
Copyright 1993 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (0223) 323010
INTERNATIONAL: +44 223 323010

FAX: +44 223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1058.00.01 Draft 17 September 1993

Request for Comments (confidential to ANSA consortium for 2 years)

ANSA and tools

Rob van der Linden

Abstract

This is a report on the results of a short survey of 20 programming, analysis, design and
configuration tools. The survey was carried out to see whether ANSA transparencies can be
provided by extending such tools. As a side effect, we discovered where ANSA principles are
appropriate in the provision of software tools.

The results show that the way in which tool providers now hide system complexity from the system
designer and programmer could potentially be used in the provision of automated
transparencies.It also shows that ANSA engineering can improve tooling environments, and that
ideas on federation and scaling are new to the tool community.

APM.1058.00.01 ANSA and tools i

Contents

1 1 Introduction
1 1.1 Audience
2 1.2 Approach and initial results
2 1.3 This document

3 2 Important features of advanced application development and
building tools

3 2.1 Construct rather than write
3 2.2 Late binding
3 2.3 Hide complexity
4 2.4 Reduce (eliminate) 3rd generation programming effort
4 2.4.1 The ANSA Computational and Information models
4 2.4.2 Optimising rule based programs
5 2.5 Support for methodologies
5 2.6 Browsing and iterative design

6 3 Strategic issues in tool selection
6 3.1 Summary
6 3.2 The tools market
7 3.3 Problems facing the tool user
7 3.3.1 The tool as a distributed application
8 3.3.2 Exchanging designs between tools
8 3.3.3 Interworking between systems which are built with different tools
9 3.3.4 Are you ready for automation?

11 4 Appendix
11 4.1 Tools and suppliers
11 4.2 Work on tools and their interoperability
12 4.2.1 ISO and ANSI IRDS
12 4.2.2 CASE Communique and the CASE Interoperability Alliance
13 4.2.3 EIA/CDIF (CASE Data Interchange Fromat)
13 4.2.4 Exchange
14 4.2.5 IEEE/P1175
14 4.2.6 PCTE
14 4.3 List of OO methodologies

Contents ANSA Phase III

ii ANSA and tools APM.1058.00.01

APM.1058.00.01 ANSA and tools 1

1 Introduction

The aim of the Automated Transparencies group in ANSA Phase III is to find
ways in which distributed systems technology1 can be provided to designers
and programmers in a selectively transparent manner.

Technology is to be provided by encouraging abstraction and automation
[TR.042]. The “Overview of ANSA” [APM.1000.01] describes the tool
orientation as follows:

The ANSA Architecture applies to a class of computing systems in which different parts of
a distributed application work together in a unified and natural way. The goal of ANSA is
to allow application interworking and portability to be achieved with a relatively small
effort; application designers do not need to concern themselves with the diversity or
physical distribution of different computers, operating systems and network protocols
which comprise the technological basis of the underlying computing environment.

The Architecture is tool oriented: application programmers use a programming language
to state the application properties they desire. The tools automatically insert functionality
required to achieve the desired application properties (such as atomicity, fault tolerance,
quality of service).The tools so hide the technical details of the underlying mechanisms.

By removing the burden of technological detail from application designers, they can
concentrate on meeting the requirements of end users and on issues concerning the
provision of applications that span organisational, political, and geographical boundaries.

The idea of automating parts of the software development process are not
exclusive to ANSA: many design, analysis, programming, and configuration
tools are based on the same premise.

Moreover, designers who use tools as an accepted way to increase their
productivity, will not give up their tools or switch to less sophisticated tools,
just so they can use ANSA technologies.

It is therefore incumbent on us to investigate the existing tools market, to
compare the ANSA architectural principles [APM.1000.01] with the approach
taken by tool suppliers, and to see how ANSA technologies can be provided in
ways which are consistent with the expectations of systems designers and
programmers.

1.1 Audience

This paper is aimed at those involved in setting the direction of the work on
Automated Transparencies in the ANSA Phase III work plan. It is also useful
to those working on programming abstractions in ANSA Phase III.

1. In Phase III, specifically technology which addresses performance and
dependability.

Introduction ANSA Phase III

2 ANSA and tools APM.1058.00.01

1.2 Approach and initial results

We looked at a representative sample of some 20 design, analysis,
programming, test, and configuration tools and compared the ANSA
Architectural Principles [APM.1000.01] with the approach taken by tool
suppliers1.

Initial results demonstrate that:

1. there are areas of agreement between the ANSA community and the tool
builder community, especially on late binding and early type checking;

2. the ANSA community can contribute to the development of tools for
building distributed systems, in particular in the areas of federation and
scalable2 interworking technology;

3. the tool builder community can help us understand how to make
distributed systems technology available to the system designer and
application programmer.

The other finding is that tool suppliers do not advertise the strategic issues of
tool selection to their customers. The resulting tool proliferation directly leads
to a plethora of solutions all tackling the complexities introduced by multiple
GUIs, database management systems, communications facilities and
heterogeneous distribution in general. If issues of federation are continued to
be ignored in this situation, then end users will once again bear the cost of the
mistakes of their suppliers.

1.3 This document

We shall first examine the important features of some of the more advanced
productivity increasing software development and construction tools. In doing
this it will become clear where the tool builders and suppliers agree with the
ANSA principles, where they disagree, and where they have not thought the
consequences of their actions through with respect to distribution.

Secondly. we will examine some of the strategic issues of tool selection and
show that ANSA principles can be used to explain the challenge and suggest a
strategy to meet it.

The appendix lists the set of tools surveyed, points to ongoing work in the area
of tool interoperability, and lists a set of object oriented or object based
methodologies for reference.

Note: The results of the survey itself, in terms of short product descriptions may be added.

1. A list of the tools we looked at is provided in the appendix.

2. “Scalable” in this context means that the technology is valid independently of the
size (number of nodes and networks) of the system.

ANSA Phase III Important features of advanced application

APM.1058.00.01 ANSA and tools 3

2 Important features of advanced application
development and building tools

2.1 Construct rather than write

The emphasis in software development is slowly shifting from writing
applications to constructing them. The important advance is that re-use of
components is now a practical proposition.

It is generally known that no more than 20% of an application consists of code
which is directly related to solving a particular problem or providing a
particular functionality desired by an end-user. The other 80% or more is
concerned with complexities which are independent of the particular
application in hand. Examples are code to ensure inter-process
communication, to drive a graphical user interface (GUI), code to access data
in a database or file system, code to deal with different levels of functionality
offered by operating systems, code to interface devices, such as printers, hand-
held scanners, etc.

2.2 Late binding

The idea of not binding application specific code and “system” code until
configuration (or system building) time clearly encourages re-use and
increases productivity.

Advanced application development systems allow application development
staff to specify the application specific aspects in detail, whilst tools
automatically deal with the systems related aspects. For the GUI, for
instance, a visual prototyping environment is provided, within which the right
interface can be constructed from pre-defined components, by pointing,
clicking, dragging and dropping. Binding to a particular GUI environment is
only done just before system deployment. The same approach is adopted for
database management systems. A range of database management system
interfaces are provided and will be linked in once it has been decided which
database management system will be used in a particular configuration.

2.3 Hide complexity

The currently emerging generation of tools hide complexities which are
introduced as a result of heterogeneity.

The “system” code can remain invisible to the application development staff by
hiding it in libraries. In environments such as that provided by SNAP,
application developers simply state the properties they want their
applications to possess and the tool will link in just those libraries and
routines which are required to provide these properties.

Important features of advanced application development and building tools ANSA Phase III

4 ANSA and tools APM.1058.00.01

Examples are Art*Enterprise, Magic CAPtm, DEC/Forte, Distributed
Smalltalk, Genera, ObjectTeam, and SNAP. Complexities introduced by
distribution of the application are not treated with the same urgency in all of
these. According to a recent announcement by Template Software, SNAP is
now integrated with OSF/DCE. In most other tools, 80’s technology is
employed. ANSA engineering principles are sound and can with benefit be
introduced. Thus, distribution facilities can be offered to application
developers through libraries.

2.4 Reduce (eliminate) 3rd generation programming effort

It is accepted that productivity gains can be achieved by programming in a 4th
generation programming language rather than a 3GL. Many of the tools which
we examined offer the opportunity to program in a rule based environment
supported by an expert system (Art*Enterprise, Magic CAPtm, OOA/RD,
Ptech, SNAP). This offers three important advantages:

• programming proceeds in close cooperation with the problem owner, who
sees his problem translated in recognisable and comprehensible rules in
the system;

• rapid prototyping, interspersed with many consultations with the end-
users, is a reality, resulting in more satisfactory solutions;

• tools are used to turn rule based specifications into imperative programs,
which can then be compiled to achieve specific performance
characteristics, delivering results more quickly.

2.4.1 The ANSA Computational and Information models

The abstraction in the interaction model in the ANSA computational model is
the procedure call. This is essentially a third generation programming
concept, which does not meet the need of rule and constraint based
programming.

This does not mean that the computational model is obsolete. It does mean
that ANSA has to develop its information model such that distribution, and in
particular modularity, is taken care of. Many of the tools we examined have
severe limitations on the size of the system which can be designed “in one go”
as it were.

The expert system can be used to support 3rd generation programming. It
ensures early type checking so avoiding errors at a later stage of the design
process. A visual style of application programming is adopted where the
application programmer is guided through the “sensible” choices which can be
made at each point, with the expert system suggesting defaults where
appropriate (e.g. VisualBasic, VisualC). Structure editors are a further aid.

All this reduces the amount of information which designers need to carry
around in their heads, thus freeing their creative powers, allowing them to
concentrate on the application area itself.

2.4.2 Optimising rule based programs

The rule based specifications can be turned into imperative programs. This
translation enables performance increases over the interpreted rule based
system.

ANSA Phase III Important features of advanced application

APM.1058.00.01 ANSA and tools 5

2.5 Support for methodologies

The expert system can implement a methodology. On the downside (at least for
some people), the expert system is used in some tools to impose constraints on
the development process and so force designers to stay within a particular
methodology.

2.6 Browsing and iterative design

Some tools include browsers for symbols, macros, classes, variables, types,
etc.(e.g. SNiFF+). These effectively make the structure of an application or
system explicit. This information is no longer locked up in programmer’s
heads, freeing them from this burden, and making maintenance by others
easier. Browsing technology is anenabler of iterative design and
implementation with its recognised strengths.

In a distributed system, this information will itself be distributed. Current
tools have no support for the distribution of this information. However, OMG
object and interface repositories would offer such support. Browsing these
could provide the same support as current browsing tools do in the local
system. Such distributed browsing is akin to the functionality provided in the
DEC/HyperBase proposal for a dynamic ORB in OMG.

The idea of extending the trading function into the design phase is not new to
ANSA, but must be revived, since recent work on trading in the standards
bodies seems to have de-emphasised this angle.

A strong link with the federation work is anticipated, as there will in general
be little agreement on the semantics of the content of the object and interface
repositories.

Strategic issues in tool selection ANSA Phase III

6 ANSA and tools APM.1058.00.01

3 Strategic issues in tool selection

3.1 Summary

There exists a real potential for increased diversification of distributed
systems technology, as tool builders begin to supply distributed application
writing tools. In addition, tool incompatibility will increase the chaos which is
already much in evidence in this market. Distribution technology will move
out of the vendors control and into the control of the tool suppliers. End users
will again remain shut out.

Recent history shows that it takes only a few years for tools to appear. Three
years ago, GUI programming meant interfacing C code to X-libraries, much
like distributed programming today means interfacing C or C++ code to
distributed infrastructure APIs (e.g. OSF/DCE, DEC ACAS). If recent history
is anything to go by then we will see many distributed systems writing tools
become available within the next three years. The first to market we know
about are Template Software, who have integrated SNAP with OSF/DCE, and
HP, who have extended Parc Place Smalltalk with a class library for access to
OSF/DCE.

Note: and what about ICL DAIS ?

Further evidence of this trend are many tool suppliers racing to market with
tools which are claimed to be CORBA compatible (Orbix, ACAS, DOME). Some
have interworking technology in place, some have not. There is little
agreement on what technology is appropriate or what the consequences of
particular choices will be on performance and dependability for instance. With
tool builders trying to distinguish their products in the market place, there is
little assurance that a set of common interworking technologies will even
begin to emerge.

The principles we adopted in ANSA can be used to explain the challenge we
face.

3.2 The tools market

There is an increasingly large set of analysis, design, progarmming, testing,
and configuration tools. It is difficult to uniquely characterise the tools.
Metrics which can be used for a comparison include:

• functionality, e.g. some tools cater only for particular parts of a design.
There are too many GUI design and build tools to mention. Specific tools
for database oriented applications include the many SQL based tools, and
application generation tools. Some tools are targeted only at programming
(SNiFF+), others at several activities in the design process. Some include
support for (internal) database design (System Architect), design of
transactions (DEC/Forte, ONTOS), configuration management (DEC/
Forte, SNAP), etc. Tools exist now to help in most areas where
programming is either hard or tedious.

ANSA Phase III Strategic issues in tool selection

APM.1058.00.01 ANSA and tools 7

• intelligence, e.g. some tools include an expert system which can be used to
state and interpret business rules and constraints (Art*Enterprise, Magic
CAPtm, Ptech, SNAP, Tenet?). The expert system is the also used to
support the design process or a analyais and design methodology.

• methodology, e.g. some tools enforce the use of a particular methodology
(e.g. OOA/RD), some impose some methodological constraints (e.g. Ptech,
ObjecTeam), or no constraints at all (e.g. SNAP). To suit the size of the tool
builder community there are now in excess of 20 object oriented or object
based design methodologies [SIGOAD 93], for which tool support is either
present or announced1.

• object orientation: almost every tool supplier claims support for object
orientation. In some cases it involves a reworking of structured
programming, sometimes it means C++ or Objective C. Adaptations to
relational databases are said to make this technology object oriented.
Object based or oriented languages only become usable once relatively
comprehensive libraries are added: Smalltalk is now emerging with
decently populated libraries for instance.

• implementation, e.g. some tools are based around a central database in
which “the design” is kept (Ptech, Magic CAPtm). Sometimes this
database is a closed system from the conceptual schema and/or the
internal schema point of view (Tenet). The design can equally be kept in a
set of files (SNAP). The “internal model” is often said to embody the
essential aspect of a tool, which distinguishes it from others.

• vertical market approach, e.g. some tools are specially appropriate to
construct applications in a particular application area, such as hardware
design (e.g. Statemate), CAD/CAM, or training, marketing and
communications (e.g. ONTOS).

Most tool suppliers are keen to point out the advantages of their products in
only a few of the categories above. Making an informed choice as a user who is
aware of all of the above categories is a much more difficult task.

3.3 Problems facing the tool user

From the tool user perspective the tool diversification offers increased choice
but of course has a downside: where multiple tools are in use the usual and
inevitable questions arise. This time it is about multiple tool sets in a
distributed environment. Three classes of problems can arise. The first two are
related to the realisation that in large systems, the design process is itself a
distributed application, possibly involving many tools. The last issue is related
to interworking problems between the systems which are created using
different tools.

3.3.1 The tool as a distributed application

For the problems associated with the way a tool is implemented in a
distributed environment we can use the Architecture to suggest design
choices: it is as if the tool is an application which is to be distributed. This can
ensure that the tool is portable, can be distributed, meets certain reliability
requirements, scales, can be configured etc.

1. See appendix for a list of OO methodologies.

Strategic issues in tool selection ANSA Phase III

8 ANSA and tools APM.1058.00.01

ANSA need not address this issue as special since it is covered by our concern
about system integration and federation in general. However, it is clear that
all of the tools we looked at have limitations in terms of the size of the design
they can manage and the extent to which the tool can be used in a large
distributed design process.

3.3.2 Exchanging designs between tools 1

Issues relating to exchanging designs between tools are more akin to multi-
database problems, where schema integration / conversion is appropriate. The
design itself is a complex of information held by the design tool. The
information is organised according the “data model” which the tool builder
considers the heart of the tool (and that which he believes gives it the
competitive edge). The reluctance to be open about this leads to issues which
are are perhaps more difficult to sort out. Specific questions include:

• can a design developed in one tool be further developed in another?

• what if my company who use tool set A merge with a company who use
tool set B?

• what if I want to rationalise the use of tools in my company?

In ANSA we advocated to address this problem by choosing CORBA IDL as
the common interface definition language at the scenario implementation
level. Where multiple IDL’s are in use we suggest the use of Abstract Data
Types (ADT) [TR.042]. By adopting a three stage process, consisting of a front
end (FE), an abstract syntax tree (AST) and a back end (BE) we hope that
mappings between other tools which adopt the same approach will be
simplified.

There is little evidence however, that the tools market is either adopting IDL
or ADT style service definitions. Current work in the area of federation further
suggests that the information carried by an IDL is insufficient to decide
whether a service will meet a particular need. The use of an AST as the
“internal” representation of a design is common in principle. Of course many
such ASTs exist: they are often secret as they are thought to give market edge.

3.3.3 Interworking between systems which are built with different tools

We have to recognise that the tool which assists designers build distributed
applications will transparently insert engineering mechanisms to make the
distribution come true. The nature of the distribution technology is hidden
from the application programmer. This is deemed to be “a good thing” because
it releases the programmer from having to worry about it. A tool builder may
not support many engineering functions or options. In fact it is likely that
most tools will initially be brought to market with just one fixed set (e.g. a tool
which can generate applications on DCE 1.01 and OSF/12, c.f. SNAP on IBM
RS6000).

The hidden problem is that application programmers no longer have any sight
of the “engineering” and therefore cannot solve interoperability problems
themselves. If the market behaves properly, then there may well be a push for
common interconnection engineering or engineering which can cope with

1. The appendix lists various groups concerned with tool interoperability.

2. Current support for distribution is however typically limited to inclusion of drivers
for TCP/IP for instance.

ANSA Phase III Strategic issues in tool selection

APM.1058.00.01 ANSA and tools 9

multiple technologies. This will not happen in the short term: it will take time
for the end-user or tool user to realise what are the significance of engineering
issues. The Architecture can be used to point out the issues early rather than
later and hopefully induce a willingness to agree before it is too late.

3.3.4 Are you ready for automation?

There have been several reports of organisations who have introduced CASE
tools to find a reduction in productivity of their staff and a reduction of the
quality of the software they produce [INFO 93]. CASE users say that without
careful preparation you end up with “an automated mess”, a “faster disaster”,
or “paralysis by analysis”. The preparations concern the human and
organisational dimensions within which the tools will be deployed.

Most complaints are said to come from CASE tools which encompass the
analysis and design activities. In many cases it was the inflexibility of the
tools with respect to methodology enforcement which affronted and insulted
the users. The design of a class library and its use are of crucial importance to
the success of object technology. Productivity gains were reported more often
from so called programming workbenches.

Strategic issues in tool selection ANSA Phase III

10 ANSA and tools APM.1058.00.01

APM.1058.00.01 ANSA and tools 11

4 Appendix

4.1 Tools and suppliers

Abbreviated list of tools and tool suppliers which were included in our short
survey:

• Art*Enterprise (from Inference Corp)

• Magic CAPtm (from Magic Software Enterprises)

• DEC/Forte (from Forte Software Inc and Digital Equipment Corp)

• Distributed Smalltalk (from HP)

• Emeraude PCTE (from Emeraude)

• Genera (from Symbolics)

• Metis (from Digital and Metis)

• ObjectTeam (from CADRE)

• OMG IDL CFE 1.2 (from Sun)

• ONTOS (from ONTOS Inc)

• OOA/RD (from Kennedy Carter)

• Orbix (from IONA)

• Ptech (from Associated Design Technology)

• SNAP (from Template Software & Instrumatic UK)

• SNiFF+ (from PtS)

• Statemate (from i-Logix)

• System Architect (from Real Time Techniques and Methods)

• Tenet (from Tenet Systems)

• VisualWorks (from ParcPlace)

4.2 Work on tools and their interoperability

The Object Management Group have for some time included a task force
which has listed and compared Object Oriented Analysis and Design Tools
(OMG-SIGOAD). This group has now published a comprehensive review of the
various methods. The group is about to disband or reform itself. The report
can be used as a basis for investigating the raison d’etre of such tools.

There are now voices in OMG which encourage the forming of a group which is
to look into the tool interoperability problem. There are however also people in
OMG who say that yet another group to do this would not help and that those
interested in such issues should join one or more of:

• ANSI and ISO IRDS,

Appendix ANSA Phase III

12 ANSA and tools APM.1058.00.01

• CASE Communique,

• CASE Interoperability Alliance,

• EIA/CDIF (CASE Data Interchange Fromat),

• Exchange,

• IEEE/P1175,

• PCTE,

• X3H6 (CASE Tool Integration Models - Messaging Subgroup)

Below is what information I could find on some of these initiatives. Thanks to
everyone who helped collect it.

4.2.1 ISO and ANSI IRDS

Note: Information Resource Dictionary Systsem has been a part of the standardisation
activities in ISO for a very long time. It’s early aims were to generate meta models
which could be used to characterise information in independently developed database
management systems. There were ideas of a sort of trading function for information
which could be provided through IRDS.
IRDS has been mentioned in connection with tool interoperability work possibly
because the meta models could be used as a point of reference for interworking.
Details on this are not yet available.

4.2.2 CASE Communique and the CASE Interoperability Alliance 1

There are discussions between CASE Communique and the CASE
Interoperability Alliance, to present jointly a specification for abstract
messages to the NIC (National Integration Center) in the USA.

4.2.2.1 CASE Communique

CASE Communique is a group, sponsored by Hewlett-Packard Company, IBM
Corporation, Informix Software, Inc., and Control Data Corporation. The
group was formed in October 1991. HP provided the base technology of
SoftBench/BMS, which is licensed by the others. All four companies (the
“framework providers”) aim to provide a structured forum for the cooperative
development of standard CASE tool interface specifications for application in
BMS-based framework environments. Their vision is to “enable BMS-based
CASE framework environments to be built from a variety of tools that provide
the necessary level of control integration to automate processes and thus
improve the productivity of individuals and software engineering teams”. It’s
key goal from our perspective is “to enable inter-tool communication within
BMS-based framework environments”. They have a tinge of standardisation
as well, since they seek to “encourage industry acceptance and use of the
operation specifications developed and approved by CASE Communique”.

4.2.2.2 CASE Interoperability Alliance

The CASE Interoperability Alliance appears to be Sun’s equivalent to CASE
Communique.

1. Thanks to Gary Levin (Bellcore) for supplying some of this information.

ANSA Phase III Appendix

APM.1058.00.01 ANSA and tools 13

4.2.3 EIA/CDIF (CASE Data Interchange Fromat) 1

The Electronic Industry Association (EIA) (best known from the RS-232
standard) is an ANSI accredited organization like IEEE or X3. The CASE
Data Interchange Format (CDIF) Technical Committee is part of EIA. The
CDIF Technical Committee mission is to provide a single interchange format
usable by any CASE tool.

There is considerable international involvement, particularly from the U.K.
(40-60% of members). Most active members are Boeing, Cadre, CCTA, Digital,
DuPont, IBM, ICL, INTERSOLV, LBMS, MITRE, Oracle, Sybase, Unisys, and
NIST. Most participants are CASE tool vendors. Oracle sells a CASE tool and
Sybase has acquired a Canadian CASE tool company. Boeing and Mitre are
user organizations.

The aim of CDIF apears to be to provide a basis which enables the exchange of
specifications of systems, independent of methodology, specific tool, or
application area.

1. The CDIF Meta-meta-model is a fixed notation for building a Meta-model.
A Model is generated from the Meta-model that is universal between
tools, and Data (instances of objects in the real world) are generated from
the Model. The CDIF Architecture takes an approach which directly
parallels the IRDS four-layer architecture and enables separation of
syntax and semantic components. The goal is to minimize coupling and
maximize reuse of individual components.

2. The CDIF Semantic Model distinguishes a Foundation (root objects) and
Subject Areas for different application areas). Several subject areas have
been completed and others are being worked on.

3. The CDIF Presentation Model is based on nodes and edges and is
independent of any specific notation and can be used to relate pictures to
underlying semantics. This allows transfer of graphical information, as
well as the underlying semantic information. Or a graphical
representation can be passed to a tool for display without any underlying
semantics. The tool could display the information but would not know how
to manipulate it.

4. The CDIF Transfer Format separates the syntax (the grammar, which is
metadata) from the encoding (which could be in any language

CDIF are looking for input from Committees such as X3H7 for support in the
area of object-oriented methodologies.

EXPRESS and X3H4 IRDS will use transport formats provided by CDIF.
PCTE (Portable Common Tool Environment) and IDEF (high level analysis
technique for business processes) may also use CDIF transport formats.

4.2.4 Exchange

Note: No information available yet.

1. The text is based on notes taken by Jeff Sutherland (ODB/Intellitic Int’l) during a
X3H7 meeting, at which Mike Imber, Principal Consultant, Product Management
Group, LMBS, and Chair, CDIF Technical Committee, made a presentation. The text
is courtesy of the OMG SIGOAD mailing list. Any misrepresentations are entirely the
responsibility of the author(s) of this Request for Comments document.

Appendix ANSA Phase III

14 ANSA and tools APM.1058.00.01

4.2.5 IEEE/P1175

Note: No details available yet.

4.2.6 PCTE

Note: Portable Common Tool Environment details to be provided (we’ve got some of these).

4.3 List of OO methodologies

The following list resulted from a survey of methodologies by OMG SIGOAD.
Note: I don’t think I’ve got them all!

1. Booch

2. Class-Centred Modelling (CCM)

3. Coad & Yourdon

4. Demeter

5. Fresco

6. Fusion

7. Graham/SOMA

8. Information Engineering with Objects

9. Martin

10. Marketing to Design

11. OBA

12. Object oriented SDL

13. OGROUP

14. OORAM

15. Objectory

16. OSMOSYS

17. RDD

18. Rumbaugh

19. Schlear/Mellor

20. Software Engineering for Object Technology

21. SSADM

22. Z++

APM.1058.00.01 ANSA and tools 15

References

[TR.042]

Otway, D.J., “Abstract and Automate”, APM Ltd., Cambridge U.K., February
1993.

[APM.1000.01]

van der Linden, R.J., “An Overview of ANSA”, APM Ltd., Cambridge U.K., May
1993.

[INFO 93]

“New horizons dawn for CASE”, Infomatics, January 1993, pp.22-26.

References ANSA Phase III

16 ANSA and tools APM.1058.00.01

1
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

TOOLS and ANSA

The Automated Transparency Topic Group

(in association with the Federation Topic Group)

2
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Motivation
• AT group is about providing distributed systems technology to designers

and programmers

• Selective transparency and transformation tools

• ANSA is tool based: abstract and automate

• Automation is not unique to ANSA

• Many design, analysis, programming and configuration tools provide
automation of (parts of) the design process

• Tools users will not give up productivity aids they use now

• Investigate tools market and compare ideas

3
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

• Survey of 20 design, analysis, programming, and configuration tools

- Art*Enterprise (from Inference Corp)
- Magic CAPtm (from Magic Software Enterprises)
- DEC/Forte (from Forte Software Inc and Digital Equipment Corp)
- Distributed Smalltalk (from HP)
- Emeraude PCTE (from Emeraude)
- Genera (from Symbolics)
- Metis (from Digital and Metis)
- ObjectTeam (from CADRE)
- OMG IDL CFE 1.2 (from Sun)
- ONTOS (from ONTOS Inc)
- OOA/RD (from Kennedy Carter)
- Orbix (from IONA)
- Ptech (from Associated Design Technology)
- SNAP (from Template Software & Instrumatic UK)
- SNiFF+ (from PtS)
- Statemate (from i-Logix)
- System Architect (from Real Time Techniques and Methods)
- Tenet (from Tenet Systems)
- VisualWorks (from ParcPlace)

4
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Initial results:

• Agreement on late binding and early type checking

• Tools are closed systems of limited size

• Tool builders do understand how to make complexities transparent

• Tool suppliers do not advertise strategic issues of tool selection to their
customers
- ANSA principles can help explain the challenge
- meeting that challenge requires agreement amongst tool suppliers

(with user pressure?)

5
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Trends in automation

ef
fo

rt

1986 1988 1990 1992 1994

10%

30%

50%

70%

90%

GUI applications

???

6
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Simplified tool environment

End user

Business rules
& constraints

Rules &
constraints

Interpreter

Transformer

Libraries

Application
Code (C, C++)

Linker

Loader

Compiler

Libraries

performance &
dependability
constraints

7
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Important features of advanced tools (1)

Rule and constraint based programming
 programming style fits business rules - close to end user
 rapid prototyping, with end-user involvement
 ANSA Information Model needs developing (rather than Computational Model)

Tool based optimisation
 rules can be turned into imperative programs (C/C++)

Construct applications rather than write them
 20/80 rule: 20% application & 80% system code (GUI, data access, comms)
 code reuse now practical

Use libraries to hide complex systems code

Configure as late as possible
 late binding of application code to systems code
 late binding of application components (late configuration)

So far in ANSA we have restricted our work to that part of the libraries and systems code which deal with
distribution of any application. This is really a small part of the whole problem space (the bottom right hand
corner of the slide, cutting through the libraries and the systems code boxes, including the compile, link, load
boxes.

8
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Important features of advanced tools (2)
• Other uses of expert system shell in rule & constraint based programming

- ensure early type checking
- support visual programming, e.g. GUI construction, VisualBasic, VisualC
- guide browsers etc.
- enforce methodologies

• Problems / shortcomings / extensions
- tools limit size of application
- comms libraries often based on 80s technology (but DCE support emerging)
- IDL not visible as an agreed way to describe interfaces
- stating properties ANSA-style not yet accepted
- link browsing tools to OMG repositories and trading

9
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Strategic issues when “tooling up”

• Do tools support distribution of the design process in time and location?
- No

• Do current tools permit exchange of specification between tools?
- No

• Is there any agreement on common libraries and/or class hierarchies?
- No (tools hinder info exchange)

• Will the applications built with different tools interwork?
- No (portability vs interworking)

cgt example: legal issue of using one another’s proprietary protocols

10
17 September 1993Draft Request for Comments (confidential to ANSA consortium for 2 years)APM.1058.00.01

Conclusion and direction of work
• ANSA distribution technologies must be delivered to the programmer /

system builder
- How: look at modern tooling environments:

- buy one ?
- get someone to buy one for us (new sponsor, MCI) ?
- build (part of) one is NOT practical

- What: coordinate programming abstraction work in other groups

• ANSA engineering can be “exported”
- If we obtain an existing environment, it must be extendable with

- ANSA engineering
- OMG object & interface repositories
- attribute based transformation technologies

• ANSA can be used as a thinking model to help end users understand the
strategic issues asociated with tooling up
- A short briefing paper is in preparation

