEHISTORY

PROTOCOL
TABLE(X1)

I Date Release Pages Changes
I

I 16/12/88 Version 2.0 initial release designed by D. Oliver, E.
Oskiewicz. I

ARM X1,11/ 40 (Release 01.00)

Internal
Functions ANSA Reference Manual REX(X1)

NAME
REX - an RPC interface to enable object interaction.

PURPOSE
Provides an RPC service which conforms to the standard interface
for remote interaction, regardless of the underlying message
passing service.

SYNOPSIS
Status rex_startup (void);

Status rex_send (void);

Status rex_reply (void);

Status rex_cast (void);

Status rex_receive (void);

Status rex_connect (void);

void rex_disconnect (void);

void rex_reject (void);

void rex_cleanup (void);

void rex_printstats (FILE *fd);

DESCRIPTION
These operations are used by the interpreter to invoke REX activity.
With the exception of rexprintstats, they are invoked via the
protocol table and are parameterless (because all pertinent details
are recorded in global data structures).

Rex-startup ensures that REX and its message passing services are
initialized and available for use. Each MPS allocates a unique id for
this capsule and also indicate their maximum packet size and
header requirements.

REX provides three message sending operations: ren_send,
rex_cast, and rex_repZy. These are all non-blocking, i.e. they
return when the message has been sent or a locally detectable error
occurs. Buffers which are too big to be sent in one packet are
transparently sent as a stream of fragments. Some hardware
architectures limit the maximum size of a standard contiguous
region of memory and this will limit the sizes of buffer which may be
sent or received.

ARMXI,ll/ 41(Release01.00)

Internal
Functions ANSA Reference Manual REX(X1)

Rex-send
return.

is used to send a call message, a reply is expected in

Rex-reply is used to send the reply to a call.

Rex-cast is used to send a cast message for which no
acknowledgement or reply is expected. Although rex_cast returns
the same error codes as rex send this is intended as advice because
no error recovery will be attempted by REX.

There is one message reception operation:

Rex_receiue is used to accept and predigest incoming messages. It
will quietly assemble fragmented buffers, discard erroneous
messages and retransmissions and send acknowledgements.

The outcome of rex receive depends on three reply values, a status
code, a session index and the state of the session referenced by the
session index. If the message requires further action by the
interpreter then sessionIndex is non zero, otherwise there is
nothing further for the interpreter to do.

The decision to call rex receive is made by the interpreter which
uses the select system caTto poll the capsule’s socket.

There are four housekeeping operations:

Rex-connect is a null operation, it always returns ok.

Rex-disconnect is called to to do housekeeping before a session is
discarded, it’s main actions are acknowledging unanswered
messages and disarming unfired alarms.

Rex_reJect is used by the interpreter to cause REX to forget casts or
unacknowledged calls which have been received. This involves
discarding buffers and resetting sequence numbers.

Rex-cleanup is called prior to capsule termination, this releases
any resources acquired and calls the current MPS cleanup routine.
It also calls rexdrmtstats.

There is an additional operation, intended for developers:

rexJrmtstats, if statistics gathering is enabled, causes REX ta
dump statistics about messages sent and received and errors
detected; otherwise it has no effect.

The following
timer fires:

timer operations are called when a REX initiatec

ARM XI,1 l! 42 (Release 01.00)

Internal
Functions ANSA Reference Manual lWX(XI)

Rexdow is used to control the rate of transmission of fragments,
this timer is armed when the first fragment is sent. Each time
rexfzow is called it sends the next fragment of the current buffer.
When the last fragment has been sent it arms a flow probe timer,
otherwise it re-arms the flow timer.

RexflowProbe is used to solicit a fragnack by retransmitting the
first fragment (up to some threshold).

Rex_checkFragmentProgress is called when progress is not being
made in a fragmented transfer. It constructs and sends a fragnack,
if a threshold of unanswered fragnacks is exceeded, the incoming
message is abandoned.

Rex-retry is called when a timeout occurs. This timer is armed
whenever a reply is expected in response to a message sent. Each
time rex -retry is called it resends the message and rearms the retry
timer (subject to limits determined at compilation time).

The REX procedures make use of an interface to an idealized
message passing service (see MPS TABLE (XI)) to insulate them-
selves from the protocols, topology and hardware used by lower
layers.

FILES

ERRORS

SEE ALSO
INTERPRET (XI), MPS TABLES(XI), MPSUDP(XI), MPSTCP(X1).

USAGE

FUTURE DIRECTIONS

CHANGE HISTORY

ARM X1,11/ 43 (Release 01.00)

Internal
Functions ANSA Reference Manual REX(X1)

Date
I

Release
I Pages Changes

l/04/88 1 Version 1.0 1
1

16/12/88 1 Version 2.0 1

1 written by E. Oskiewicz
I

written by E. Oskiewicz

ARM X1,11/ 44 (Release 01.00)

Internal
Functions ANSA Reference Manual SCHEDULE(XI)

NAME
Schedule - controls task, thread, message and alarm scheduling

PURPOSE
Provides a comprehensive scheduling service for a capsule. Waiting
messages are read and processed, alarms processed, threads woken
or dispatched, threads assigned to tasks and tasks executed or
resumed.

SYNOPSIS
#include "capsu1e.h"
#include "schedu1e.h"

void schedule (void) ;
void schedulego (void) ;

DESCRIPTION
The schedule function assigns free tasks to execute queued threads,
resumes unblocked tasks, receives incoming messages and processes
alarms. If the calling thread/task is ever resumed, schedule will
return. If the tailing thread has finished its execution, both the
thread and task should be freed before calling schedule.

The schedule_poll function reads any queued messages and queues
(wakes or dispatches) a thread to process each one, before returning.

FILES

ERRORS

SEE ALSO
INSTRUCT (XI), NUCLEUS (XI), REX (XI).

USAGE
The schedule function is called by those instructions that block the
calling thread, or by the nucleus when the execution of the calling
thread is complete. The scheduleqoll function is only used by the
Pause instruction before waking its calling task and calling
schedule.

ARM XI,1 1/ 45 (Release 01.00)

Internal
Functions ANSA Reference Manual SCHEDULE(XI)

FUTURE DIRECTIONS

CHANGE HISTORY

(16?12/88~ Version2.0 /

Date Release

l/04/88 Version 1.0

Pages Changes

initially released as part of INTERPRET

1 schedule split off into its own module
scheduleqoll function added to
support the Pause instruction

ARM X1,11/ 46 (Release 01.00)

In ternal
Functions ANSA Reference Manual SESSION(X1)

NAME
Session - manages the capsule’s session table.

PURPOSE
Provides the storage and management of communications session
data. A session is a temporary association between two
communications endpoints whose lifetime is suficiently long that
all the required guarantees and constraints can be maintained.
Session table entries are purged after they have been dormant long
enough to guarantee that there are no messages still in transit.
(Strictly speaking each capsule only manages its own half-session.)

SYNOPSIS
#include "capsu1e.h"
#include "sessi0n.h"

void

Status

void

Status

Status

void

Boolean

void

void

void

void

void

void

void

Time

Action

session_init

session_invalid

session select -

session_selectOutgoing

session_selectIncoming

session setState -
session_testFlag

session_setFlag

session_clearFlag

session decrement -
session attachBuffer -
session detachsuffer

session setAlarm

session clearAlarm -
session readAlarm -
session_triggerAlarm

(void) ;
(SessionId index) ;
(SessionId index) ;

(ChannelId sourcechannel,
Cardinal sequencing) ;
(ChannelId destchannel,
SessionId destsession,
Endpoint *sourceEndPtr,
SessionId sourceSession
InterfaceId ifID) ;

(SessionSt new) ;
(Cardinal flag) ;
(Cardinal flag) ;
(Cardinal flag) ;

(void) ;
(BufferCink buffer) ;
(void) ;

(MilliSecs delay,
Action action) ;
(void) ;

(void) ;
(void) ;

ARM X1,11/ 47 (Release 01 .Ol)

Internal
Functions ANSA Reference Manual SESSION(X1)

void session_disconnect (void) ;

DESCRIPTION
The session_init function creates and initializes the session table.
This is later expanded by session_seZectOutgoing and
session_seEectIncomtng as required.

The session_inuaZzd function checks if the session index is out of
range.

The session_seZect function checks if the
and then selects the indexed entry as the current

index is in range
one by setting the

global variables sessionIndex to its index and sessionptr to its
address.

The session seZectOutgotng function selects the session table entry
for the specified channel and current thread; either by locating an
existing one or by creating a new one. If the sequencing argument is
SEQUENCED then invocations of the same channel by the same thread
are sequence preserving; otherwise if it is UNSEQUENCED then there
are no sequencing guarantees which need to be preserved.

The session_selectIncoming function selects the session table entry
for the message just received; either by locating the specified session
or, if it has been re-used, by creating a new one.

The sesston_setState function changes the current session’s state
and if the new state is IDLE sets the decay alarm.

The session_testFlag, session_setFlag and session_clearFlag
functions perform the obvious operations on one of the current
session’s flags without disturbing the others.

The sesston_decrement function decrements the current session’s
sequence number after a message has been rejected so as to avoid
rejection of a re-transmission as a duplicate.

The session_attachBuffer and session_detachBuffer functions attach
and detach a buffer to the current session, freeing or swapping any
existing buffers according to the session state.

The session_setAlarm, session_clearAlarm, sesston_readAlarm and
session triggerAlarm functions control the alarm for the current -
session. Session_setAZarm aborts if an alarm is already set, but
session clearAlarm will re-clear a cleared alarm.
Session_readAZarm non-destructively reads thew first alarm set.
Session_triggerAZarm clears the first alarm that has fired and

ARM X1,11/48 (Release 01.01)

Internal
Functions ANSA Reference Manual SESSION(X1)

returns a pointer to the action function specified to
session setAlarm. -

The session_disconnect function arranges for the disconnect
function of the current session’s protocol to be called when the
session state becomes IDLE and to free the session.

FILES

ERRORS

SEE ALSO
INSTRUCT (XI), NUCLEUS (XI), REX (XI).

USAGE
Sesszon_init is only called by the main function in the nucleus.
Sesslon_selectOutgoing is called by those instructions that
implement inter-capsule communications. Session_~eZectIncoming
is called by the protocol handlers as soon as they receive a message.
Session_disconnect is only called by channel_cEeanup.

FUTURE DIRECTIONS
Currently sessions are only robust in the face of passive
communication failures. To survive malicious attacks,
challenge/response functions within a secure protocol are required
for the re-establishment of dormant sessions.

CHANGE HISTORY

I Date Release Pages
I I

l/04/88 1 Version 1.0 1
I

initially released as part of INTERPRET

16112188 Version 2.0 completely redesigned as a separate
module

lo/O4189 Version 2.5 addition of ifID to selectIncoming

ARM X1,11/ 49 (Release 01.01)

Internal
Functions ANSA Reference Manual STACK(XD

NAME
stack - stack handler.

PURPOSE
Provides register dumping and stack switching functions to support
multi-tasking. The implementation of multi-tasking is designed to
use the standard C library functions setjmp and longimp whenever
possible so as to increase portability by avoiding assembler code for
register manipulation. The actual switching of stacks is done by
altering the saved values of the stack front and stack frame
registers in the RegDump before calling stack-switch. Unfortunately,
some implementations of longlmp check that Zongjmp is being called
by a more deeply nested function than setjmp. For these systems,
equivalent assembler routines must be written; otherwise the stack
functions are just macro definitions of setjmp and Zongjmp.

SYNOPSIS
#include "stack.h"

int stack-dump

void stack-switch

(Regllump env) ;
(RegDump env, int val) ;

DESCRIPTION
See setjmp and Zonglmp in the UNIX manual.

FILES

ERRORS

SEE ALSO
SCHEDULE (XI), TASK (XI), THREAD (XI).

USAGE
Stack-dump is only used to define the task-dump macro.
Stack-switch is only used by task_swltch and task_dzspatch.

FUTURE DIRECTIONS

CHANGE HISTOKY

ARM X1,11/ 50 (Release 01.00)

Internal
Functions ANSA Reference Manual STACK(X1)

Date Release Pages Changes

16112188 Version 2.0 initial release

ARM X1,11/ 51 (Release 01.00)

Internal
Functions ANSA Reference Manual SYSTEM(X1)

NAME
System - interfaces to the host operating system.

PURPOSE
Provides indirect access to the necessary functionality of the host
operating system. The only other modules which call the host
operating system directly are the various MPS modules.

SYNOPSIS
#include "capsu1e.h"

#include "system.h"

void system_init (void) ;
Cardinal *system-allocate (Cardinal bytes) ;

Cardinal *system-extend (Cardinal *pointer,
Cardinal bytes) ;

void

Set

void

system-free (Cardinal *pointer) ;

system-wait (Time alarm) ;
system_HtoN

void system_NtoH

int

void

int

void

void

system_ipc heq (u char *al, -
Cardinal 11,
u char *a2,
Cardinal 12) ;

system_genIfID (InterfaceId ifID) ;

system_cmpIfID (InterfaceId ifl,
InterfaceId if2) ;

system_copyIfID (Interfaceid to,
InterfaceId from) ;

system_putIfID (char *bf,
InterfaceId ifID) ;

void system_getIfID (char *bf,
InterfaceId ifID) ;

int system_allocateRef

void system_freeRef

(Cardinal
CapsuleAdr

(Cardinal
CapsuleAdr

type,
*ca) ;

type 9

*ca) ;

(InterfaceId id,
AddressHint ah,
InterfaceRef *ref) ;

(InterfaceRef *ref) ;

ARM XI,1 li 52 (Release 01.01)

Internal
Functions ANSA Reference Manual SYSTEM(X1)

Cardinal system-time (void) ;

DESCRIPTION
The system-i& function performs system specific initialization.

The system_aZZocate function allocates an area of memory which is
at least the requested number of bytes long. The system-extend
function extends a previously allocated area to the requested size; if
extension in-situ is not possible, a new allocation will be made, the
contents of the old area will be copied to the start of the new one and
the old area freed. If successful both functions return a (word-
aligned) pointer to the area; otherwise they return NULL. Neither
function initializes the newly allocated or extended memory.

The systemfree function
extended area of memory.

de-allocates a previously allocated or

The system-wait function performs a timed-out read of the capsule’s
i/o pins (UNIX sockets, file descriptors, TSAPs etc.). The exact
nature of a specific pin is known only by the system and MPS
modules. The protocol module keeps track of which pins are in use
and which protocol stack is servicing each pin. System_wait returns
the set of pins for which there are messages waiting to be accepted;
if the alarm triggered, this set will be empty.

The system HtoN function and the system_NtoH function cause any
structureditems in a capsule address to be converted from host to
network format and network to host format, respectively. The
system_qc_heq function compares two IPC addresses, returning 0 if
they are the same, non-zero if they are different.

The system_genlflD function generates a new InterfaceId. The
system_cmpIflD function compares two InterfaceId’s, returning 0 if
they are the same. The system_copylflD function copies the value of
from to to. The system_putlfID function creates a string
representation for the InterfaceId in the buffer provided, while the
systemxetlflD function creates an InterfaceId from the string
representation in bf.

The system_alZocateRef function generates an InterfaceRef from the
InterfaceId and AddressHint provided, returning a pointer to the
allocated InterfaceRef. The return value of the function is 1 if
successful, 0 if not. The systemfreeRef function returns storage
allocated in a previous call to system_ulZocateRef.

ARM X1,11/ 53 (Release 01.01)

Internal
Functions ANSA Reference Manual SYSTEM(X1)

The system-time function returns a representation of the current
time as a Cardinal. The units of this value is deemed to be seconds.

FILES
MASTER-FILE (definedin options.h,

but normally /usr/local/etc/ansa/masteraddress)

TRADER-FILE (definedin options.h,
butnormally /usr/local/etc/ansa/traderaddress)

If MASTER-FILE exists, it is assumed to contain the address of the
master trader to be used by capsules on this host, overriding the one
in 0ptions.h. If TRADER-FILE exits, it is assumed to contain the
address of the default trader to be used by capsules on this host,
overriding the one in opt ions. h. A trader address is an ASCII string
in the same (protocol specific) format as the definition of
TRADER-ADDRESS in options. h, but without the enclosing double
quotes.

ERRORS

SEE ALSO
MPS (XI), PROTOCOL (XI).

USAGE
System_init is only called by the main function in the nucleus and
must be the first initialization function called. System-wait is only
called by schedule. System allocate, system-extend and systemfree
are a repackaging of the Clibrary routines malloc, rea2Zoc and free
to use word aligned pointers and provide a single monitor point for
memory usage.

FUTURE DIRECTIONS

CHANGE HISTORY

Date Release
I

Pages Changes

16/12/88 Version 2.0

10/4/89 Version 2.5

initial release

addition of InterfaceId, InterfaceRef
and time routines

ARMXI,ll/ 54(Release01.01)

Internal
Functions ANSA Reference Manual TASKGSI)

NAME
Task - multi-tasking support.

PURPOSE
Provides the task management functions required to execute more
than one thread at a time. A thread is an independent execution
path which can be executed concurrently with other threads. While
a thread is being executed, it requires a stack to store local variables
and function return links; when a thread is blocked, it requires a
register dump area to save the processor state so that the processor
can execute another thread.

A thread only needs a register dump and stack while executing;
these are provided by a task so that an executing thread may be
blocked to allow other tasks to execute their threads. Tasks are
significant resources and their unrestricted creation can easily
exhaust the available memory. Therefore the number of tasks in a
capsule is controlled by the application via the nucleus-tasks
function.

This restriction on the number of tasks is dealt with by serializing
the execution of any excess threads. A deadlock may occur if an
executing thread blocks waiting for a thread which has not started
executing due to resource limitations. This is avoided by nesting
the execution of the thread being waited for, on the task of the
waiting thread. In the current implementation, this can only occur
if a parent thread tries to join with a child thread which has not
started executing. Because of this thread nesting, the stack sizes
should be calculated on the basis of executing all potential offspring
on the same task.

SYNOPSES
#include "capsu1e.h"
#include "task.h"

void

void

task_init

task-setup

(void) ;

(void) ;

Status task-make (Cardinal extraTasks,
Cardinal stackSite) ;

void task-select (TaskId index) ;

void task-wake (TaskId index) ;

void task_setThread (void) ;

ARM X1,11/ 55 (Release 01.00)

Internal
Functions ANSA Reference Manual TASK(X1)

int task-dump (void) ;

void task-switch (void) ;

void task-dispatch (void) ;
void task-free (void) ;

DESCRIPTION
The tush init function creates and initializes the task table to
contain the dummy (zero) entry and an entry for the capsule’s initial
task which uses the main stack. The taslz,setup function sets up the
initial stack dump for task 1 by copying the dump for the dummy
entry and saving the stack front and stack frame pointers.

The tush-m&e function creates and initializes extra tasks.

The task-select function makes the specified task table entry the
current one by setting the global variables taskIndex to its index
and taskPtr to its address. _

The task_wake function puts the specified task onto the end of the
queue of tasks that are eligible for execution.

The ta.sk_setThread
current task.

function assigns the current thread to the

The tusk-dump function dumps the registers in the current task’s
dump area. The exit from the initial call of tusk-dump will return a
zero result; subsequent exits from task dump caused by task-switch -
will return a non-zero result.

The task_switch function dequeues the first task that is eligible for
execution, selects it and switches to its stack, resuming execution by
restoring the registers and simulating another exit with a non-zero
result from the last task-dump executed on that stack.

The task_dispatch function dequeues the first task from the pool of
free tasks and starts the execution of its assigned thread by
selecting it and its thread, re-initializing its register dump by
copying the dump from the dummy task, resetting the stack front
and stack frame registers in the dump and then simulating a
task_switch to the original task-dump in main, which has a
thread-execute call following its non-zero return branch.

The taskfree function puts the current task into the pool of free
tasks and then checks if there is any more work for the capsule to do.

ARM X1,11/ 56 (Release 01.00)

Internal
Functions ANSA Reference Manual TASK(X1)

If there are no active tasks, threads queued for execution or open
sockets, then the capsule is terminated.

FILES

ERRORS

SEE ALSO
NUCLEUS (XI), SCHEDULE (XI), STACK (XI), THREAD (XI).

USAGE
Tash_init and tash_.setup are only called by the main function in the
nucleus. They must be separated only by a call of task-dump. This
is done so that the register dump can be taken at the top level.
Task-make is only used to implement nucleus-tasks. Task-dump is
only used in mavt and schedule. Task-dispatch and task-switch are
only used in schedule.

FUTURE DIRECTIONS

CHANGE HISTORY

IDate/ p-I Pages / Changes

1 16/12/88 1 Version 2.0 1 I initial release I

ARM X1,11/ 57 (Release 01.00)

Internal
Functions ANSA Reference Manual THREAD(XD

NAME
Thread - multi-threading support.

PI RPOSE
Provides the thread management functions required to support the
execution of more than one thread at a time. A thread identifies an
independent execution path which can be executed concurrently
with other threads. Threads are created as a result of Fork and
Spawn instructions or incoming invocations (Dispatch). There is no
limit imposed on the number of threads that can be created in a
capsule, but the number of active threads allowed on each socket is
specified by the application when the socket is created.

SYNOPSIS
#include "capsu1e.h"

#include "thread.h"

void thread_init (void) ;

void thread-select (ThreadId index) ;

Status thread-invalid (ThreadId thread) ;

ThreadId thread-parent (ThreadId thread) ;

ThreadSt thread-state (ThreadId thread) ;

void

void

void

thread_setState (ThreadSt new) ;

thread_setSession (void) ;

thread-queue (ThreadId
ThreadId

*head,
thread) ;

ThreadId thread_dequeue (ThreadId *head) ;
void thread wake (ThreadId thread) ; -
ThreadId thread-dispatch (ThreadId parent,

Dispatch *dispatcher,
ChannelId socket,
BufferLink buffer,
void (*epilogue)()) ;

void

void

thread-execute (void) ;

thread-nest (ThreadId child) ;

void thread-free (void) ;

ARM X1,11/ 58 (Release 01.00)

Internal
Functions ANSA Reference Manual THREAD(X1)

DESCRIPTION
The thread-i& function creates and initializes the thread table to
contain the dummy (zero) entry and an entry for the capsule’s initial
thread.

The thread-select function makes the specified thread table entry
the current one by setting the global variables threadIndex to its
index and threadPtr to its address.

The th
range.

read-invalid function checks if the index is out of

The threadgarent function returns the parent of the specified
thread.

The thread-state function returns the state of the specified thread.

The thread_setState function changes the current thread’s state.

The thread_setSession
current thread.

function assigns the current session to the

The thread-queue function
the specified queue.

puts the specified thread onto the end of

The thread_dequeue function dequeues and returns the first thread
from the front of the specified queue. If the queue was empty then a
zero index is returned.

The thread wake function wakes up the task that the specified
thread is assigned to.

The thread-dispatch function creates a new thread, initializes it and
queues it waiting for a free task to execute it. The socket and buffer
arguments are passed to the dispatcher function and the epilogue
function is called after the dispatcher has returned in order to
perform any required termination operations, such as waiting for its
parent to join it or sending a reply.

The thread-execute function executes the current thread on the
current task by calling its dispatcher and epilogue functions.

The thread-nest function takes the child thread off the thread
queue, executes it on the current task and then returns to the parent
thread.

The threadfree function puts the specified thread into the pool of
free threads,

ARM X1,11/ 59 (Release 01.00)

In ternal
Functions ANSA Reference Manual THREAD(X1)

FILES

ERRORS

SEE ALSO
INSTRUCT (XI), SCHEDULE (XI), TASK (XI).

USAGE

FUTURE DIRECTIONS

CHANGE HISTORY

b

Date Release Pages Changes I

1 16/12/88 1 Version 2.0 1 I initial release I

ARM X1,11/ 60 (Release 01.00)

Part XI

Chapter 12

Installation

This chapter describes the installation
ANSA Testbench has been ported.

procedures for systems to which the

12.1 UNIX

12.1.1 The testbench distribution tape

The testbench software is delivered on a tar format cartridge tape and has
been checked on a SUN 3~10 running SUI-IOS~ and a Hewlett Packard 9000
model 350 running HP-LX'.

The tape contains C language sources for the interpreter, the nucleus, REX,
the trader, the stub compiler, and the distributed processing language pre-
processor. An installation script is provided to enable these files to be
unpacked and compiled. Some test programs are also provided to ensure that
the installation was successful.

To run the script and do a successful installation of the testbench, the
following programs need to be available:

/bin/sh, /bin/csh (Bourne and C shells), ar, as, awk, cat, cc,
cp, date, echo, In, make, mkdir, mv, pwd, ranlib, rm, tee, yacc

The testbench also requires the UDP protocol, and/or the TCP protocol, and/or
named pipes in order for REX to work.

12.1.2 Preparing to read the tape

In order to successfully complete the installation process you must:

1)
2)
3)
4)

decide where to place the testbench source, include and library files
determine which host on your network will be running the trader
determine your system type (currently one of sun, hpux, or m6000)
determine which MPS modules you wish supported

‘SunOS is a trademark of Sun Microsystems
‘If P-LX is a trademark of Hewlett-Packard Company

ARM XI, 12 / 1 (Release 01.01)

ANSA Reference Manual

5) determine the device which contains the installation tape.

These options are discussed below.’

12.1.2.1 The testbench logical root directory

This directory will be used to contain all the testbench sub-directories and
used as a source of libraries and header files by application programmers and
developers. We recommend that you use:

/usr/local

Your chosen directory must be your current working directory when you
read the distribution tape. Whichever directory you choose must be readable
by all users who need to access the testbench files and will have the following
sub-directories created if they do not already exist:

src, lib, include, etc, bin

12.1.2.2 The trader host

The host machine chosen to support the trading service must be decided
before the installation process begins. The host chosen must be accessible by
all machines running the testbench and must be suitable for supporting a
pivotal network service, i.e. it should be a reasonably stable machine which
is not unduly subject to crashes or reboots. You must provide the host’s name
during the installation process and it must be the same for all machines on a
given network.

N.B. the installation script is unable to detect if you provide a bogus host name.
The name given must be a legitimate host name which matches the entry in
letclhosts exactly, case is significant. If you provide an unsuitable name the
installation process will complete but the resulting library will be useless.

12.1.2.3 The host system

The testbench must be built afresh for each system type. Currently the
installation should work without modification for SUN and HP-CX systems.
The system type chosen is used to generate appropriate Makef i 1 e ’ s for the
build process (the difference is in the libraries needed to compile the
testbench source files).

12.1.2.4 The MPS modules

This release of the testbench supports REX’s use of multiple MPS modules for
remote interactions. Optimized calls between capsules on the same host can
be achieved if the IPC MPS is included. SIPS’s based upon CDP and TCP are
also provided for conveying messages between capsules on different hosts.
While both UDP and TCP can be included in the capsules, the current system

ARM XI, 12 / 2 (Release 01.01)

Installation

will always choose UDP preferentially. As a result, the default set of MPS's is
"IPC UDP".

Note that if one system is built with UDP as the sole remote MPS and another
is built with TCP as the sole remote _hlPS then capsules on these systems will
not be able to interact.

12.1.3 Installing the testbench

N.B. all example commands shown in this appendix assume that the user is
running in the C shell. Set your current working directory to your chosen
testbench logical root directory, load the tape in a cartridge drive and type
the following:

tar xvbf 1 /dev/yourTapeDevice

Assuming that you have write access to this directory and its sub-directories,
tar will now unpack all the installation files. At the end of the process (a
couple of minutes at most) you will find the installation script (InstallANSA)
in the directory. You run this script (and capture the output in a logfile) by
typing:

InstallANSA I& tee Install.log

The script begins by asking five questions. You may abort the installation
by typing the seven characters *ABORT* in response to any of the first four
questions. The script provides a lot of detail about the actions you are being
asked to undertake.

First you are asked to provide the testbench logical root directory (you must
type an absolute pathname, e.g. /foe/bar), the default is your current
working directory.

Second you are asked to enter the trader host name. This name must exist in
/etc/hosts and case is significant. The default is the current hostname.

Third, you are asked to provide the list of MPS modules desired for this
system - the list is simply a blank-separated sequence of the words IPC, C'DP,
and TCP. The default list is: IPC CDP.

Fourth you are asked to enter the system type (one of sun, hpux, or m6000).

Finally, you are asked if you wish to delete object and other intermediate
files generated during the installation. The default action is not to delete
the intermediate files.

The script takes 10 to 15 minutes to run, much of which is spent compiling.
In the event of errors, use the log file to determine what the problem is.

ARM XI, 12 / 3 (Release 01.01)

12.1.3.1 Non-standard port numbers

The testbench installation assumes two UDPITCP port numbers that are fixed.
One of these (port number 1100) is for the trader and should not be changed
without good reason, the other (port number 1060) is for a test program
used for pre-trader checkout and may be changed if necessary. To change
either of these values after the installation, proceed as follows - it is assumed
that the starting directory is the testbench logical root denoted as SR:

To change the port number for the test program:

cd $R/src/ansa/test
edit both cal1Server.c and cal1Stub.h to change
"#define callcapsule 1060" to your chosen value
make
cd $R

Changing the port number for the trader should not be undertaken lightly
and involves a rebuild of the trader AND modifications to a file on each of the
other hosts in the system. If it must be done, proceed as follows:

cd $R/include/ansa/capsule
edit 0ptions.h to change
"#define TRADER_UDP_PORT 1100"
"#define TRADER_TCP_PORT 1100"
to your chosen value
cd $R/src/ansa/trader
make trader; make tinstall

Now you must create the file $R/etc/ansa/traderaddress on each non-trader
host. This file contains a single line; this line has the same format as the
TRADER ADDRESS symbol in $R/include/ansa/capsule/options.h, minus the
quotation marks. For example, if the opt ions. h file on a particular host had
the following definition:

#define TRADER-ADDRESS "1:1.2.3.4:1100:2"

and you have just changed TRAD ER_UDP_PORT to 4321, then
$R/etc/ansa/traderaddress shouldcontain the following line:

1:1.2.3.4:4321:2

12.1.4 Installation tests

The installation script builds a number of test programs: the most basic one
tests out the interpreter and KEX in isolation. To run this do the following
(from the test bench logical root directory)

ARM XI, 12 / 4 (Release 01.01)

Installation

src/ansa/test/cal
src/ansa/test/cal

server
client

&
-ilOO

This will repeatedly issue REX calls and collect the replies reporting the
elapsed time and buffer sizes every 100 calls (about twice a second on a SUN).
You can change the number of iterations by altering the number in the
call client line and can even nominate a different host, e.g.

src/ansa/test/callclient -ilOOO SomeOtherHost

By default, the callclient test runs endlessly. Use the

-p<# of passes

option to cause it to terminate after < # of passes >

By default, callclient uses UDP for its interactions. Use the -mipc flag to
cause it to use the IPC MPS (the server had better be on the same host) or
-mtcp to cause it to use TCP. Obviously, if you specify an MPS for which
support was not included during the build, you will get a bind failure.

The call server must be terminated by using the ki 11 command.

12.1.4.1 Startmg the trader and exercising it

Before any of the other test programs can be started, it is necessary that the
trader be started on the host which was nominated during the build
procedure. Assuming that the current working directory is the testbench
logical root, the following command starts the trader:

etc/ansa/trader >&etc/ansa/trader.log &

Depending upon the MPS support selected, you should see one (or more) of the
following (after invoking netstat -a and 1 s /usr/tmp):

b UDP port 1100 exists

) TCP port 1100 has a LISTEN outstanding

) the fifo /usr/tmp/ansa. 1 exists

Three tests which use the trader can now be performed.

1. When the trader starts up, it registers itself as the exporter of two
additional services: TrCtxt and TrType. The following commands
should yield information on these two service offers:

src/ansa/trader/trlook TrCtxt /
src/ansa/trader/trlook TrType /

2. The trsearch command causes information on all offers matching

type specified in the nominated trading scope to be returned.
the

ARM XI, 12 / 5 (Release 01.01)

ANSA Reference Manual

src/ansa/trader/trsearch ansa /

causes information about all known offers to be displayed (since all
types are sub-types of type ansa).

3. Next launch a number of Lookup requests at the trader, keeping track
of the elapsed time. This is done as follows:

src/ansa/trader/trtest

This program will request the offer information on the TrCtxt offer
1000 times, and prints summary statistics of the performance upon
completion. For those who truly want to exercise the trader, trtest
takes an optional argument which is the number of times the 1000
requests should be attempted.

When you are satisfied that the trader works correctly, the startup command
line should be added to /etc/rc; this guarantees that the trader is started
everytime the system boots up. Obviously this should follow any commands
which are necessary to enable the network!

12.1.4.2 The Echo service

Now that the trader is working, all other services are provided by normal
capsules. The simplest of the example services provided with the
distribution tape is an Echo service. To start the Echo server, issue the
following command line:

src/ansa/Echo/server %.rc/ansa/Echo/server.log &

The followi
the trader:

ng command line shows that the server actually posted its offer to

src/ansa/trader/trlook Echo /

Three client programs are provided which use the Echo service:

1. cl i ent simply reads each line from its standard input, invokes the Echo
function of the Echo server, and prints the echoed line on the standard
output.

2. techo invokes the Echo function of the Echo server with a fixed size
buffer of characters a given number of times. Upon completion,
summary statistics about the transfer rate are displayed.

3. tsink invokes the Sink function of the Echo server with a fixed size
buffer of characters a given number of times. Upon completion,
summary statistics about the transfer rate are displayed.

The following
previously:

command lines will exercise the Echo server started

ARM XI, 12 / 6 (Release 01.01)

Installation

src/ansa/Echo/client <InstallANSA I diff - InstallANSA
src/ansa/Echo/techo -bl -nlOOO
src/ansa/Echo/techo -blO -nlOOO
src/ansa/Echo/techo -blOO -nlOOO
src/ansa/Echo/techo -blOOO -nlOOO
src/ansa/Echo/tsink -bl -nlOOO
src/ansa/Echo/tsink -blO -nlOOO
src/ansa/Echo/tsink -blOO -nlOOO
src/ansa/Echo/tsink -blOOO -nlOOO

For both techo and tsink, you may optionally specify the name of another
host upon which the service is active with a command of the form:

src/ansa/Echo/techo -bl -nlOOO OtherHostName

12.1.4.3 The Sample service

The Sample service is provided to illustrate an interface specification with
multiple operations. One of the operations returns multiple results, another
takes no arguments, while the third returns no results. Starting the server
requires the command:

src/ansa/Sample/server >&src/ansa/Sample/server.log &

The client simply invokes each operation 1000 times, printing the results
from the two operations which return results on the standard output. After
checking that the service offer was registered with the following command:

src/ansa/trader/trlook Sample /

the following command is suggested for exercising the client:

src/ansa/Sample/client I wc

12.1.4.4 The Netinfo service

The Netinfo service is provided as an example of a non-trivial application of
the ANSA testbench. Each UNIX system which supports the socket
abstraction for interfacing to the TCP/L!DP/IP family of protocols provides a set
of library routines which permit the programmer to determine information
about hosts, networks, protocols, and services. The usual implementation of
these library routines is to read the appropriate information from a set of
distinguished files which are stored in /etc, returning to the caller a pointer
to some statically stored data structures which have been loaded with the
appropriate information. One complication of this particular
implementation style is the necessity to keep multiple copies of the
distinguished files consistent. The Netinfo service is a simple
implementation of a name service which eliminates this consistency
requirement.

ARM XI, 12 / 7 (Release 01.01)

ANSA Reference Manual

Netinfo provides an RPC interface to the routines gethostbyname(),
getnetbynameo, getprotobyname(), and getservbynameo. The return results
from the remote procedure calls are discriminated unions (specified as
CHOICE’s) in which the full data structure is returned only if the lookup on the
server host was successful. The specification and the client and server
programs can be consulted for more information. To start up the server, use
the following command:

src/ansa/Netinfo/server S&src/ansa/Netinfo/server.log &

Four client programs are provided, each one exercising a different operation
in the interface. The following command lines should result in useful output
from the client. programs (note the backquotes in the second line):

src/ansa/trader/trlook Netinfo /
src/ansa/Netinfo/hclient 'hostname'
src/ansa/Netinfo/nclient arpa
src/ansa/Netinfo/pclient udp
src/ansa/Netinfo/sclient tcp ftp

12.1.4.5 The test1 service

This service is exactly the one described in section 3.4 of this manual.
start up the server, use the following command:

To

src/ansa/testl/server >&src/ansa/testl/server.log &

The client program can be invoked as:

src/ansa/testl/client 1 2 3 4 5

12.1.5 Support and further developments

The ANSA testbench software is being made available in source form to
enable recipients to experiment, with it and port it. It is not guaranteed to be
bug free although it has been extensively tested with all the facilities which
the ASSA testbench implementation team have available.

The ANSA testbench is not supported as a warrantied software product and
any or all parts of the testbench may change in future releases. ANSA will
continue to evolve and these changes will be reflected in the design of the
testbench.

If you experience any trouble with porting or using the testbench please
contact the ANSA team. The ANSX team wish to be informed of all problems
and difficulties encountered and within the constraints of the project, will
give advice on how to deal with them.

The ANSA team will be pleased to receive extensions, improvements, new
ports or additional services for incorporation in future releases of the

ARM XI, 12 / 8 (Release 01.01)

Installation

testbench. The most convenient form for supplying code changes to us is as
conditionally compilable sources in one of the following machine readable
forms, listed in order of preference:

HP 1” cartridge tape - tar format
SUN +” cartridge tape - tar format
electronic mail - see cover sheet for addresses
5$” floppy - PC-DOS format ASCII file
3” magnetic tape - tar format

ANSA cannot accept any code with IPR or license restrictions or fees. The
originators copyright will be attributed on all contributed code.

12.2 MSDOS

The ANSA testbench has been successfully ported to the IBM+ PC running
MSDO$. This appendix describes the requisite hardware and software, the
build procedure, test procedures, and limitations to the PC port.

12.2.1 Kequisite hardware and software

Hardware:

) IBM PC (or PC clone) with 640K RAM

b high density 5+” floppy drive (1.2 Mbyte) and hard disk with at least
3.5Mbytes of free space

) network interface (see below)

Software:

D MSDOS ~3.0 or later

B Microsoft C compiler, ~4.0 or later

) PUTCP ~2.02 for each target system

b PCYTCP Development Kit ~2.02 for a system upon which the testbench
programs will be built

The choice of network hardware is dictated by those interfaces supported by
the PCPTCP package. They are shown in Table 12-1 below.

The network software and documentation may be obtained by contacting

‘1H.M is a trademark of International Business Machines
iW3DOS is a trademark of Microsoft, Inc.

ARM XI, 12 / 9 (Release 01.01)

ANSA Reference Manual

Table 12-l: PCM‘CP supported network interfaces

FTP Software, Inc.
P.O. Box 150
Kendall Square Branch
Boston, MA 02142
UNITEDSTATESOFAMERICA

12.2.2 Preparation for installation

The following build procedure has worked successfully on the PC system at
ANSA. It assumes that you have booted RISDOS from the C: disk, and that you
have a high density 5$” floppy drive (1.2 MByte) for device A:. Any other
hardware configuration will necessitate major changes to all batch files and
makefiles.

When installing the C compiler and the PCiTCP Development Kit, be sure to
install the Large Memory Model libraries, as the testbench build procedure
references these.

The build of the system at ANSA occurred under the following environment:

C:\> SET
COMSPEC=C:\COMMAND.COM
PATH=.;C:\PCTCP;C:\BIN;C:\UTILS
TEMP=C:\TEMP
PROMPT=pg
INCLUDE=C:\DEVKIT\INCLUDE;C:\INCLUDE
LIB=C:\DEVKIT\NETMSC4.0;C:\LIB
TMP=C:\

ARM XI, 12 / 10 (Release 01.01)

Installation

C:\>

Of these settings, four are critical to the successful building of the software:

D having \BIN in the search path is necessary for the Microsoft C utilities
to be successfully executed; the WTILS directory is where the standard
MSDOS utilities (like COPY) are found on our system

) the value of INCLUDE guarantees that the C compiler will search for
#include files in the include directory provided with the PUTCP

development kit and the include directories provided with the Microsoft
C compiler

b the value for LIB guarantees that the requisite libraries needed to build
the applications will be found

b the value for TMP is needed by the C compiler for building temporary
files

The parsers for the preprocessor and stub compiler are provided in C form;
the yacc grammars have already been processed using a public-domain
parser generator named bison'. These parsers include cstdio. h>. If the user
code provided with the grammar also includes <std i o. h>, a compile error will
occur. Since both of these grammars will exhibit the above error, it is
necessary that the distributed <s td i o . h> be modified as follows:

lifndef STD10
#define STD10
<distributed version of <stdio.h>>
#endif

12.2.3 Installation procedure

To build the testbench, execute the following steps:

1. Load the floppy disk into the A: drive

2. CD \

3. COPY A:INSTALL.BAT .

4. INSTALL

5. CD \ANSA

6. ANSABLD <TradingHostName> [y/n]

You must provide the name of the trading host as the first parameter of the
invocation to ANSABLD. The optional second parameter determines whether
intermediate files are deleted as the procedure proceeds. The completed
system consumes 3.4 Mbytes of disk space if the intermediate files are not
deleted, 2.6 Mbytes if they are.

‘bison is publicly-available from the Free Software Foundation (GNU)

ARM XI, 12 / 11 (Release 01.01)

ANSA Reference Manual

12.2.4 Installation tests

The installation script builds a number of test programs. All of the examples
below assume that your current working directory is \ANSA and that you have
started the trader and relevant server program on a UNIX host with which
the PC can communicate. Note that the PC implementation uses UDP only for
conveying REX packets, and assumes the standard port numbers as described
in section A.3 above. .

12.2.4.1 REX and interpreter test

The most basic test exercises the interpreter and REX in isolation. To run
this, do the following:

src\test\callclient -ilOO OtherHost

This will repeatedly issue REX calls and collect the replies reporting the
elapsed time and buffer sizes every 100 calls; the calls are sent to the server
running on OtherHost. You can change the number of iterations by altering
the number in the -i flag above.

By default, the call cl i ent test runs endlessly. Use the

-p<# of passes

option to cause it to terminate after < # of passes > .

12.2.4.2 Exercising the trader

Three tests which use the trader can be performed.

When the trader starts up, it registers itself as the exporter of two
additional services: TrCtxt and TrType. The following commands
should yield information on these two service offers:

src\trader\trlook TrCtxt /
src\trader\trlook TrType /

The trsearch command causes information on all offers matching the
type specified in the nominated trading scope to be returned.

src\trader\trsearch ansa /

will cause information about all known offers to be displayed (since all
types are sub-types of type ansa).

Next launch a number of Lookup requests at the trader, keeping track
of the elapsed time. This is done as follows:

src\trader\trtest

This program will request the offer information on the TrCtxt offer
1000 times, and prints summary statistics of the performance upon
completion. For those who truly want to exercise the trader, trtest

ARM XI, 12 / 12 (Release 01.01)

Installation

takes an optional argument which is the number of times the 1000
requests should be attempted.

12.2.4.3 The Echo service

The simplest of the example services provided with the distribution is an
Echo service. This service is provided with three client programs:

client simply reads each line from its standard input, invokes the Echo
function of the Echo server, and prints the echoed line on the
standard output.

techo invokes the Echo function of the Echo server with a fixed size
buffer of characters a given number of times. Upon completion,
summary statistics about the transfer rate are displayed.

tsink invokes the Sink function of the Echo server with a fixed size
buffer of characters a given number of times. Upon completion,
summary statistics about the transfer rate are displayed.

The following command lines will exercise the Echo server started
previously:

src\Echo\client <ANSABLD.BAT >t.out
fc t.out ANSABLD.BAT
de1 t.out
src\Echo\techo -bl -nlOO
src\Echo\techo -blO -nlOO
src\Echo\techo -blOO -nlOO
src\Echo\techo -blOOO -nlOO
src\Echo\tsink -bl -nlOO
src\Echo\tsink -blD -nlOO
src\Echo\tsink -blOO -nlOO
src\Echo\tsink -blOOO -nlOO

For both techo and tsink, you may optionally specify the name of a specific
host upon which the service is active with a command of the form:

src\Echo\techo -bl -nlOO HostName

12.2.4.4 The Sample service

The Sample service is provided to illustrate an interface specification with
multiple operations. One of the operations returns multiple results, another
takes no arguments, while the third returns no results. The client simply
invokes each operation 1000 times, printing the results from the two
operations which return results on the standard output. The following
commands are suggested for exercising the client:

ARM XI, 12 / 13 (Release 01.01)

’ ANSA Reference Manual

src\Sample\client >t.out
more <t.out
de1 t.out

12.2.4.5 The Netinfo service

The Netinfo service is provided as an example of a non-trivial application of
the ANSA testbench. Each UNIX system which supports the socket
abstraction for interfacing to the TCPILDPIIP family of protocols provides a set
of library routines which permit the programmer to determine information
about hosts, networks, protocols, and services. The usual implementation of
these library routines is to read the appropriate information from a set of
distinguished files which are stored in /etc, returning to the caller a pointer
to some volatile data structures which have been loaded with the appropriate
information. One complication of this particular implementation style is the
necessity to keep multiple copies of the distinguished files consistent. The
Netinfo service is a simple implementation of a name service which
eliminates this consistency requirement.

Netinfo provides an RPC interface to the routines gethostbynameo,
getnetbyname(),getprotobyname(), and getservbynameo. The return results
from the remote procedure calls are discriminated unions (specified as
CHOICE's) in which the full data structure is returned only if the lookup on the
server host was successful. The specification and the client programs can be
consulted for more information. Four client programs are provided, each one
exercising a different operation in the interface. The following command
lines should result in useful output from the client programs:

src\Netinfo\hclient SomeHostName
src\Netinfo\nclient arpa
src\Netinfo\pclient udp
src\Netinfo\sclient tcp ftp

12.2.4.6 The test1 service

This service is exactly the one described in section 12 1.3.4 of this manual.
The client program can be invoked as:

src\testl\client 1 2 3 4 5

12.2.5 PC limitations

The PC makes a reasonable ASSA client machine. Due to the masking of ‘C
interrupts when a program is using the network software, it does not make a
particularly good server machine. You will often have to reboot the system
to terminate a server program, with the net effect of leaving a stale export
offer in the trader’s database. This stale offer can be removed the next time
the system is booted if the following command is added to the I\KTOEXEC RAT
file after the network software has been started:

ARM XI, 12 / 14 (Release 01.01)

Installation

C:\ANSA\SRC\TRADER\DOSPURGE

Because of the hardware architecture of the IBM PC, fragmented buffers are
limited to a maximum size of 64Kbytes. Attempts to allocate larger buffers
when sending or receiving will fail. This limit is imposed because there is no
portable or standard way of addressing larger regions of contiguous memory
on an IBLM PC. Users of the PC testbench who have a solution to this problem
which is portable - i.e. will not cause inefficiency or obscure the source code
for other users - and is also standard i.e. will work on many ANSI compilers,
should submit it to ANSA for consideration as a part of a future release.

This port was completed to give collaborators an opportunity to build ANSA
clients in the PC environment. There may be some incipient bugs remaining
in the PC release, and we will attempt to fix any brought to our attention if
the bug report is accompanied by test programs which easily reproduce the
problem.

ARM XI, 12 / 15 (Release 01.01)

