
Copyright 1994 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (0223) 323010
INTERNATIONAL: +44 223 323010

FAX: +44 223 359779
E-MAIL: apm@ansa.co.uk

APM Business Unit

Distribution:

Supersedes :

Superseded by :

APM.1261.00.01 Draft 23 June 1994

External Paper

Writing Distributed Applications using ANSA and
ANSAware 4.1

Chris Mayers

Abstract

A training course in ANSA and ANSAware 4.1. Based on a course written by Jane Dunlop
presented in May 1992, using ANSAware 4.0. Version 00.01 of this document is the lightly
reformatted, but uncorrected course,

3
23 June 1994Draft External PaperAPM.1261.00.01

Writing
Distributed Applications

Using ANSA

4
23 June 1994Draft External PaperAPM.1261.00.01

Tutorial Overview
DAY 1

• Distributed Systems - benefits and drawbacks.

• ANSA overview
- History
- ANSA & ANSAware
- The ANSA approach to distributed systems

- problems, approach, design philosophy

• The ANSA computational model

• Engineering model & implementing the ANSA architecture

• Overview of using ANSAware

• ANSAware in detail, with hands-on examples
- Using ANSAware services & tools
- How to write a simple application

5
23 June 1994Draft External PaperAPM.1261.00.01

Tutorial Overview (cont’d)
• DAY 2

• ANSAware in detail (cont’d)
- ANSAware capsule-library features & constructs
- Writing more complicated applications
- Exception Handling
- Dynamic service creation - Factory & Node Managers

• Practical concerns - Installing & setting up ANSAware on your system

• Future developments of ANSA and ANSAware
- Interface Groups
- Storage, migration

6
23 June 1994Draft External PaperAPM.1261.00.01

Motivation

• Technology - multiple workstations offer better CPU performance than a
single large machine.

• Administrative control decentralised - greater autonomy of operation.

• Evolution & Interworking of Existing Systems - in most organizations,
information is spread across different, incompatible systems

• Faster Communication and Travel - international and global information
systems already exist - distributed applications and requirements exist all
around you!

7
23 June 1994Draft External PaperAPM.1261.00.01

Advantages

• Exploit multiple machines to improve performance.

• Increased productivity through greater machine availability.

• Fault tolerance.

• Evolutionary system growth and expansion.

8
23 June 1994Draft External PaperAPM.1261.00.01

Drawbacks

• Harder to design, build, maintain and administer than a centralised system.

• Heterogeneity in hardware, networks, protocols, operating systems, data
representations, expertise requirements etc, must be managed.

• Communication delays and errors make it impossible to have a 100%
consistent view of a distributed system.

9
23 June 1994Draft External PaperAPM.1261.00.01

ANSA Project: 1985-1988

• Alvey Programme - UK Government.

• Collaborators: BT, DEC, GEC, GPT, HP, ICL, ITL, Racal, Olivetti, STL.

• Developed the initial ANSA architecture, published as the ANSA Reference
Manual.

• Produced a prototype realisation of that architecture - ANSA Testbench 2.5.

10
23 June 1994Draft External PaperAPM.1261.00.01

ISA Project

• Esprit II - CEC.

• Collaborators: AEG, BT, Case, Chorus, CNET, CTI, DEC, Ellemtel, GEC, GESI,
GPT, HP, ICL, Newcastle Univ, Origin, SEPT, Siemens, STL, Syseca,
Televerket.

• Continuing development of the ANSA architecture and an example prototype
implementation. Testbench 2.5 -> ANSAware 3.0 -> ANSAware 4.0.

• To play a leading role in the ODP area and influence relevant standards (e.g.
ODP, ISO RPC, ECMA RPC, UI, OSF, OMG).

• Distributed computing areas convered: groups, transactions, concurrency
control, migration, storage, trading, naming.

11
23 June 1994Draft External PaperAPM.1261.00.01

Advanced

Networked Systems

Architecture

Overview

12
23 June 1994Draft External PaperAPM.1261.00.01

ANSA - Design Principles

• ANSA is an architecture for building distributed systems

• Distribution can be made selectively transparent to application writers &
users

• Different approach from networking collections of single systems

• Integrated approach to separation, heterogeneity, interworking

• Systems viewed as coordinated sets of subsystems, appropriate to the
enterprise they serve - not as random collections of boxes.

13
23 June 1994Draft External PaperAPM.1261.00.01

Integrated Approach - five projections

• ANSA identifies five viewpoints, called "Projections", on distributed
systems:

• Enterprise - describes the enterprise and hence the overall objectives of the
system.

• Information - information requirements within the system.
Computational - abstract model of distributed processing.
Engineering - a design for realising the computational model.
Technology - implementations of hardware, operating systems, compilers
etc.

14
23 June 1994Draft External PaperAPM.1261.00.01

The five projections
• ANSA is defined with reference to five related models of distributed systems.

These are not layered.

Information
projection

Technology
projection

Computational
projection

Engineering
projection

Enterprise
projection

15
23 June 1994Draft External PaperAPM.1261.00.01

ANSA & ANSAware
• Most work to date (and this tutorial) concentrates on the ANSA

Computational and Engineering Models.

• ANSAware design is an example implementation of the Engineering Model
- Note: not a reference implementation

• ANSAware is a set of tools, libraries, and run-time services to make
developing distributed applications easier

• ANSAware is portable - it can run in conjunction with many different
technologies.

16
23 June 1994Draft External PaperAPM.1261.00.01

The Problem Space

• Systems are required to operate in "open" distributed environments
Systems are heterogeneous and under different administrative domains

• Two important viewpoints and models:
- ANSA computational model (application designer’s viewpoint)
- ANSA engineering model (system builder’s viewpoint)

• Concept of service from two perspectives:
- an abstract speciifcation of a set of system or application functions
- an engineering entity that implements these functions

17
23 June 1994Draft External PaperAPM.1261.00.01

Distributed Systems -
Properties/Issues

• Separation

• Heterogeneity

• Federation

• Concurrency

• Scaling

18
23 June 1994Draft External PaperAPM.1261.00.01

Distributed Systems -
Assumptions to avoid

• Single global name space • Global consistency

• Synchronous interaction • Locality of interaction

• Homogeneous environment • Global shared memory

• Sequential execution • Total failures

• Fixed location • Direct binding

19
23 June 1994Draft External PaperAPM.1261.00.01

Approach to Separation

• Assume all services are remote, allowing co-location as an optimization

• Require each service to be entirely responsible for operating on its
encapsulated data

• Perform all interactions with services via instances of (pre-defined)
interfaces

• Allow propagation of interface-references as the means of acquiring access
to services

• Name and report all detected interaction faults and failures

20
23 June 1994Draft External PaperAPM.1261.00.01

Approach to Heterogeneity

• Assume heterogeneity and identify unnecessary diversity

• Abstract away from unnecessary diversity, while still retaining the benefit of
specializations

• Request remote services to manipulate their encapsulated data through
interface-instances

• Pass only interface-references, rather than having some data-presentation
syntax.

21
23 June 1994Draft External PaperAPM.1261.00.01

Approach to Federation

• Allow each system to control its own policies and services locally

• Allow cooperating systems to negotiate the sharing of services

• Require cooperating systems to identify all available services via a context-
relative naming scheme

• Provide a trading facility through which federated cooperating systems can
organize and control sharing of services

22
23 June 1994Draft External PaperAPM.1261.00.01

Approach to concurrency

• Distinguish between the computational and engineering views of
concurrency
- i.e. specifying requirements for concurrency is kept separate from

specifying the mechanisms to provide it

• Require declarative expression of parallel execution and concurrency control
in the computational model

• Provide programmers with suitable linguistic tools for building distributed
applications

• Provide engineering tools to map computational specifications to
engineering mechanisms

23
23 June 1994Draft External PaperAPM.1261.00.01

Approach to Scaling

• Allow for scaling variability by building expansion capability into the
architecture

• Provide extensible naming & trading facilities

• Federate through negotiable, cooperating, remote services

• Do not assume global mutable knowledge

24
23 June 1994Draft External PaperAPM.1261.00.01

Instances of the same object

• Instances of an object

• Instances of an interface

Print Service

Plain TextManagement

print
print

Print Service

Plain TextManagement

print
print

Bank
State

Bank Service BankManager

CreateAccount (1)
CreateAccount (2)

BankAccount 1

Credit
Debit
Show Balance

BankAccount 2
Credit
Debit
Show Balance

25
23 June 1994Draft External PaperAPM.1261.00.01

ANSA

Computational Model

Overview

26
23 June 1994Draft External PaperAPM.1261.00.01

Computational Projection

• View system as interacting computational entities.

• Logical partitioning of components.

• Independent of physical and logical configuration.

• An entity specifies its behaviour and not resource management - this is
private (encapsulated).

27
23 June 1994Draft External PaperAPM.1261.00.01

ANSA Computational Model
(in one slide)

• Based upon service provision and use.

- One entity/object may simultaneously provide and/or use multiple
services.

- Services can be dynamically created and destroyed.

• Ability to use a service may be passed from one object to another.

• Providers and users are typically put in touch via a "Trading Service" or
Trader
- Dynamically adding and removing services allows dynamic re-

configuration

28
23 June 1994Draft External PaperAPM.1261.00.01

ANSA Computational Model (cont’d)

Service

Trader

Client

Client /
Service

(5) Use servic e

(1) Export
(2) Import

(3) Use service

(4) Pass
ability to use
service

29
23 June 1994Draft External PaperAPM.1261.00.01

Summary of Restrictions on
Interaction

• Must assume everything is remote.

• Can’t manipulate external state.

• Indirect procedural access.

• Diversity of data representations.

• Don’t know the encoding of remote data.

• Can’t manipulate data representations directly.

• Can’t transfer data representations.

• Approach: Use references to Abstract Data Types (ADTs).

30
23 June 1994Draft External PaperAPM.1261.00.01

Using references to ADTs

• ADTs - all access to external data is procedural

• Service describes how it can be used in terms of ADTs

• Can only distinguish between entities by interaction. Cannot examine their
representations to determine equality.

• Can only transport references to ADTs

• Call them Interfaces

31
23 June 1994Draft External PaperAPM.1261.00.01

Interfaces

• Interface = Point-of-access to a service

• A computational entity (service) has one or more interfaces

- Service encapsulates state
- Interface is service provision point

• An ADT describes an interface to a service

32
23 June 1994Draft External PaperAPM.1261.00.01

Services & Interfaces - Example

• Considering everything as services & interfaces allows implementation
details to be hidden from the service user

• Consider a set of printing services providing capabilities:

- printing plain text documents
- printing documents in some markup language e.g. PostScript (TM)
- a management interface - providing capacity to start & stop print queue,

delete print jobs, other administrative tasks relating to printer

• Show four different configurations for implementing this

33
23 June 1994Draft External PaperAPM.1261.00.01

Possible Structures for printing
services (1)

• One object/entity presents plain text, markup & management interfaces

Print Service
print
print

Markup

Management

Plain text

34
23 June 1994Draft External PaperAPM.1261.00.01

Possible Structure for printing
services (2)

• Raw printer presents management & control interfaces - filter services use
these

Print Service
print
print

MarkupPlain text
Management

Markup
Filter

Text
Filter

35
23 June 1994Draft External PaperAPM.1261.00.01

Possible Structures for printing
services (3)

• Printer supports markup-language - raw text converted to markup language
for printing

Print Service
print
print

Plain text
Management

Text
Filter

Markup

36
23 June 1994Draft External PaperAPM.1261.00.01

Possible Structures for printing
services (4)

• Two physically separate printers, one for plain text, one for markup-
language, encapsulated as separate objects/entities

Print Service
print
print

Management

Print Service
print
print

Management
Plain Markup

MarkupPlain text

37
23 June 1994Draft External PaperAPM.1261.00.01

Interfaces, Operations

• An interface has one or more operations.

• Operations are the defined ways of using the interface.

• Like "methods" in traditional object-oriented vocabulary

38
23 June 1994Draft External PaperAPM.1261.00.01

Service, Interfaces, Operations -
Example

• Consider a bank account as service

• Has some state, such as account balance, name of customer etc.

• Has some defined set of actions that can be carried out on this state

- Decreasing balance by writing a cheque
- Increasing balance by depositing money
- Inquiring account balance

• These actions are the only way of manipulating the bank account

• In ANSA terminology, these are called Operations

39
23 June 1994Draft External PaperAPM.1261.00.01

Service, Interfaces, Operations -
Example (cont’d)

Bank
State

Bank Service

BankAccount
Interface

Operations:
 Credit
 Debit
 ShowBalance

40
23 June 1994Draft External PaperAPM.1261.00.01

Service, Interfaces, Operations -
Example (con’t)

• A service can have more than one interface

Bank
State

Bank Service

BankAccount
Interface

Operations:
 Credit
 Debit
 Show Balance

Operations:
 List All Accounts
 Create New Account
 Remove Account
 Shut Down Service

BankManager
Interface

41
23 June 1994Draft External PaperAPM.1261.00.01

Terminology - Interfaces &
Interface References

• An interface is just the definition of possible interactions with the service
- To be strict, we should probably say "interface-type"

• The actual things are instances of these interfaces
- But we usually just say "interfaces"

• A service can present one or more instances of the same interface-type

• Instance means interface-type, together with its data
- e.g. BankAccount - particular data (account number, name balance) is

what distinguishes one instance from another
- type is still same, though

42
23 June 1994Draft External PaperAPM.1261.00.01

Terminology - Interfaces & IfRefs
(cont’d)

• Refer to an interface via an interface-reference (if-ref)

• Operations are invoked on interface references.

• Computationally, everything referred to is an interface-reference

- Arguments and results are interface references

43
23 June 1994Draft External PaperAPM.1261.00.01

Operations
• Operations manipulate local data.

• Operations can be described by four parts

- Name, parameters, results, outcome (or termination)

• Invoke operations by name and arguments.

• Two kinds of operations: synchronous or asynchronous.

- Interrogation : synchronous, reliable - return one of a set of named
terminations with results.

- Announcement : asynchronous, unreliable - do not return.

44
23 June 1994Draft External PaperAPM.1261.00.01

Invocations

• Interrogation - synchronous:

• Announcement - asynchronous:

blocked

•

45
23 June 1994Draft External PaperAPM.1261.00.01

Terminations
• An interrogation can have different possible outcomes

• Consider operations on the BankAccount interface described earlier:

Deposit (amount : Integer) : (newBalance : Integer)

Withdraw (amount : Integer) : (newBalance : Integer)

OR

Withdraw (amount : Integer) : () -> InsufficientFunds

• The latter outcome is called a Named Termination , and the normal outcome
is an unnamed (anonymous) termination

46
23 June 1994Draft External PaperAPM.1261.00.01

Terminations (cont’d)

• One termination may be anonymous.

• Each termination may return multiple results.

• The invoker of an interrogation distinguishes between different terminations
by name.

47
23 June 1994Draft External PaperAPM.1261.00.01

Argument (and Result) Passing

• Can only pass interface references (if-refs).

• Only the reference is copied, not the interface.

• Each end has a reference to a shared service.

• This is the semantic model - the implementation can make optimisations - i.e.
use & transmit copies of immutable state, e.g. integer constants.

• Integer variables are mutable, may not be copied and interface-references to
them are used instead.

48
23 June 1994Draft External PaperAPM.1261.00.01

Shared State and Encapsulation
• Operation state only has invocation scope.

• For state maintained across invocations
⇒ interface state.

• For separate copies of interface state
⇒ interface instances.

• For
- sharing state between interfaces
- defining granularity of distribution
- defining scope boundaries for attributes (fault propagation, security,

checkpoints etc).
⇒ Objects (and object instances).

49
23 June 1994Draft External PaperAPM.1261.00.01

Objects - Summary

• Objects enforce strict encapsulation (mutable state can’t be shared between
objects).

• Only objects can be re-configured or migrated (i.e. not just part of an object).

• Objects may have multiple interfaces.

• Objects may have concurrency.

50
23 June 1994Draft External PaperAPM.1261.00.01

Encapsulation and Service
Provision - Difference of ANSA

from OOLs

• ANSA separates the notions of encapsulation and service provision.

• Objects provide encapsulation.

• Interfaces are the points of service provision.

• OOLs use one mechanism for both encapsulation and service provision,
whereas ANSA has separated these functions.

51
23 June 1994Draft External PaperAPM.1261.00.01

Instances

• No interface or object classes.

• Interface instance constructors generate new interface instances when
executed.

• Object instance constructors generate new object instances when executed

- resulting object: 0 or more interfaces

52
23 June 1994Draft External PaperAPM.1261.00.01

Instances of the same object

• Two instances of a Print Service object

Print Service

print
print

Print Service

print
print

Plain TextManagementPlain TextManagement

53
23 June 1994Draft External PaperAPM.1261.00.01

Instances of the same interface
• Two instances of BankAccount interface

Bank Service

Bank
State

BankManager

CreateAccount(1)
CreateAccount(2)

BankAccount1
Credit
Debit
Show Balance

BankAccount 2

Credit
Debit
Show Balance

54
23 June 1994Draft External PaperAPM.1261.00.01

Using types in ANSA

Service

Trader

Client /
Service

Client

(5) Invoke
 operation

(2) Import -
 interface type

(4) Pass
 if-ref

(3) Invoke
 operation

(1) Export - interface
 type, if-ref

= Interface

55
23 June 1994Draft External PaperAPM.1261.00.01

Types

• Interface types are based on operation names and signatures.

• An operation signature consists of:

- the number and type of its arguments.

- the names and signatures of its terminations.

• A termination signature consists of the number and types of its results.

56
23 June 1994Draft External PaperAPM.1261.00.01

Type Checking

• The type provided must be checked against the type required before a
binding is made.

• This can be done any time before binding.

• Dynamic binding requires dynamic type checking.

• Use conformance check rather than exact matching.

57
23 June 1994Draft External PaperAPM.1261.00.01

Type Checking - Type
Conformance

• Type Y conforms to type X

Y

X

Y: INTERFACE
Op1: Operation
Op2: Operation
Op3: Operation
Op4: Operation

X: INTERFACE
Op1: Operation
Op2: Operation

58
23 June 1994Draft External PaperAPM.1261.00.01

Conformance Rules
• Conformance of offer type to requested type assures that server & client can

exchange information

- Server does not receive unknown operations.

- Client does not receive unknown terminations.

• All arguments and results of operations must also conform to defined types.

59
23 June 1994Draft External PaperAPM.1261.00.01

Trading

• Trading is the activity of choosing a service offer that matches the service
requirement.

• The Trading service is provided as any other service

• A trader manages a database of service offers and matches requirements to
offers.

• This matching is done on the basis of type conformance

• Once a trader has introduced a server to a client, it plays no further part in the
interaction.

60
23 June 1994Draft External PaperAPM.1261.00.01

Trading (cont’d)

• A trader has no special privileges - it is a service like any other

• Interface references received from a trader are invoked like any others

Trader

ServerClient

= Interface

(1) Export - interface
 type, If-Ref

(4) Invoke
 operations

(2) Import -
 interface type

(3) Result:
 If-Ref

61
23 June 1994Draft External PaperAPM.1261.00.01

Implementing

ANSA

62
23 June 1994Draft External PaperAPM.1261.00.01

API’s and Language Extensions
• Many existing systems provide a procedural separation between applications

and systems:

• Allows too much of the system detail to show through

• Requires run-time checks to ensure correct use of API

• API widens as application requirements grow

Application Programming Interface

Applications and Applications Programmers

Systems and Systems Programmers

63
23 June 1994Draft External PaperAPM.1261.00.01

• ANSA takes a more powerful programming language view:

• The interface seen by the application programmer is expressed as a series of
Language Extensions.

• Simpler to understand and use than a procedural API.

Application Programming Interface

Applications and Applications Programmers

Systems and Systems Programmers

Language Extensions

64
23 June 1994Draft External PaperAPM.1261.00.01

• Advantages:

- a simple, system-independent programming model.

- Independence between application and system designers.

- easy migration of software between platforms.

- compile-time checking.

65
23 June 1994Draft External PaperAPM.1261.00.01

• Benefits:

- increased confidence in software.

- more robust, error-free and dependable software.

- system evolution.

- applications unaffected by system re-engineering.

- system unaffected by application re-design.

66
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware 4.0

Overview

67
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware: Purpose

• To try out and validate the ideas and concepts described in the architecture.

• To allow users to try out the architectural ideas.

• To provide feedback into the architectural design.

• To be sufficiently well engineered for use in practical situations and
products.

68
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware: Components

• A run-time system providing the engineering components required to realise
an instance of the architecture.

• A set of libraries used by all application programs.

• A set of tools for constructing applications.

• Tools (programming constructs) specifically targeted at aspects of
distribution.

69
23 June 1994Draft External PaperAPM.1261.00.01

Components & Terminology

• Node: a single machine or a cluster of machines which allows for the
creation/destruction of processes with a unique process id.

• Nucleus : an engineering object which manages the resources of a node

- This is implemented as a set of libraries that get linked together with the
user’s application to form a capsule

- Nucleus also referred to as infrastructure or capsule library

70
23 June 1994Draft External PaperAPM.1261.00.01

Components & Terminology -
Capsule

• Capsule
- is the unit of autonomous operation within ANSAware
- is an address-space supporting a single instance of the run-time system.

• Includes:
- efficient, transport-independent and portable RPC protocol.
- light-weight threads.
- synchronisation operations.
- timer handling.
- support for interworking with other systems - e.g. X11.

• On a multi-tasking operating system such as Unix, one node may support
several capsules

71
23 June 1994Draft External PaperAPM.1261.00.01

Node, Nucleus, Capsule

Capsule

Nucleus

Node / platform

Transparency
Services

Engineering
Objects

Computational
Objects

T1 T2

72
23 June 1994Draft External PaperAPM.1261.00.01

Node, Nucleus, Capsule -
Implementation

Capsule Libraries

Node / platform

Engineering
Objects

Capsule

73
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Components (cont’d)

• IDL: language for defining service interfaces.

• STUBC: IDL compiler:

- Generates marshalling/unmarshalling code (called stubs)

- Interfaces with the underlying Capsule libraries.

74
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Components (cont’d)

• PREPC Language : statements which can be embedded in C programs to
access and implement services.

• PREPC Pre-processor : translates PREPC statements into C code which
interfaces to:

- Capsule libraries.

- STUBC stubs.

75
23 June 1994Draft External PaperAPM.1261.00.01

Components (cont’d)

Interface
IDL

CapsuleLibrary

PREPC
Server

ServerCode

ServerStubClientStub
ClientCode

PREPC
Client

Server capsuleClient capsule

PREPC

Compile &
Link

Compile &
 Link

STUBC
PREPC

76
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Services

• Trader : provides run-time matching of service requests to available services.

• Factory : dynamic creation and destruction of services on a single node.

• Node Manager : per-node service management.

77
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware is Portable
• ANSAware runs on the following operating systems:

- UNIX

- VMS

- MS-DOS

- Chorus

- Wanda (68K, ARM, DEC Firefly)

78
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware is Portable (cont’d)
• UNIX variants:

- HP 300 and 800 series - HP/UX version 7.0 and 8.0.

- DEC VAX - ULTRIX 3.2.

- DECStation 3100 - ULTRIX 3.2.

- Sun3, Sun4 - SunOS 4.0 and 4.1.

- Acorn R140 - RISCIX 1.13.

- Apple A/UX.

79
23 June 1994Draft External PaperAPM.1261.00.01

Intro to Using ANSAware
• Purpose:

- Show basics of building a distributed application.

- Familiarise yourselves with how ANSAware works in practice.

• Outline:

1. ANSAware trader - what it does, how to use it

2. Exporting & Importing offers

3. Example service - "Echo" service

4. Building & using Echo client.

80
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Trader
• Trading is the activity of choosing a service offer that matches the service

requirement.

• A trader manages a database of service offers and matches requirements to
offers.

• Type, context and various (optional) properties are associated with each offer

• type is just the name of the type

- e.g. Printer, Trader

• context is the (unix-like) pathname of the offer in the trader’s database

- provides a way of organizing offers

81
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Trader (cont’d)
• properties: (Name Value) pairs

- describe the offer in more detail

- could be anything e.g. (Cost-per-page 2p), (NodeName basilisk)

• A trader is just an ordinary service

- but clients automagically receive interface-reference for local trading
service on creation - this is built-in to the infrastructure

• Once a trader has introduced a server to a client, it plays no further part in the
interaction.

82
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Trader (cont’d)

• Service offers are traded via Export & Import statements

Server

Trader

Client

(1) Export - type, context,
 properties, If-Ref

(2) Import -
 type, constraints

(3) Result:
 If-Ref

(4) Invoke
 operations

83
23 June 1994Draft External PaperAPM.1261.00.01

Export
• A server exports an offer of a service to trader specifying:

- TypeRef : a type specification.

- Context : path in the context graph.

- Properties (optional): a list of (name, value) pairs.

- Interface Reference : reference to the interface of the service
- contains addressing information used by ANSAware infrastructure to
determine where messages should be directed

84
23 June 1994Draft External PaperAPM.1261.00.01

Export (cont’d)
• Consider an example service called "Echo", which is passed a string, and

returns that string

• It might give these parameters to the Export call:

- type - Echo

- context - /ansa/testservices

- properties - User Jane Node basilisk

85
23 June 1994Draft External PaperAPM.1261.00.01

Import

• A client imports a service from the trader specifying (TypeRef, Context,
Constraints).

- constraints specify allowable property values - this is optional

• The trader searches the Context (and any below it) for all offers which
conform to TypeRef and which satisfy constraints - it then chooses one at
random and returns the InterfaceRef to it.
- client could choose to look up all matching offers, rather than just one,

then choose one or more itself

86
23 June 1994Draft External PaperAPM.1261.00.01

Hands-on Example
Check that the trader is working:

prompt> trtest
59.16 calls/second, 16.902 ms/call, \
1000 Lookup calls completed
prompt>

• Check what offers are in the trader:
trclient search ansa /

- This displays all offers in the trader

• Build the Makefile for the Echo service for your machine-type:

- ansakmf - command to create Makefile from Imakefile

- make depend - adds dependencies to Makefile

87
23 June 1994Draft External PaperAPM.1261.00.01

Hands-on Example (cont’d)
• Build client and server

- make server - builds "server" capsule
- make client - builds "client" capsule

• start Echo service
- server &

• check that offer has been posted to Trader

- the context for these examples is /ansa/testservices

trclient search Echo /ansa/testservices

trclient search Echo /ansa/testservices "Node == ’machine’"

88
23 June 1994Draft External PaperAPM.1261.00.01

Hands-on Example (cont’d)
• start the Echo client

prompt> client
echo> a string to be echoed
mach-name: a string to be echoed
echo>

• CTRL-C to kill

• Run the client several times & see what is different

• Kill the server & note that it disappears from Trader’s list

• run the client when there are no matching services & see what happens

89
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware 4.0
In Depth

Speaker Notes

90
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware 4.0 in Depth - Outline

• Examine ANSAware components in greater detail

• Hands-on: Extend Echo example

• Describe ANSAware trader in greater detail

• Describe ANSAware built-in facilities with an example

• A more complicated application-program

• Factory & Node Manager

• Other ANSAware features

• Installation hints

91
23 June 1994Draft External PaperAPM.1261.00.01

Components - Review
PREPC
Server

ServerCode

ServerStubClientStub

CapsuleLibrary

ClientCode

PREPC
Client

IDL Interface

Server capsuleClient capsule

PREPC

Compiler &
LinkCompiler &

 Link

STUBC
PREPC

92
23 June 1994Draft External PaperAPM.1261.00.01

IDL

• Specifies a common data exchange format

• STUBC (the IDL stub compiler) provides a programming language interface
to the data format

• Application writers specify their service interfaces using IDL

• STUBC compiles these specifications to generate the appropriate stub code
for the defined operations

93
23 June 1994Draft External PaperAPM.1261.00.01

IDL (cont’d)
Echo : INTERFACE =

-- Comment lines start with two dashes

BEGIN

Echo : OPERATION [Src: STRING]

 RETURNS [STRING];

Reverse: ANNOUNCEMENT OPERATION

 [Src: STRING]

 RETURNS [Res: STRING]; Note: names optional for results, could just have [STRING]

END.
Have mentioned interrogation/announcement - interrogation is the default, can specify announcement if desired

94
23 June 1994Draft External PaperAPM.1261.00.01

• IDL provides a set of built-in concrete types:
- BOOLEAN
- [SHORT] CARDINAL
- [SHORT] INTERGER
- [LONG] REAL
- OCTET (signed)
- CHAR
- ENUMERATION
- STRING

• IDL provides concrete type constructors:
- ARRAY OF Type (fixed size)
- SEQUENCE OF Type (variable size)
- RECORD [Types]
- CHOICE (discriminated union)

95
23 June 1994Draft External PaperAPM.1261.00.01

More IDL
Pt: TYPE = RECORD [

 x: INTEGER,

 y; INTEGER

];

Plot: TYPE = SEQUENCE OF Pt;

Box: TYPE = ARRAY 4 OF Pt;

Hexagon: TYPE = ARRAY 6 OF Pt;

Which: TYPE = { B, H };

Polygon: TYPE = CHOICE Which OF {

B => Box,

H => Hexagon

};

96
23 June 1994Draft External PaperAPM.1261.00.01

IDL - built-ins
• An abstract type definition is provided for ansa_InterfaceRef .

• Every interface has an automatically defined type as follows:

X: INTERFACE =

BEGIN

XRef: TYPE = ansa_InterfaceRef;

END.

97
23 June 1994Draft External PaperAPM.1261.00.01

PREPC

• C preprocessor.

• Write clients and servers in C.

• Embed PREPC statements in C.

• PREPC/C provides implementation for clients and services.

• PREPC allows operations provided by a service interface to be invoked by
clients.

• PREPC provides access to all services: i.e. the trader, factory, node manager,
in addition to user written services.

98
23 June 1994Draft External PaperAPM.1261.00.01

PREPC (cont’d)

• Import, Export are special PREPC statements for using the Trader

Server

Trader

Client

(1) Export - type, context,
 properties, If-Ref

(2) Import -
 type, constraints

(3) Result:
 If-Ref

(4) Invoke
 operations

99
23 June 1994Draft External PaperAPM.1261.00.01

PREPC code
• Client:

! USE Echo

! DECLARE { intRef } : Echo CLIENT

...

ansa_InterfaceRef intRef; /* or EchoRef intRef; */

 /* import service */

! { intRef } <- traderRef$Import (“Echo”, “/”, “”)

...

 /* invoke operations */

! { obuf } <- intref$Echo(ibuf)

...

 /* discard service */

! intRef$Discard

100
23 June 1994Draft External PaperAPM.1261.00.01

PREPC code (cont’d)
• Server:

! USE Echo

! DECLARE { intRef } : Echo SERVER

...

ansa_InterfaceRef intRef

...

 /* create & export interface-instance */

! {intRef} :: Echo$Create(16)

! {} <- traderRef$Export(“Echo”, “/ansa/testservices”, \
“”, intRef)

...

 /* operations invoked */
Export statement attempts to ensure that exported offer is removed from Trader on capsule termination

101
23 June 1994Draft External PaperAPM.1261.00.01

PREPC code (cont’d)

• Server Operations:
Interface_Operation (

 _attr, /* always required */

 args, /* arguments */

 results /* results (pointers))

{

/* do the operation */

return SuccessfulInvocation;

/* return UnSuccessfulInvocation; would indicate a failure */

}

102
23 June 1994Draft External PaperAPM.1261.00.01

PREPC & IDL - future

• Currently PREPC and IDL is the only way.

• Support C, looking at C++, other projects are already using C++, Objective C
and other proprietary languages.

• Eventually PREPC and IDL will be merged into a single language - thus
avoiding the need for two compilers/preprocessors etc.

• Enhancements will include support for group execution protocols, atomicity,
transactions and multimedia.

103
23 June 1994Draft External PaperAPM.1261.00.01

Echo example in detail

• Looking at the syntax of the components of the Echo example

• Motivation: Adding the operation Reverse to its specification

104
23 June 1994Draft External PaperAPM.1261.00.01

Echo Interface

Echo : INTERFACE =

BEGIN

Echo: OPERATION [Src: STRING]

 RETURNS [STRING];

Reverse: OPERATION [Src: STRING]

 RETURNS [STRING];

END.

105
23 June 1994Draft External PaperAPM.1261.00.01

Echo Client
! USE Echo
! DECLARE { intRef } : Echo CLIENT
char ibuf[1024], *obuf;
void body(int argc, char *argv[], char *envp[])
{

ansa_InterfaceRef intRef;
! {intRef} <- traderRef$Import("Echo","/", "")

printf(">");
while(fgets(ibuf, sizeof(ibuf), stdin) != (char*)0) {

! {obuf} <- intRef$Echo(ibuf)

printf("%s", obuf);

printf("> ");
}

! intRef$Discard
}

106
23 June 1994Draft External PaperAPM.1261.00.01

Echo Server
! USE Echo

! USE Trader

! DECLARE { ir } : Echo SERVER

void body(int argc, char *argv[], char *envp[])

{

ansa_InterfaceRef ir;

! {ir} :: Echo$Create(16)

(void) system_init_properties(propbuf, PROPSIZE, \
argc, argv);

! {} <- traderRef$Export(“Echo”, “/ansa/testservices”, \
“”, ir)

} Note here that body() fn just ends, but does not mean capsule dies - capsule hangs around, waiting for ops to be
invoked - capsule won’t die while interfaces to it exist

107
23 June 1994Draft External PaperAPM.1261.00.01

Echo Server (cont’d)

int Echo_Echo(_attr, src, result)

 /* All server operations have this first argument */

 ansa_InterfaceAttr *_attr;

 /* Arguments */

 ansa_String src;

 /* Results (pointers) */

 ansa_String *result;

{

 *result = src;

 return 1;

 /* return 0; would indicate a failure */

}

108
23 June 1994Draft External PaperAPM.1261.00.01

Imakefile
IDLFILES = Echo.idl
SIFFILES = Echo.sif
DPLFILES = client.dpl server.dpl
RCSFILES = Imakefile $(IDLFILES) $DPLFILES)
PROGS = client server

compile idl files
all:: $(SIFFILES)

dpl and idl file dependencies
DPLDepend(client)
DPLDepend(server)
IDLDepend(Echo)

SingleProgramTarget(server,server.o sEcho.o,$(LOCALLIB),)
SingleProgramTarget(client,client.o cEcho.o,$(LOCALLIB),)

109
23 June 1994Draft External PaperAPM.1261.00.01

Modifying and Extending Echo

• Changing the implementation of the server consists of simply changing the
implementation of the server procedures.

• New operations can be added by:

1. Adding the new operation to the IDL file (and compiling).

2. Adding the new server procedure to the server implementation.

• Modify client, or write new one, to use new operation

110
23 June 1994Draft External PaperAPM.1261.00.01

Building & Running Echo
$ansamkmf

creates a Makefile from the Imakefile.

$make depend
create the required dependencies.

$make
create client and server programs.

$server &
to run the server.

$trclient search Echo /ansa/testservice
to find all of the available servers.

$trclient search Echo /ansa/testservices "Node == ’yourmachine’"
to find the server on your node.

111
23 June 1994Draft External PaperAPM.1261.00.01

Building & Running Echo (cont’d)

$client < Imakefile
to run the client and echo the contents of the Imakefile onto your

screen. A random server will be used.

$client "Node == ’yourmachine’" < Imakefile
to use the server on your node.

112
23 June 1994Draft External PaperAPM.1261.00.01

Syntax Note
• Import and Export PREPC statements use different syntax for specifying

properties:
- Export(type, context, "Node machine")

- Import(type, context, "Node==’machine’")
specify constraint-expression (more on this later)

- Export(type, context, "Node machine Name Jane ...")
space-separated list of name-value pairs

Now go off & try adding Reverse operation to the echo service.
Don’t confuse them by talking about a conforming service now, don’t think - mention after

113
23 June 1994Draft External PaperAPM.1261.00.01

Creating a conforming service

• If an interface-type StringOps conforms to type Echo , it provides at least the
functionality of type Echo , & possibly more

• A new interface, which is an extension of an existing one, can be created
using the IS COMPATIBLE WITH statement.

StringOps: INTERFACE =

IS COMPATIBLE WITH Echo;

BEGIN

new operations

END.

114
23 June 1994Draft External PaperAPM.1261.00.01

Conforming service (cont’d)

• StringOps conforms to Echo and can be used in its place - a client that
imports type Echo may obtain an IfRef for either Echo or StringOps type of
interface.

• code for StringOps needs to provide at least all operations of Echo

• StringOps type would also need to be registered with the trader (more on this
later)

115
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware
Trader

In Depth

116
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware Trader - Details

• An implementation of the trading service, including federation.

• The ANSAware Trader presents 4 distinct interfaces:

- Service interface - of type Trader - for adding, removing and searching for
offers

- 3 management interfaces - types TrFed, TrCtxt, TrType - for
federation, shutting down, managing type & context-space

117
23 June 1994Draft External PaperAPM.1261.00.01

Trader’s Trader Interface

• Operations: Register, Lookup, Delete, Search

• Register - causes new service offer to be put in trader’s database

• Delete - removes offers having the given Nonce

• Lookup - causes Trader to search its database for one or all matching offer(s)
- depends on specified Policy - Lookup_Random or Lookup_All

e.g. traderRef$Lookup(...)

• These are distinct from $Import, $Export PREPC statements
- pseudo-operations which make use of these Trader operations

• user-program trtest does 1000 Lookup operations and prints time taken

118
23 June 1994Draft External PaperAPM.1261.00.01

Trader Interface (cont’d)

• user-program trclient does Search on given type, context & constraints
trclient search ansa /

• user-program offerMgr does Lookup every few seconds & displays updated
results

119
23 June 1994Draft External PaperAPM.1261.00.01

Trader notion of Type

• Trader uses simplification of computational model type system

• All types have names

• Each type has one or more immediate supertypes

- Exception is root type, conventionally called ansa

- Relationship of new type to others is given when registering type with
Trader

- Trader maintains DAG (directed acyclic graph) representing type
relationships

120
23 June 1994Draft External PaperAPM.1261.00.01

Trader’s type graph

• conformance of offer type to requested type assures that server & client can
exchange information

- Whether the exchange actually means anything is up to the
implementations of client & server

- Type relationships are asserted by user, and checked at invocation time

ansa

Echo

Profile

TrTypeNetinfo

121
23 June 1994Draft External PaperAPM.1261.00.01

Trader - Type simplifications

• Only offers of known types (i.e. in graph) can register with Trader

• Type conformance represented in DAG is based on what a user has asserted
- sanity check at invocation time

• Type checking is done by name
type space manually maintained at present - no automatic conformance-checker
 - to assert type conforms to another type, tell Trader in advance

-future: automatic conformance checker so that relationship of your type to other types can be deduced or
specified in offer-posting rather than all this manual stuff

122
23 June 1994Draft External PaperAPM.1261.00.01

TrType - managing the type-space
• Trader’s TrType interface provides operations for managing Trader’s type-

space

• user-program typecl uses this interface to manipulate trader’s type-graph

• typecl - manipulate type graph

- add a new type (optionally specifying types to which it conforms)

- delete an existing type

- mask an existing type - i.e. prevent its use in anticipation of subsequent
deletion

- unmask a masked type

- list existing types

123
23 June 1994Draft External PaperAPM.1261.00.01

Examples of using typecl

$typecl add Newtype ansa

$typecl del NewType

$typecl add NewType ansa/SBank
add failed - status = TNoSuchSuperType wrong syntax: / not allowed

$typecl add SBank ansa
add failed - status = TAlreadyExists

$typecl add NewType t1 t2
[in this case, NewType conforms to both t1 & t2]

124
23 June 1994Draft External PaperAPM.1261.00.01

Trader notion of Context

• Trader maintains hierarchy of contexts

- Each contexts hold a number of service offers, and can have other
contexts below it

- Each offer is posted in a context

- Use for administrative categorization of offers posted to the trader

• Trader uses Unix-like pathnames to name contexts in hierarchy

- Root of the context-tree is"/"

125
23 June 1994Draft External PaperAPM.1261.00.01

Managing Context-space
• Context or name graph:

• offers have both type and context

• in Trader’s offer-base, keeps track of all relationships:
- offers
- types
- contexts

testservicesfactories

master ansa

nodemgrs

126
23 June 1994Draft External PaperAPM.1261.00.01

Using ctxtcl
• ctxtcl - manipuate context graph

• ctxtcl

- add a new context.

- delete an existing context.

- list existing contexts.

127
23 June 1994Draft External PaperAPM.1261.00.01

Using ctxtcl

$ ctxtcl list

/master

/ansa

/ansa/factories

/ansa/nodemgrs

/ansa/testservices

$ ctxtcl add /ansa/testservices/course

128
23 June 1994Draft External PaperAPM.1261.00.01

Trader Notion of Property
• Properties hold application-specific information about a service offer

- e.g. for a print service: LinesPerMinute, PaperSize, costPerPage,
Turnaround

• Property Name/value pairs specified when offer posted
- e.g. Trader also automatically attaches (Type, TypeName) property to

every offer posted

• Clients requesting services may specify
- Acceptable property constraints (e.g. PaperSize==’A4’)
- Selection of offer with maximum (minimum) value of some property

129
23 June 1994Draft External PaperAPM.1261.00.01

Trader Properties (cont’d)

• Property List (Export):
Node basilisk Price 100
- name-value pairs, separated by spaces

• Constraint Expression (Import):
(Node == ’basilisk’) and (Price <= 200)
- property constraint language (==, != , and , or , not , ...)
- full syntax of constraint language in manual (section 3.11.4)

• properties passed (as strings) as parameters to trader-operations

130
23 June 1994Draft External PaperAPM.1261.00.01

trclient usage
• trclient

lookup type context [constraints]

- finds all offers matching type, context and constraints, randomly selects
one of these and returns its interface reference. Directly equivalent to
PREPC Import.

search type context [constraints]

- finds and returns all offers matching type, context and constraints.

131
23 June 1994Draft External PaperAPM.1261.00.01

trclient (cont’d)

- register type context [constraints]

- registers an offer.

- delete nonce [constraints]

- deletes an offer given its nonce (end-to-end check data, used as an offer-
identifier by the trader here) Note: trader should assign offer #s or sthg to avoid using nonce as id

- normally services automatically remove the offers they have posted, so
this is only used if something has gone wrong (e.g. service that posted
offer has terminated incorrectly)

132
23 June 1994Draft External PaperAPM.1261.00.01

Federation

• Trading systems developed in isolation will eventually need to interwork.

• Federation allows interworking without resorting to a global context space.

• Need separate administrative domains.

• Domains can only be linked at negotiated points.

• Federation transparency means administrators can see the joins but users
can’t.

133
23 June 1994Draft External PaperAPM.1261.00.01

Federation (cont’d)

• Two types of trading federation:

- bind a context in one space to a context in another

⇒ requests targeted at bound context are forwarded to the federated
trader which maintains the federated context.

- bind an offer in one space to another trader’s space

⇒ Lookup requests on the offer are forwarded to the associated trader for
resolution. Such offers are referred to as "proxy offers".

134
23 June 1994Draft External PaperAPM.1261.00.01

Federation (cont’d)
• Federation via naming context:

with current federation capabilities in AW, can only federate root of context to another -like UNIX mount
- computationally, sb able to do anything -mount any part of tree to anywhere, but this is implementation limitation

• Federation via offers: post one particular offer to another trader’s space - can post anywhere

135
23 June 1994Draft External PaperAPM.1261.00.01

Federation (cont’d)

• Requirements for federation:

- mutual agreement on common interface types.

- appropriate mapping functions to maintain InterfaceRef guarantees
(InterfaceRef’s are guaranteed to be unique within a trading domain).

136
23 June 1994Draft External PaperAPM.1261.00.01

Trader - Current Implementation

• Types: No run-time conformance checking by the trader. Conformance
relationships are specified explicitly when types are added to the graph
(DAG). this means that you can fool trader by stating that a type conforms to another via typecl - checking is done
at invocation time by the server whose operation is being invoked

• Context: name space is hierarchical rather than DAG. Context name
components are separated by a "/".

• Properties: All properties are optional, i.e. no way of forcing an offer of type
X to specify properties (Name, x), (Host, y).

• Searching is implemented in a shallow manner, this is, federated traders are
only consulted if the current trader cannot satisfy the import request.

137
23 June 1994Draft External PaperAPM.1261.00.01

Removing service offers from Trader
• When a service ends normally, it can explicitly withdraw any offers it has

Export ’ed via PREPC Withdraw instruction

• If a service is killed by a signal (CTRL-C), ANSAware infrastructure withdraws
all Export ’ed offers from trader before exiting the capsule signal handler intercepts
signal only done for offers posted via PREPC Export stmt (as opposed to other mechanisms that have not yet been
mentioned

• Trader will automatically remove offers it considers "stale"

• If a client cannot invoke operations on an interface-reference received from
the trader, its infrastructure notifies the trader

infrastructure provides following: if client’s operation invocation times out (or some other failures that will be
shown later) then will by default (default exception-handler - exception handler’s explained later) attempt to
inform Trader. Trader will attempt to contact service & if it can’t, will remove from offer list

138
23 June 1994Draft External PaperAPM.1261.00.01

ANSAware
Constructs

In Depth

139
23 June 1994Draft External PaperAPM.1261.00.01

Capsules

• Capsule:

- the ANSAware unit of autonomous operation.

- represents an instance of the run-time environment.

- a single point of failure for that environment.

• On UNIX, a capsule ≡ UNIX process.

• On MS-DOS, a capsule ≡ the entire machine.

140
23 June 1994Draft External PaperAPM.1261.00.01

Capsules (cont’d)

• A single capsule may support multiple objects.

• A single object may support multiple interfaces.

• Objects represent templates for the creation of one or more interfaces.

- multiple, different, templates within the same capsule are distinguished
by name.

141
23 June 1994Draft External PaperAPM.1261.00.01

Capsules (cont’d)

- Interface

Object 3

Object 2

Object 1

Capsule

Run-Time Environment

142
23 June 1994Draft External PaperAPM.1261.00.01

Capsule Library
• Primary functions are:

- RPC protocol implementation (REX)

- Tasks and Threads

- Event Counts and Sequencers (for synchronisation & ordering)

- Timers

• Capsule library itself uses main , ANSAware applications must use

body(ac, av, envp)

int ac;

char **av;

char **envp;

143
23 June 1994Draft External PaperAPM.1261.00.01

Binding

• Interface references are created by the server’s capsule infrastructure and
include all protocols and addresses of the service.

• Client’s capsule infrastructure binds (i.e. end-to-end communication channel
established) on first use, choosing the most efficient common protocol.

• Neither client nor server application knows its own or the other’s address (or
protocol used). This is all handled by the infrastructure.

144
23 June 1994Draft External PaperAPM.1261.00.01

Tasks and Threads

• Tasks are the unit of concurrency.

• Tasks have a stack and save area for their CPU state.

• Threads are the unit of potential concurrency.
thread is an independent execution path through a sequence of operations/statements/steps

• Threads must be assigned to a task in order to execute.
Task is like virtual processor that provides thread with the resources it requires - task is unit of actual
concurrency

• Tasks cannot be shared among threads - once a thread has been allocated to
a task, that thread stays with that task until the thread is done.

145
23 June 1994Draft External PaperAPM.1261.00.01

Tasks & Threads (cont’d)

• Tasks may be pre-emptively scheduled and therefore threads cannot assume
that they execute to completion.

- cannot assume that they have sole access to a critical section - must use
locking to be sure

• Tasks may also be non-pre-emptively scheduled and therefore threads that
are in a tight loop, should pause (instruct_Pause()) to allow other threads
a chance to execute otherwise deadlock may result if no other tasks can be swapped in while thread blocked

• Threads are much cheaper in terms of memory than tasks, because a task
has all that stack space.

If actual concurrency required for correct operation of cpt, then at least 2 tasks req’d, o/w cpt will deadlock

146
23 June 1994Draft External PaperAPM.1261.00.01

Tasks and Threads (cont’d)
• Task creation is controlled by the application programmer:

- static:
GLOBAL ansa_Cardinal Ansa_InitialTasks = NUM_INITIAL_TASKS;

- dynamic:
nucleus_tasks((ansa_Cardinal) NUM_NEW_TASKS,

(ansa_Cardinal)stack_size);

• Calling nucleus_tasks() , with 0 (or a below-minimum size) stack size
causes it to use the default stack size which is fairly big, but depends on arch/O/S

147
23 June 1994Draft External PaperAPM.1261.00.01

Tasks and Threads (cont’d)

• Threads are created by the capsule library as required

• Thread Fork, Join and Spawn primitives are supported for explicit dynamic
creation of threads

- These are instruct_Fork(), instruct_Spawn () & instruct_Join()

148
23 June 1994Draft External PaperAPM.1261.00.01

Event Counts and Sequencers
• Sequencers provide a sequencing mechanism amoung concurrent activities;

library functions provided for using them

• ecs_ticket (sequencer)
an atomic operation which returns the current value of sequencer and then
increments sequencer by one.

• Eventcounts provide a synchronization mechanism among concurrent
activities.

• ecs_await (eventcount, value)
blocks until the value of eventcount is at least value .

• ecs_advance (eventcount)
increments the value of eventcount by 1.

• can use these for e.g. producer-consumer synchronization

• reference: Reed & Kanodia CACM 22(2) Feb. ’79.

149
23 June 1994Draft External PaperAPM.1261.00.01

Mutual Exclusion
• Mutual exclusion can be implemented using eventcounts & sequencers

• Macros are provided as follows:

ansa_InitMutex(ansa_Mutex *m)

ansa_AcquireMutex(ansa_Mutex *m)
blocks current thread until it can acquire mutex lock for crit section

ansa_ReleaseMutex(ansa_Mutex *m)

ansa_FreeMutex(ansa_Mutex *m)

150
23 June 1994Draft External PaperAPM.1261.00.01

Timers

• Two forms of timers supported:

1. timer_Sleep(unit, delay)
the calling thread is suspended for delay TSeconds, TMilliSeconds,
or TMicroSeconds as specified by the unit argument.

2. timer_setTimer (unit, delay, action, data, owner)
will cause the function action to be called delay units in the future with
data as an argument. owner is for debugging purposes only

"action" is a function-pointer.

151
23 June 1994Draft External PaperAPM.1261.00.01

Concurrency: Initiating & Redeeming
• Rather than invoking an operation, can initiate it

Invoking:

! {result} <- IfRef$Operation(args)

Initiating:

!{voucher} := IfRef$Operation(args) note syntax of := rather than normal <-

 . . .other code. . .

! {result} <- IfRef$Redeem (voucher)

152
23 June 1994Draft External PaperAPM.1261.00.01

Initiate & Redeem (cont’d)
• With an interrogation operation, the thread will block until interrogation

returns

• With an initiation, another thread is automatically started up to carry on with
intervening code

• When Redeem is executed, thread blocks until operation returns

• Redeem is not a real operation (although it has the same syntax)

- it is a PREPC statement

execution continues after an initiate operation - thread will only block if results are not available when they are
collected/redeemed

shorthand for explicitly creating thread via Fork which only does invocation & joining it again later, (see next
slide)

153
23 June 1994Draft External PaperAPM.1261.00.01

Initiate & Redeem (cont’d)
• Doing an initiate & redeem is equivalent to:

dispatcher_fn (arg)

{

! { result } <- IfRef$Operation (args)

}

thread_id = instruct_Fork (dispatch_fn, arg);

...other code...

instruct_Join (thread_id);

• Easier to write & read - hides thread-management details from the user

154
23 June 1994Draft External PaperAPM.1261.00.01

Trying out Initiate & Redeem

• Modify the Echo client from inoking operations to initiating several
operations on same or different Echo servers

• You can Redeem in a different order from Initiating

• Vouchers are declared:
ansa_Voucher voucher;

• Are extra tasks needed? May have to increase number of tasks.
break here for doing exercise

155
23 June 1994Draft External PaperAPM.1261.00.01

Creating
New Interface-Instances

156
23 June 1994Draft External PaperAPM.1261.00.01

Creating an Interface-Instance

• A service may may instantiate any number of interface instances

• The $Create statement explicitly creates an interface instance and creates
an interface reference data structure.

• interface reference can be exported to Trader, or not

• Syntax for creating an instance of an interface

IfTypeName$Create(socket-concurrency)

e.g.

! {acct_ifref} :: Account$Create(1)

• Note special syntax :: which goes with Create construct

157
23 June 1994Draft External PaperAPM.1261.00.01

Interface-Instances (cont’d)

! {acct_ifref} :: Account$Create(1)

• 1 is the number of invocations the interface-instance agrees to
simultaneously support

• Any more than this will be ignored, & they will have to retry (the infrastructure
does this automatically)

• This is often called the concurrency of the interface’s socket
Of socket, not interface. Note, however, that true concurrency of interface is determined by both this and number
of tasks avail for executing poss || threads, and whether or not threads block

158
23 June 1994Draft External PaperAPM.1261.00.01

Instance-specific State
• When multiple instances of the same interface exist, may need instance-

specific state

• When the instance is created, some state can be associated with that
instance
! {ir} :: BankAccount$Create (1, acct_num)

• If an interface has state, creation & destruction functions are needed to
properly allocate and initialize that state, and properly free it when the
interface is destroyed:

ansa_StatePtr Iftype__Create ([state_init_args])

void Iftype__Destroy (ansa_StatePtr *ptr)
this function needed to free any data structures that were allocated by Create fn to make sure unused memory
doesn’t hang around causing capsule to grow unneccesarily if no longer needed.

159
23 June 1994Draft External PaperAPM.1261.00.01

Initializing Instance State
• State stored in some locally-defined data structure (which gets cast to

ansa_StatePtr)

• e.g.:
typedef struct acstate {

int acct_num;

} AcctState
...
ansa_StatePtr Account__Create (int acc_num)
{

AcctState *pAS;

pAS = (AcctState *)system_allocate(sizeof(AcctState));
pAS->acct_num = acc_num;
return (ansa_StatePtr *) pAS ;

}

160
23 June 1994Draft External PaperAPM.1261.00.01

Accessing Instance State
• The state initialzed by the IfTypeName__Create() function is then stored

by the infrastructure, and can be accessed by special calls

• To get state for the interface instance within which the current thread is
executing:

ansa_StatePtr thread_getInterfaceState()

• To get state for any interface-instance within the same capsule,

ansa_StatePtr
awifref_getInterfaceState(ansa_InterfaceRef *ref)

161
23 June 1994Draft External PaperAPM.1261.00.01

Instance State (cont’d)
• For example, in Bank Account example, need instance-state to determine

account details for the current interface-instance, before the operation can be
performed

• When creating interface-instance:
! {ir} :: Bankaccount$Create (1, acct_num)

• accessing instance state within operation:
int acct_num;

AcctState *p_state;
...
p_state = (AcctState *)thread_getInterfaceState()

acct_num = p_state->acct_num;

...

162
23 June 1994Draft External PaperAPM.1261.00.01

Interface Operations
IfTypeName_OpName(_attr, args, results)

ansa_InterfaceAttr *_attr;

argTypeN argN;

resTypeM *resultM;

• By definition, every operation has the first parameter _attr

- contains a pointer to ifref for interface-instance within which current
operation is executing:
(ansa_InterfaceRef) _attr->attr_dst_ref ;

• Can be used within any operation if if-ref of operation’s enclosing interface is
needed

163
23 June 1994Draft External PaperAPM.1261.00.01

Interface References
• These are complex data structures, but the application-programmer should

not normally have to look inside them

• To make a copy of an interface-reference, copying function is provided:

ansa_Status ifref_copyRef(

ansa_InterfaceRef *toRef,

ansa_InterfaceRef *fromRef);

• to free an interface-reference allocated in this way:

void ifref_freeRef(ansa_InterfaceRef *ref);

164
23 June 1994Draft External PaperAPM.1261.00.01

Destroying an Interface Reference
typedef struct acstate { int acct_num;} AcctState

ansa_StatePtr Account__Create (int acc_num) execution continues when remote

activity complete

{
AcctState *pAS;

pAS = (AcctState *)system_allocate(sizeof(AcctState));
pAS->acct_num = acc_num;
return((ansa_StatePtr *) pAS);

}
void Account__Destroy(ansa_StatePtr state)
{
 free((char *)state);
}
so the destroy function frees any state allocated by Create function

165
23 June 1994Draft External PaperAPM.1261.00.01

Destroying an Interface Reference (cont’d)
• Creating (instantiating) an interface-instance
! {ifRef} :: IfTypeName$Create(args)
this statement will result in this function getting called:
ansa_StatePtr IfTypeName__Create(args)
AND, and interface-instance is created, and an interface-reference to it is allocated and returned

• Destroying an interface instance
! {} :: IfTypeName$Destroy(ifRef)
this statement will result in this function getting called:
void IfTypeName__Destroy(ansa_StatePtr state)
AND, and interface-instance is automatically destroyed, and the interface-reference to it is freed

• Attempting to use an interface reference variable before it is instantiated or
after it is destroyed will lead to errors, as the variable does not contain any
meaningful information

166
23 June 1994Draft External PaperAPM.1261.00.01

Destroying an Interface Reference (cont’d)
• A thread is not necessarily prevented from destroying the interface-instance

within which it is executing
- but this will lead to the operation not returning
- the client that invoked the operation will time out
- server fails to reply because the interface executing the operation has

been destroyed

• Solution to this is to spawn a background thread to destroy the interface once
the operation has completed
- current method is to make the background thread delay for some length

of time, then call IfTypeName$Destroy

167
23 June 1994Draft External PaperAPM.1261.00.01

Simple Bank
Example

Speaker Notes

describe example service, then we will be trying it out - example is included with AW dist’n, but have fooled
around with it to take out bits, and these bits will be for you to try out as example.

168
23 June 1994Draft External PaperAPM.1261.00.01

Simple Bank Example

• Design and implementation of a simple banking service

• Design a centralised Automatic Teller Machine (ATM) management system

• Manage a network of ATM’s all of which are connected to a central node

• Bank managers and their assistants administer bank accounts, they too are
distributed around various local branches

169
23 June 1994Draft External PaperAPM.1261.00.01

Bank Example (cont’d)

Central
node

170
23 June 1994Draft External PaperAPM.1261.00.01

Bank Example (cont’d)
Q) What data structures are required?

- Personal accounts: customer name, account number, PIN,
balance, time of last change

Q) Where is this data accessed from and what form does this access take?

- ATM access (guarded by PIN): read balance, credit and debit
account.

- Manager access: create, destroy and list accounts, shut down bank
service

171
23 June 1994Draft External PaperAPM.1261.00.01

Bank Example (cont’d)
Q) What failure modes must be handled?

- Failure of the central node

- Failure of individual ATM’s (when in the middle of some
transaction)

Q) How do we cope with these failures?

- Central node must checkpoint its state to persistent storage

- ATM failures should be detected and any state associated with that
ATM recovered or reconstructed. Handling this kind of failure not
implemented by this example, but will explain how to do it.

172
23 June 1994Draft External PaperAPM.1261.00.01

Bank Service

Create

Destroy

List

Shut

Access
Bank

Database

Bank
Machine

Bank
Manager

"Bank
Management"

"Banking"

Bank Service

173
23 June 1994Draft External PaperAPM.1261.00.01

• User should only be able to interact with account if PIN is valid

• Do not want Account interface to be public

• If "Access" succeeds, "Account" i/f is created & its if-ref returned

Bank
Server

Bank
DB

Access
IF-REF

PIN #
Bank

Machine

"Banking"

174
23 June 1994Draft External PaperAPM.1261.00.01

• If "Access" succeeds, "Account" i/f is created & its if-ref returned

• "Account" interface provides operations on one particular account

• Only that client knows the "Account" i/f - it is not registered with the Trader

Bank
Server

Bank
DB

Access
IF-REF

PIN #
Bank

Machine

"Banking"

Balance
Debit
Credit

"Account"

175
23 June 1994Draft External PaperAPM.1261.00.01

• Many clients can interact simultaneously with data via separate interfaces

• Each can have its own view of the data

Bank
D.B.

Bank
Server

Bank
Machine

Bank
Machine

Bank
Machine

Account

Account

Account

176
23 June 1994Draft External PaperAPM.1261.00.01

Bank Database
• Keep one array of account-information

• Keep global counter representing next account-number to be used

• Never re-issue account numbers, but re-use array elements if they are no
longer in use

• Checkpoint this to a master file periodically
- also write each transaction to an update-file to recover from crash
- on normal termination (shutdown), write out master file, and clear

update-file

177
23 June 1994Draft External PaperAPM.1261.00.01

SBank interface

• SBank - PIN based access to Account interfaces.

• Returns an Account interface for the account identified by an account
number and corresponding PIN.

• Directly analogous to the interface offered to a human user by an ATM.

178
23 June 1994Draft External PaperAPM.1261.00.01

SBank i/f (cont’d)
SBank: INTERFACE =

NEEDS SBankTypes FROM SBTypes;

NEEDS Account;

BEGIN

AccessResult: TYPE = CHOICE OpStatus OF
{ - typical use of choice IDL data str - for returning diff thing on success/failure

OpSuccess => AccountRef,

OpFailure => OpReason

};
Access: OPERATION [

acc: AccountNumber;

pin: PersonalIdentificationNumber

] RETURNS [AccessResult];

END.

179
23 June 1994Draft External PaperAPM.1261.00.01

Account interface

• Account - credit/debit/list account.

• An instance of the Account interface is created (via the SBank interface’s
Access operation) for each account being accessed.

• Therefore there is no need to quote account numbers as arguments to the
operations in the Account interface.

180
23 June 1994Draft External PaperAPM.1261.00.01

Account i/f (cont’d)
Account: INTERFACE =

NEEDS SBankTypes FROM SBTypes;

BEGIN

ListResult: TYPE = CHOICE OpStatus OF {

OpSuccess => AccountRecord,

OpFailure => OpReason

};

Credit: OPERATION [Amount: REAL] RETURNS [OpResult];

Debit: OPERATION [Amount: REAL] RETURNS [OpResult];

List: OPERATION [] RETURNS [ListResult];

Destroy: OPERATION [] RETURNS [OpStatus];

Destroy used to destroy if-ref & dispose of instance-state when client done with i/f instance

END.

181
23 June 1994Draft External PaperAPM.1261.00.01

SBankMgmt i/f

• SBankMgmt - management operations for creating, destroying and listing
accounts.

• Note the use of a sequence to return a variable amount of data.

182
23 June 1994Draft External PaperAPM.1261.00.01

SBMgmt.idl
SBankMgmt: INTERFACE =
NEEDS SBankTypes FROM SBTypes;
BEGIN
CreateRecord: TYPE = RECORD [

acct: AccountNumber,
pin: PersonalIdentificationNumber];

CreateResult: TYPE = CHOICE OpStatus OF {
OpSuccess => CreateRecord,
OpFailure => OpReason } ;

183
23 June 1994Draft External PaperAPM.1261.00.01

FullRecord: TYPE = RECORD [
acct: AccountNumber,
pin: PersonalIdentificationNumber,
owner: STRING,
balance: REAL
lastaccess: STRING];

ListOneResult: TYPE = CHOICE OpStatus OF {

OpSuccess => FullRecord,

opFailure => OpReason

};

ListAllResult: TYPE = SEQUENCE OF FullRecord;

184
23 June 1994Draft External PaperAPM.1261.00.01

Create: OPERATION [

owner: STRING ; balance: REAL

] RETURNS [CreateResult];

Destroy: OPERATION[acct: AccountNumber] RETURNS [OpResult];

ListOne: OPERATION [acct: AccountNumber]

 RETURNS [ListOneResult];

ListAll: OPERATION [] RETURNS [ListAllResult];

END.

185
23 June 1994Draft External PaperAPM.1261.00.01

Useful Data Types

• SBankTypes - data types shared by all other interfaces.

• Included in all other interfaces using the ! NEEDS statement.

186
23 June 1994Draft External PaperAPM.1261.00.01

SBTypes.idl
SBankTypes: INTERFACE =

BEGIN

OpStatus: TYPE = {OpSuccess, OpFailure};

OpReason: TYPE = {NoSuchAccount, InvalidPin, Credited,

Debited, InsufficientFunds, Created, Destroyed, Initiated,

ResourcesExhausted, StaleAccountReference};

OpResult: TYPE = RECORD [

status: OpStatus,

reason: OpReason];

AccountNumber: TYPE = CARDINAL;

PersonalIdentificationNumber: TYPE = CARDINAL;

187
23 June 1994Draft External PaperAPM.1261.00.01

AccountRecord: TYPE = RECORD [

owner: STRING

balance: REAL,

lastaccess: STRING]; used by (result of) List operation of Account interface

END.

188
23 June 1994Draft External PaperAPM.1261.00.01

Internal interface

• Internal - an internal interface used by the server.

• Operations of this interface are Announcements
- used to spawn background activities

• StartTimer starts up thread that periodically checkpoints the server’s
state.

• DestroyAccount - needed for destroying Account i/f instances
- as mentioned earlier, a thread cannot destroy the i/f instance within which

it is executing can, but clients will time out waiting for reply bcs i/f is destroyed

- Account i/f’s Destroy operation calls this (via announcement)
- destroys the specified Account interface-instance once it is no longer in

use not really true - waits 3 seconds, then destroys it, hoping that this is enough time for reply to be finished.

189
23 June 1994Draft External PaperAPM.1261.00.01

Internal i/f (cont’d)
Internal: INTERFACE =

BEGIN

StartTimer: ANNOUNCEMENT OPERATION [] RETURNS [];

DestroyAccount : ANNOUNCEMENT OPERATION [

ref: AccountRef]

RETURNS [];

END.

190
23 June 1994Draft External PaperAPM.1261.00.01

Capsule Structure

server
capsule

manager
capsule

teller capsule

manager
capsule

teller capsule

teller capsule

SBank

Account

SBankMgmt

(1)

(2)

(1) SBank.Access
(2) Account.Credit etc.

191
23 June 1994Draft External PaperAPM.1261.00.01

Code Structure
• One IDL file for each interface previously described

• server capsule:
server.dpl : server initialisation code (body())
Internal.dpl : implementation of Internal interface
SBank.dpl : implementation of SBank interface
SBankMgmt.dpl : implementation of SBankMgmt interface.
Account.dpl : implementation of Account interface operations.
state.c : routines for initializing and modifying the server’s global state.
random.c : random number generator used for generating PINS.
types.h : type definitions and macros for mutual exclusion and debugging.
glbldefs.h : global variable definitions.
glblrefs.h : global variable declarations.

192
23 June 1994Draft External PaperAPM.1261.00.01

• teller client capsule - teller.dpl.

• manager client capsule - manager.dpl.

• Can compile server with -DDEBUG to enable some debugging output

193
23 June 1994Draft External PaperAPM.1261.00.01

Data Structures
typedef struct accrec {

/* account number - if 0, cell can be reused */

unsigned long accno;

unsigned long pin; /* PIN for account */

char *owner; /* owner’s name */

float balance; /* current balance */

char accesstime[50];

/* time of last access, in ctime() format */

} AccRec;

/* array of all account information */

AccRec accounts[NUMBER_OF_ACCOUNTS];

194
23 June 1994Draft External PaperAPM.1261.00.01

Data Structures (cont’d)
typedef struct ifrec {

int index; /* index into accounts */

unsigned long accno; /* account number */

} IFRec;
allows us to associate index with acct # as state for current if-ref - guards against old ifrefs accessing account-
recs that have been re-used for a new account # in the mean time

195
23 June 1994Draft External PaperAPM.1261.00.01

Server
• Main functions are:

- create extra tasks

- initialise global event counter and sequencer for critical section
management.

- initialise the random number generator used for PIN’s.

- initialise the volatile account information from the most recent checkpoint
- i.e. read in checkpoint file.

- instantiate the Internal interface

- start the timer thread by invoking the Internal$StartTimer operation

196
23 June 1994Draft External PaperAPM.1261.00.01

Server (cont’d)

- instantiate the SBank and SBankMgmt interfaces.

- register these interface-instances with the Trader.

- set up the termination-handler - this function will be called when the
capsule is terminated - calls checkpointing functions - more on these later

- wait for service requests.

197
23 June 1994Draft External PaperAPM.1261.00.01

Creating New Accounts
• SBankMgmt interface

• check through account-array for unused cell (account-number = 0)

• assign new account-number by using global variable ACNumber
- increment this value by 1 each time acct nums never re-used, but array cells are

• fill in fields of the array element with client-provided arguments
- customer name, account balance, etc.

198
23 June 1994Draft External PaperAPM.1261.00.01

Creating Account Interface
Instances

• SBank$Access (SBank.dpl) creates and returns Account interfaces.
this is interface to particular account, issued to particular client, if client knows correct PIN

• The following statement creates an Account interface.
! {acct_ifref} :: Account$Create(1, acct_index, acct)

• 1 is concurrency - only want 1 invocation serviced at once for mutual
exclusion reasons is not enough in itself, though - as manager interface fns may also be accessing?

• acct_index is the index into the array of account records for the specified
account.

• acct is the account number for the specified account.

199
23 June 1994Draft External PaperAPM.1261.00.01

• The following function creates the state required to associate an Account
interface instance with an IFRec (account-number and array-index)
ansa_StatePtr Account_Create(index, accno)

int index, accno;

{

IFRec *p;

char *malloc();

p = (IFRec *)malloc(sizeof(IFRec));

p->index = index;

p->accno = accno;

return (ansa_StatePtr)p;

}

• the account-number and index is this interface’s instance-specific state

200
23 June 1994Draft External PaperAPM.1261.00.01

Building SimpleBank

1. ansamkmf
to create a Makefile from the Imakefile.

2. make depend
to create the required dependencies.

3. make
to create the server, teller and manager programs.

201
23 June 1994Draft External PaperAPM.1261.00.01

Using SimpleBank
% ./server &

% manager create "Jane Dunlop" 123.45
New account particulars:

owner: Jane Dunlop
accno: 1
pin: 6263
balance:123.45

% manager create "Fred Bloggs"
New account particulars:

owner: Fred Bloggs
accno: 2
pin: 2507
balance:0.00

202
23 June 1994Draft External PaperAPM.1261.00.01

Using SimpleBank (cont’d)
% manager listall

1 6263 123.45 Thu Mar 14 16:14:55 1992 Jane Dunlop

2 2507 0.00 Thu Mar 14 16:15:50 1992 Fred Bloggs

% teller 1 6263 list

Details for account

owner: Jane Dunlop

balance:123.45

lastaccess: Thu Mar 14 16:14:55 1992

% teller 1 6263 debit 400.00

Debit(400.00) failed, reason: InsufficientFunds

203
23 June 1994Draft External PaperAPM.1261.00.01

Using SimpleBank
% teller 1 6264 list

Access(1, 6264) failed, reason: InvalidPin

% teller 3 6263 list

Access(3, 6263) failed, reason: NoSuchAccount

% manager destroy 2

% manager listall

1 6263 123.45 Thu Mar 14 16:14:55 1992 Jane Dunlop

% sbshut.sh uses trclient terminate to kill service with approp checkpointing

% ./server &

% manager listall

1 6263 123.45 Thu Mar 14 16:14:55 1992 Jane Dunlop

204
23 June 1994Draft External PaperAPM.1261.00.01

Exercises

• Customise the bank server

- Export with distinctive property, e.g
"BankName ‘MyBank PLC’"

• Implement the Account interface

- i.e. its operations

• Change the teller and manager client programs to Import your bank, rather
than other peoples’
- Add constraints to Import statement, e.g

"BankName == ’MyBank PLC’ ”

205
23 June 1994Draft External PaperAPM.1261.00.01

Checkpointing

• Checkpointing functions are in the file state.c

• two checkpoint files: masterfile & updatefile are set to:
<your-path>/SBMaster

<your-path>/SBUpdate

• SBMaster must exist for the server to work, even if it is just empty

206
23 June 1994Draft External PaperAPM.1261.00.01

Implementing Account Interface

• Partially complete Account.dpl

• Has been generated using stubc -t

- generates a template containing function skeletons.

• List operation definition is already written

• Need to implement Credit , Debit operations

207
23 June 1994Draft External PaperAPM.1261.00.01

Implementing Account

• The implementation of each operation in the Account interface has the same
generic structure:

1. grab mutex
2. locate interface specific state : thread_getInterfaceState()

3. validate request
4. invoke appropriate account operation from state.c

 e.g. credit_account(index, amount)

5. update access time (local function)
6. free mutex
7. return SuccessfulInvocation currently set up to return unsuccessfulInv, bcs not written

Now go off & try examples

208
23 June 1994Draft External PaperAPM.1261.00.01

Handling Client Failure
• This SimpleBank example doesn’t handle failure of teller-machines

- if an individual client fails, do not want to waste server resources storing
state-information associated with failed client

• Could be done through “dead-man’s handle”
- client passes server interface-reference to be called on
- server could call client back on this interface-insatnce periodically
- if invocation times out, then client can be considered dead, and state can

be released

209
23 June 1994Draft External PaperAPM.1261.00.01

Exception Handling
in

ANSAware

210
23 June 1994Draft External PaperAPM.1261.00.01

Handling Exceptions
• Many programming languages ignore the possibility of errors from the

run-time support-system - these simply result in “system error”

• PREPC - invocation syntax used so far:
! { results } <- ifref$OpName (args) status value results from any invoc’n

• PREPC - Exception Syntax: (have prob seen transmitTimeout, bindfailure); - user can specify what to do

! { results } <- ifref$OpName (args) exception-list

where exception-list has the following syntax:
Continue statuslist Abort statuslist Signal statuslist

• e.g.
!{ results } <- ifref$OpName (args) Continue ok Abort *

• exception-list is optional - , PREPC default behaviour will be used (page 216)

211
23 June 1994Draft External PaperAPM.1261.00.01

PREPC Exception Syntax
• Can use * to indicate "any other status values" e.g.

! { res } <- ifref$OpName(args) \
Continue ok \
Signal bindFailure \
Abort *

• Continue : program goes on to next statement

• Abort : program aborts with appropriate error msg

• Signal : program calls an exception-handling function, passing it status,
invocation-args, and invocation-results
- based on these, the exception handler can take appropriate action

Signal function could print out message like: "Failed to Import Bank Service" in
graphical teller, if fails to import bank service, displays msg in window “Bank temporarily out of service”

212
23 June 1994Draft External PaperAPM.1261.00.01

Exception Handling
• Signal function-name has specific construction:

If operation-call is as follows:
! DECLARE {ifref} : IfName CLIENT

...
! { results } <- ifref$OpName(args) Continue ok Signal *

Then signal-function must be:

Signal_OpName_IfName(status, arg1,...argN, res1,...resN)

ansa_Status status;

argType1 arg1; all args & results passed - same types as defined in IDL file of if-definition

...

resultType1 result1;

{ ... } whatever signal-handling stuff you want in here

213
23 June 1994Draft External PaperAPM.1261.00.01

Signal Function (cont’d)
• Signal function can return ExceptionAbort , ExceptionContinue , or

ExceptionRetry status

• Code generated by PREPC will check this return-value, to see how to proceed
on returning from the Signal function if Continue, then next point important

• Code that follows any operation invocation may need to know whether
exception has occurred or not - macro-definitions provided for this purpose:
- thread_setExceptionCode(ansa_Cardinal code)

- ansa_Cardinal thread_getExceptionCode()

• these allow exception handler to communicate with the calling thread
- thread_setExceptionCode sets a value, stored within the current

thread’s data record
- this can be examined when the operation which generated the exception

has completed guaranteed that signal-handler will be exec’d on same thread as op that gens excepn

214
23 June 1994Draft External PaperAPM.1261.00.01

Signal Function - Example
/* signal handler */

Signal_Foo_Op(...)

{

thread_setExceptionCode(1);

return ExceptionContinue;

}

body()

{

! {} <- foo$Op() Continue ok Signal *

if(thread_ExceptionCode() == 1)

/* exception has been raised */

} PREPC invocation-stmts automatically set exceptioncode to 0 before op is actually invoked, so this works

215
23 June 1994Draft External PaperAPM.1261.00.01

Signal Function - Example 2
...

! {access_result} <- bank_ifref$Access(account_number, pin) \
Continue ok Signal *

/* Check that no exception occurred on Access operation. */

if (thread_getExceptionCode() == 1) tells if exception (unexpected status) occurred

{

bank_state == BANK_OUT_OF_SERVICE

return(OpFailure);

} if sthg went wrong (not success/failure, but transmit timeout, etc), then assume sthg is wrong - might then start
 again, try to import ifref over again, etc - keep trying while out-of-service, etc

/* check whether access operation succeeded... etc */

216
23 June 1994Draft External PaperAPM.1261.00.01

Signal Function (cont’d)
• For communicating more complicated information between signal-handler

and calling thread:
- thread_setExceptionState(ansa_StatePtr state)

- ansa_StatePtr thread_getExceptionState()

• Can pass a pointer to any sort of data structure, but must coerce to be an
ansa_StatePtr

• thread_setExceptionCode , threadSetExceptionState both
automatically called with a value of 0, ((ansa_StatePtr) 0) by PREPC-
generated code before actually making any invocations that could generate
an exception

217
23 June 1994Draft External PaperAPM.1261.00.01

Exceptions - Default behaviour
• The default behaviour if no exception-list is given is roughly equivalent to:

! { results } <- ifref$op (arguments) \
Continue ok \
Signal transmitTimeout invalidNonce illegalOperation \

 illegalInterface abnormalReturn \
Abort *

but, rather than a user-supplied signal-handler, ANSAware default signal-
handler will be called if any of “Signal” status-values occur
- Signal_binder_relocate() - provided by infrastructure

218
23 June 1994Draft External PaperAPM.1261.00.01

Default signal-handler
• Signal_binder_relocate() tries to relocate the interface

- does this by contacting any locator services it knows about

• interfaces registered with Trader will have information about Trader’s
Relocator interface, so this will get called
- this will check whether it knows of a new location for given interface

• if relocation succeeds, interface-ref will be updated to new one, and
ExceptionRetry returned
- otherwise, ExceptionAbort :

Abort: Prepc.Relocate: 1282 (transmitTimeout)

• No built-in support in ANSAware yet for migrating a service

• Full list of status-values given in section 3.7 of Application Programmer’s
Manual

219
23 June 1994Draft External PaperAPM.1261.00.01

Exception Handling (cont’d)

• signal-handlers for PREPC pseudo-operations such as $Import and $Export
are called Signal_Prepc_Import and Signal_Prepc_Export, respectively

• If user provides own signal-handler, default relocation will not automatically
take place - if user wants this, will have to call Signal_binder_relocate
explicitly

220
23 June 1994Draft External PaperAPM.1261.00.01

Dynamic
Service Creation

 - will show how to dynamically instantiate services from other programs - exercise at end, so lots of details included for
referring to when doing exercise

221
23 June 1994Draft External PaperAPM.1261.00.01

Factories
• Factories provide a service for :

- Creation/destruction of capsules
- Simple monitoring of capsules it creates

• Once created capsules provide a service for :
- Creation/destruction of objects in a capsule.
- Creation/destruction of interfaces in an object

Capsule

Object

Object

Interface:
Op1
Op2...

Interface:
OpX
OpY...

Interface:
OpA
OpB...

222
23 June 1994Draft External PaperAPM.1261.00.01

Factory Interactions

1. Client asks factory to Instantiate a capsule.

2. Factory instantiates a new capsule.

(2)
Factory

Client

(1)

223
23 June 1994Draft External PaperAPM.1261.00.01

3. New capsule creates a single object with at least a single Capsule
interface. Any number of other interfaces may also be created.

4. References to the Capsule and any other interfaces are returned to the

(2)
Factory

Client

(1)

Capsule Interfac

Object
Creator

(3)

(4)

224
23 June 1994Draft External PaperAPM.1261.00.01

factory.

5. These are in turn returned to the client.
6. The client may then use the Capsule interface reference to create yet more

objects.
7. A new object is created.

(2)
Factory

Client

(1)

Capsule Interface

Object
Creator

(3)

(4)
New

(7)

(6)

(5)

225
23 June 1994Draft External PaperAPM.1261.00.01

Factory Interface
Factory : INTERFACE =

NEEDS Capsule;
NEEDS Terminated FROM Term;

BEGIN
 Instantiate: OPERATION [
 Path: STRING; if no path given, default path built in to factory will be used (set at build-time)

 Template: STRING; capsule executable

 Arguments: STRING; rest of these args are all optional

 Environment: STRING;
 Terminated: TerminatedRef; interface-ref to be invoked when this capsule dies

 Data: CallerData data to be passed - factory monitors continued existence of capsules

] RETURNS [it has created & can notify creator of demise via this mechanism -more later

 Ref : CapsuleRef; ifref of Capsule i/f of created capsule - more shortly

 Cid : ansa_CapsuleId]; process id of capsule

226
23 June 1994Draft External PaperAPM.1261.00.01

ReRegister: OPERATION [this op not important at the moment

 Cid: ansa_CapsuleId;
 Terminated: TerminatedRef;
 Data: CallerData

] RETURNS [BOOLEAN];

IsAlive: OPERATION [Cid: ansa_CapsuleId] ditto this one

RETURNS [BOOLEAN];

Terminate: OPERATION [Cid :ansa_CapsuleId] used to kill capsules

RETURNS [BOOLEAN]; created by Instantiate above

END.

227
23 June 1994Draft External PaperAPM.1261.00.01

Capsule Interface

• Every capsule contains a Capsule interface, provided by the ANSAware
infrastructure

• Used by factory to instantiate objects within that capsule

Factory

Client Capsule Interface

Object
Creator

New

228
23 June 1994Draft External PaperAPM.1261.00.01

Capsule : INTERFACE =
NEEDS Notify;
NEEDS Object;
BEGIN

InstantiateResult : TYPE = SEQUENCE OF ansa_InterfaceRef;

Instantiate : OPERATION [
MyRef : NotifyRef; these 2 args both just historical

Capsule : CapsuleRef; historical

Template : STRING; object-template

Arguments : STRING; optional

Environment : STRING optional

] RETURNS [Object : ObjectRef; inst of Object i/f - will describe this shortly

Interfaces : InstantiateResult];
Terminate : OPERATION [] RETURNS [BOOLEAN];

END.

229
23 June 1994Draft External PaperAPM.1261.00.01

Using the Factory - simple client program
! USE Factory
! USE Capsule
! USE Object
! USE Foo
! DECLARE { factRef } : Factory CLIENT
! DECLARE { capRef } : Capsule CLIENT
! DECLARE { objRef } : Capsule CLIENT
! DECLARE { res.data[0] } : Echo CLIENT
void body(int argc, char *argv[], char *envp[])
{
ansa_InterfaceRef factRef, capRef, objRef;
InstantiateResult res; this data structure is returned by Capsule$Instantiate (prev slide)

ansa_CapsuleId cid;
ansa_Boolean r;

230
23 June 1994Draft External PaperAPM.1261.00.01

stub_setFreeCltMem(ansa_FALSE); - needed to make sure results not freed by next call
default freeing behaviour needs overriding when later invocns use earlier results

! {factRef} <- traderRef$Import(“Factory”, "/", “”)

! {capRef, cid} <- factRef$Instantiate(“”, "fooserver",\
“”, “”, nullRef, 0)

! {objRef, res} <- capRef$Instantiate(nullRef, nullRef,\
“Foo”, “”, “”)

...
/* Can now call operations of Foo interface */

! { fooOpRes } <- res.data[0]$FooOp(fooOpargs)
... note: res.data[0] contains if-ref - only 1 in this case, but could E seq of ifrefs - just made-up results, ops & args

/* When done, should terminate created capsules/objects,
otherwise service will remain active */

! {} <- objRef$Terminate()

! {r} <- factRef$Terminate(cid) returns boolean success/failure

}

231
23 June 1994Draft External PaperAPM.1261.00.01

Dynamically Creatable Service

• In order for a server to be able to be started by the factory, it needs to provide
certain functions.

• Such servers do not require a body() function,
 - but if a body() function is provided, the service can be started from the
command-line, or from the factory.

• This line in the client:
! {objRef, res} <- capRef$Instantiate(nullRef, nullRef,\

“Foo”, “”, “”)

invokes Object creation function for given object-template (“Foo”)

232
23 June 1994Draft External PaperAPM.1261.00.01

Capsule structure for Object Creation
• A ! MANAGED PREPC statement is required, specifying name of object

templates supported, as well as Create and Destroy functions for each such
object.
! MANAGED ObjName ObjName is just some name you choose to give template

• The Capsule interface supported by all capsules invokes
Create_ ObjName_Object when its Instantiate operation is invoked with
an object name of ObjName.

• Destroy_ ObjName_Object is invoked when the object is to be destroyed.

233
23 June 1994Draft External PaperAPM.1261.00.01

Object Creation (cont’d)
• Create_... & Destroy... function signatures:

ansa_StatePtr Create_ ObjName_Object(argc, argv, envp,

results)

int argc;

char *argv[], *envp[];

InstantiateResult *results;

ansa_Boolean Destroy_ ObjName_Object (state)

ansa-StatePtr state;

234
23 June 1994Draft External PaperAPM.1261.00.01

Creating Objects (cont’d)
• Create_ObjName _Object:

- ObjName is just any name you choose for referring to this template
- must be same as ObjName used in !MANAGED statement

• Steps performed by Create_ ObjName _Object:
- 1. use arguments and environment (if any) to decide precisely what

action is required.

- 2. instantiate any interfaces required.

- 3. allocate and initialise any object state required (more on this later).

- 4. return any state, set up results (of type InstantiateResult) - a
sequence of interface references to instantiated interfaces
InstantiateResult type defined in Capsule i/f

235
23 June 1994Draft External PaperAPM.1261.00.01

Creating Objects (cont’d)
• Capsules can support multiple objects (i.e. multiple templates for creating

interfaces) - the ObjName specifies the object to be used.

• Capsule$Instantiate operation:
! {objRef, res} <- capRef$Instantiate(nullRef, nullRef, \

“Foo”, “”, “”)
automatically creates an instance of the Object interface, and returns it as the
first result :
Object : INTERFACE =

BEGIN

 Terminate : OPERATION [] RETURNS [];

END.

• Object interface has only this one operation

236
23 June 1994Draft External PaperAPM.1261.00.01

Creating and Destroying Objects
• When this Terminate operation is invoked, e.g.

! {} <- objRef$Terminate() as shown in example client, earlier (page 229)

user-provided Destroy_ ObjName _Object function is called

• Destroy_ ObjName _Object should destroy any interfaces and free any object
state set up by Create_ ObjName _Object (more on object-state shortly).

237
23 June 1994Draft External PaperAPM.1261.00.01

Simple factory-startable service
fooserver.dpl:

#include “ansa.h” generally useful header file

#include “tFoo.h” header file generated from interface specification by stubc

! MANAGED FooObj Note this word must be same as in Create...() fn below -also called template name

! USE Foo
! DECLARE { ifref } : Foo SERVER

ansa_StatePtr Create_FooObj_Object(ac, av, envp, results)

int ac;

char *av[], *envp[];

InstantiateResult *results;
{

ansa_InterfaceRef ifref;
$Create stmt: create i/f instance & put resulting if-ref into result to be returned

238
23 June 1994Draft External PaperAPM.1261.00.01

! {ifref} :: Foo$Create(1) will become 2nd result of Capsule$Instantiate op (1st is ObjRef)

results->length = 1; /* Assign results - seq. of ifrefs */

results->data = &(ifref);

return (ansa_StatePtr)NULL; /* No obj-state in this ex. */

}
ansa_Boolean Destroy_Echo_Object(state)

 ansa_StatePtr state;
{

 return ansa_TRUE; should destroy any created if-instances, but to be v. simple, we won’t

} - can’t anyway in this case, cos we haven’t got any reference to it (was local above)

- will show in next example how to keep track of all this via object state

...

/* Functions implementing Operations of “Foo” interface,

body() function */

...

239
23 June 1994Draft External PaperAPM.1261.00.01

Object State
• Objects have optional state

- can be initialised by Create_ ObjName _Object function
- easily accessible from Destroy_ ObjName _Object function
- usually based on arguments and/or environment

• Object state can be anything - user-defined:
typedef struct objstate { .../* any structure definition here */

} yourStateStruct;

Create_ObjName_Object(...)
{

p = system_allocate(sizeof(yourStateStruct))
...
/* ...store whatever info is necessary into this structure...*/
...

return (ansa_StatePtr)p;

}

240
23 June 1994Draft External PaperAPM.1261.00.01

Object State (cont’d)
• Could be used in earlier example for making interface-reference available to

Destroy_... function
- store interface-ref of created interface-instance in object-state
- Destroy_...() function can then access if-ref and destroy it

• Commonly used for indicating whether interface-instance has been exported
to Trader
- If so, Destroy_...() function can Withdraw offer from Trader before

destroying interface

• With factory-created services, ANSAware services often use environment
variable “ANSA_MANAGED_EXPORT” to indicate whether interface should
be exported to Trader

• Next example illustrates use of object-state as suggested above

241
23 June 1994Draft External PaperAPM.1261.00.01

Factory client program - 2
! USE Factory
! USE Capsule
! USE Object
! USE Foo
! DECLARE { factRef } : Factory CLIENT
! DECLARE { capRef } : Capsule CLIENT
! DECLARE { objRef } : Capsule CLIENT
! DECLARE { res.data[0] } : Echo CLIENT
void body(int argc, char *argv[], char *envp[])
{
ansa_InterfaceRef factRef, capRef, objRef;
InstantiateResult res;
ansa_CapsuleId cid;
ansa_Boolean r;

242
23 June 1994Draft External PaperAPM.1261.00.01

stub_setFreeCltMem(ansa_FALSE); - needed to make sure results not freed by next call
default freeing behaviour needs overriding when later invocns use earlier results

! {factRef} <- traderRef$Import(“Factory”, "/", “”)

! {capRef, cid} <- factRef$Instantiate(“”, "fooserver",\
“”, “”, nullRef, 0)

! {objRef, res} <- capRef$Instantiate(nullRef, nullRef,\
“Foo”, “”, “ANSA_MANAGED_EXPORT=yes”)

/* Can now call operations of Foo interface */

! { fooOpRes } <- res.data[0]$FooOp(fooOpargs)

...
/* When done, should terminate created capsules/objects */

! {} <- objRef$Terminate()

! {r} <- factRef$Terminate(cid)

} Note: ANSA_MANAGED_EXPORT is only difference btwn this & prev example - could pass envp, or extract that var from
envp and pass it, if you want to just use local env’t.

243
23 June 1994Draft External PaperAPM.1261.00.01

Factory-startable server program - 2
#include “ansa.h”

#include “tFoo.h”

#define PROPSIZE 1024

char pbuf[PROPSIZE];

! MANAGED Foo

! USE Foo

! USE Trader

! DECLARE { ir, p->ref } : Foo SERVER

void body(argc, argv, envp)

int argc;

char *argv[], *envp[];

244
23 June 1994Draft External PaperAPM.1261.00.01

{
void body(argc, argv, envp)

{ ... definition of body ... }

...Foo Operation definitions ...

typedef struct objstate { user’s own object-state storing type - inthis case we want to store

 ansa_InterfaceRef ref; an ifref & a boolean

 ansa_Boolean export;

} ObjState;

ansa_StatePtr Create_String_Object(ac, av, envp, results)
int ac;

char *av[], *envp[]; these params corresp to the last 2 args of the cap$Inst call

InstantiateResult *results;
{
ObjState *p; need pointer to our state-type

245
23 June 1994Draft External PaperAPM.1261.00.01

p = (ObjState *)malloc(sizeof(ObjState)); allocate mem for state-type

! {p->ref} :: Foo$Create(1) note that this is assigned into obj-state str - will be stored away

if(system_getenv(“ANSA_MANAGED_EXPORT”, envp) != (char *)0)
{ based on this env var passed in as arg, will decide whether to export or not

p->export = ansa_TRUE; will store away whether or not this is an exported offer

(void)system_init_properties(pbuf, PROPSIZE, ac,av);

! {}<- traderRef$Export(“Foo”, “/ansa/testservices”, \
pbuf, p->ref) give normal properties, p->ref is ifref

}
else

p->export = ansa_FALSE; do nothing, offer is not to be exported to trader

results->length = 1;

results->data = &(p->ref);

return (ansa_StatePtr)p;
}

246
23 June 1994Draft External PaperAPM.1261.00.01

ansa_Boolean Destroy_Echo_Object(state) gets called when objRef$Terminate called

ansa_StatePtr state; state is automatically provided by infrastr as param to this fn.

{

ObjState *p;

p = (ObjState *)state;

if (p->export == ansa_TRUE) check if was exported, & if so, withdraw -ensures

! traderRef$Withdraw(p->ref) stale offer doesn’t remain in trader

! {} :: Foo$Destroy(p->ref) -destroy i/f inst - couldn’t do this in prev ex cos had no ref to it

now ref is in obj-state (object instance), so can refer to it
free ((char *)p); -free the state-pointer - no longer needed, as this obj-instance will go away

return ansa_TRUE; when this function ends (auto destroyed as part of call)

}
Note that this is object-instance state, so if there were multiple instances through multiple calls to cap$Inst, then each obj-
inst woul dhave own state which it would point to

247
23 June 1994Draft External PaperAPM.1261.00.01

Terminated Interface
• Factory.Instantiate operation:
Instantiate: OPERATION [
 Path: STRING;
 Template: STRING;
 Arguments: STRING;
 Environment: STRING;
 Terminated: TerminatedRef; interface-ref to be invoked when this capsule dies

 Data: CallerData data to be passed - factory monitors continued existence of capsules

] RETURNS [it has created & can notify creator of demise via this mechanism -more later

 Ref : CapsuleRef;
 Cid : ansa_CapsuleId];

• A client can use the TerminatedRef arg to provide an interface-instance
which is to be invoked if/when the capsule in question terminates

248
23 June 1994Draft External PaperAPM.1261.00.01

Terminated Interface (cont’d)
Terminated : INTERFACE =

BEGIN

CallerData: TYPE = CARDINAL;

CapsuleTerminated: OPERATION [

Cid: ansa_CapsuleId;

Data: CallerData

] RETURNS [];

END.

• Next example shows how this can be used in a client program, similar to
earlier examples

assume everything else same as in previous client examples, but this new stuff just added

249
23 June 1994Draft External PaperAPM.1261.00.01

GLOBAL ansa_Cardinal Ansa_InitialTasks = 2; need 2 tasks, bcs of eventcount/seqs

...

! USE Terminated FROM Term uses Terminated interface-definition, need to specify this

! DECLARE { notRef } : Terminated SERVER

ansa_EventCount ec; this example uses event counts & sequencers - need to set them up

ansa_Sequencer sq;

void body(argc, argv, envp)

int argc;

char *argv[], *envp[];

{

ansa_InterfaceRef notRef; notRef will be ifref for i/f of type Terminated, created by this capsule

... initialize event count & seq to be used later.

 ec = ecs_makeEventCount((ansa_Cardinal)0);

 sq = ecs_makeSequencer((ansa_Cardinal)1);

250
23 June 1994Draft External PaperAPM.1261.00.01

! {notRef} :: Terminated$Create(1) create instance of Terminated i/f

...
! {capRef, cid} <- factRef$Instantiate(“”, “Foo”, “”, \

“”, notRef, 0)
pass notRef (ref to inst of Term i/f that we have just created) to factory when creating new capsule

...
/* do all object-creation, etc. etc. */

...
/* When finished, terminate object & capsule, as before */

! {} <- objRef$Terminate()

! {r} <- facRef$Terminate(cid)

/* Wait for capsule to really be dead */

ecs_await(ec, ecs_ticket(sq));

! {} :: Terminated$Destroy(notRef) not good to destroy i/f inst while possibly still needed,
as another capsule may still expect to use it (factory), but must destroy before ending, o/w cap won’t end

}

251
23 June 1994Draft External PaperAPM.1261.00.01

int Terminated_CapsuleTerminated(_attr,cid,handle)

ansa_InterfaceRef *_attr;

ansa_CapsuleId cid;

CallerData handle;

{

printf(”%s: CapsuleTerminated(%lu, %lu) invoked\n”,

nucleus_name,cid,handle);

ecs_advance(ec);

return successfulInvocation;

}
this function doesn’t actually do anything except print out a message, but you can imagine that a capsule that creates
another capsule might want to keep track of whether it still exists or not
Note that the CallerData originally passed in the fact$Inst op is given here as the 3rd param - not used in this case, but
- capsule can use this to use same Terminated i/f inst for callbacks from a whole bunch of instantiated capsules, and
distinguish btwn them by this parameter

252
23 June 1994Draft External PaperAPM.1261.00.01

Factory client programs
• frun node template object arguments environment [client args ...]

arguments, environment are passed to the object constructor/template

- e.g.:

frun “” myserver ObjName “” “” will use current node
15307

- frun sets ANSA_MANAGED_EXPORT before instantiating capsule to make
sure any interface-instances will be exported

- if client arg is given, it will be started as a sub-process, and args will be
passed to it - when client terminates, frun will terminate the object,
then terminate the capsule

• fkill host cid
- e.g.:

fkill “” 15307 means run on current node (no host param means use default)

253
23 June 1994Draft External PaperAPM.1261.00.01

Node Manager
• Provides an architectural interface for the creation, simple monitoring and

destruction of services.

• Provides a database for describing services. Each description is identified by
an alias.

• Aliases may be run to create static services, which may be automatically
restarted if they terminate.

• Dynamic service creation is provided by the federated trader interface’s
proxy export facility.

• Service activations may be destroyed.

• Node Manager state is persistent. (checkpointed)

254
23 June 1994Draft External PaperAPM.1261.00.01

Dynamic Service Creation

1. Node manager registers a proxy offer with the trader.

2. Client performs an import.

Client

Trader

Node
Manager

(1)(2)

255
23 June 1994Draft External PaperAPM.1261.00.01

3. Trader, recognising that the offer is federated, forwards the import to the
node manager.

4. Node manager creates the server capsule (using the factory).

Node
Manager

Client

Trader

(1)
(2)

(4)

(3)

Server

256
23 June 1994Draft External PaperAPM.1261.00.01

5. Node manager invokes the Instantiate operation on the newly created
capsule’s Capsule interface.

6. Node manager returns the InterfaceRef (result of Instantiate operation) to

Node
Manager

Client

Trader

(1)
(2)

(4)

(3)

Server

(6)

(5)

257
23 June 1994Draft External PaperAPM.1261.00.01

the trader.

7. Trader returns this InterfaceRef to the original client.
8. Client can now invoke operations on the server.

Node
Manager

Client

Trader

(1)(2)

(4)

(3)

Server

(6)

(5)

(7)

(8)

258
23 June 1994Draft External PaperAPM.1261.00.01

nmclient

• nmclient provides a way of using the node manager (NM)

nmclient postproxy Echo
posts offer to trader for specified service, but does not start up - when client import svc, trader detects offer is proxy, fwds to
NM & NM starts up svc

• In order to post a proxy offer for a service, the NM must know about that offer

• nmclient install

nmclient install alias max_activations
 interface-type context properties
 capsule object arguments environment

259
23 June 1994Draft External PaperAPM.1261.00.01

nmclient (cont’d)

• e.g.
nmclient install “MyEcho” 1 “Echo” "/ansa/testservices” \

 “” “myserver” “Echo” “” “”

• To list all of Node Manager’s aliases:
nmclient listall

• To list single alias:
nmclient showalias AliasName

260
23 June 1994Draft External PaperAPM.1261.00.01

nmclient (cont’d)

• By default, nmclient uses the NM on your same node, but can specify
properties:

nmclient -p “Node == ’crippen’” listall

any constraint can be specified - does not need to be node name
NM will have this prop by default though, & generally you do want to give node

• Can run NM aliases
nmclient run alias arguments environment

- an activation of that alias is started - activation id for the new activation is
printed out

- activation can later be killed:
nmclient kill alias id many activations can exist for partic alias - must distinguish

261
23 June 1994Draft External PaperAPM.1261.00.01

nmclient [-p properties] install alias max_activations interface
 context properties capsule object arguments environment

[-p properties] remove alias
[-p properties] mask alias
[-p properties] postproxy alias
[-p properties] deleteproxy alias
[-p properties] run alias args env
[-p properties] runforever alias args env
[-p properties] kill alias id
[-p properties] showalias alias
[-p properties] showactive alias
[-p properties] showid alias
[-p properties] listall
[-p properties] listactive
[-p properties] allaliases
[-p properties] allactive

262
23 June 1994Draft External PaperAPM.1261.00.01

Node Manager (cont’d)
• Proxy offers posted via:

nmclient postproxy Echo

can be withdrawn by:
nmclient deleteproxy alias

• Node Manager proxy offers cannot be removed from the trader via
trclient delete

- if necessary, can use trclient proxydelete

- trclient proxydelete can not delete non-proxy offers.
- as with trclient delete , this should not normally need to be used, as

the Node Manager should correctly manage the state of posted proxy
offers

263
23 June 1994Draft External PaperAPM.1261.00.01

Hands-on Exercise
• Make Echo a managed service. You will need to add the following

- !MANAGED Echo

- Create_Echo_Object()

- Destroy_Echo_Object()

• Test out service by first using frun to make sure it works

• Use nmclient to install an Alias for your service with the Node Manager

• nmclient will pass your path environment to the NM & it will pass this path to
Factory to use when searching for the executable
- if not found in this path, Factory will look for templates for services it

manages in the default directory: configurable at build time, but this is default

<ANSAware4-path>/install/<platform>/etc/templates

- executable must either be in your search path or in this directory

264
23 June 1994Draft External PaperAPM.1261.00.01

Exercise (cont’d)

• Test new server first by doing nmclient run NewAlias , then trying client

• kill service started in this way by: nmclient kill Alias <activation-#>

- Can find out activation-# by: nmclient showactive Alias

• post a NM proxy offer so it will be run automatically when needed

• No need to change client program - proxy offer is same as normal offer, as far
as client is concerned

• Write a new client that uses the Factory to explicitly instantiate your new
Echo service, as shown in previous examples
- can do this without Node Manager, proxy offers, etc
- try out using ANSA_MANAGED_EXPORT as shown in the examples

265
23 June 1994Draft External PaperAPM.1261.00.01

More
ANSAware
Features

266
23 June 1994Draft External PaperAPM.1261.00.01

Capsule$Terminate
• Capsule interface Terminate operation:

Terminate : OPERATION [] RETURNS [BOOLEAN];
this op not shown before - in prev examples, used Fact$Term & Obj$Term

• Factory$Terminate kills specified capsule by issuing SIGTERM

• Object$Terminate kills object by invoking Destroy_ObjName_Object () fn

• Capsule$Terminate requests that the capsule terminate itself
- will return TRUE if request is accepted, otherwise FALSE
- if accepted, capsule will terminate itself by spawning a thread to perform

the actual termination, allowing the Terminate invocation to return.
- request will only be accepted if application has supplied a terminator fn

terminator fn will normally do things to shut down service cleanly, e.g checkpoint state, close open files, withdraw offers
from trader, from other svcs has passed them to, destory i/f-instances, any appl’n specific stuff

• terminator function installed via function Capsule_SetTerminator()

267
23 June 1994Draft External PaperAPM.1261.00.01

Capsule_SetTerminator function
• function-signature of Capsule_SetTerminator() :

typedef ansa_Boolean (*ansa_CapsuleTerminator)(void);
i.e. a function that returns an ansa_Boolean

void

Capsule_SetTerminator(ansa_CapsuleTerminatorterminator);
i.e. a function pointer to that function

• trclient terminate causes this terminator function to be called
trclient terminate type context [constraints]

output: trclient: terminating if terminator function is installed

• Capsule$Terminate invocations will succeed if a terminator function has
been supplied in the capsule in question

• but the capsule will only terminate if terminator returns ansa_TRUE
this tells infrastructure that it’s ok to die

268
23 June 1994Draft External PaperAPM.1261.00.01

Capsule$Terminate Example
 this example is taken from SBank server.dpl

ansa_Boolean terminate(void)

{

checkpoint(ansa_TRUE);

return ansa_TRUE; /* allow this capsule to be terminated */

}

void body(int argc, char * argv[], char *envp[])
{

...

/* do all initialisation, instantiate interfaces, etc */

....

/* Set up the Capsule$Terminate handler */

Capsule_SetTerminator(terminate);

}

269
23 June 1994Draft External PaperAPM.1261.00.01

Capsule$Terminate (cont’d)
• Capsule$Terminate invocation checks if terminator fn installed

- if not, returns failure
- if so spawns new thread to call terminator fn, and returns success

(indicates terminate request accepted)

• Invocation can only terminate capsule within which it is executing in this
manner (spawned thread) because:
- A “Commit Suicide” interrogation cannot return (the server will commit

suicide before it can reply) so the client will time out
- A “Commit Suicide” announcement is not guaranteed to reach the server

• Spawning thread to do actual termination allows Terminate invocation to
return

270
23 June 1994Draft External PaperAPM.1261.00.01

Management interface
• all interfaces automatically conform to Management interface-type:

- has one operation: GetMgmtInterface

GetMgmtInterface: OPERATION [domain: ansa_MgmtDomain]

RETURNS [ansa_MgmtTermination];

• support for this operation (function Management_GetMgmtInterface) is
provided by the ANSAware infrastructure.

• because all interfaces have this operation, trader uses the
GetMgmtInterface operation to “ping” interfaces of suspect offers

trader does this when client trying to use offer has trouble (client’s infrastr automatically informs trader via Relocate, etc,
as described earlier) -operation should succeed (regardless of result). If operation times out, the trader assumes the interface
cannot be contacted.

• GetMgmtInterface operation used to obtain interface references for
interface’s enclosing Object or Capsule interfaces -management interfaces

271
23 June 1994Draft External PaperAPM.1261.00.01

Management Interface Definition
Management: INTERFACE =

NEEDS BaseTypes FROM BTypes;

BEGIN
-Note: need this bcs must explicitly define the InterfaceRef type in base type interfaces (not automatic as normally would be)
ManagementRef: INTERFACEREF OFTYPE Management;

ansa_MgmtDomain: TYPE = { union type

ansa_InterfaceDomain, ansa_ObjectDomain,

ansa_ClusterDomain, ansa_CapsuleDomain,

ansa_NodeDomain };

ansa_MgmtTag: TYPE = { ansa_UnsupportedDomain,
ansa_SupportedDomain };

272
23 June 1994Draft External PaperAPM.1261.00.01

Management Interface Definition(cont’d)
ansa_MgmtTermination: TYPE = CHOICE ansa_MgmtTag OF
{

ansa_UnsupportedDomain => ansa_MgmtDomain,

ansa_SupportedDomain => ansa_InterfaceRef
};

GetMgmtInterface: OPERATION [domain: ansa_MgmtDomain]

RETURNS [ansa_MgmtTermination];

END.

• GetMgmtInterface operation returns ansa_UnsupportedDomain for all
domains except ansa_ObjectDomain and ansa_CapsuleDomain e.g:
! { mres } <- ifRef$GetMgmtInterface(ansa_CapsuleDomain)

other domains provided for future mgmt fns at different levels (cluster, node), eg. migration - later

273
23 June 1994Draft External PaperAPM.1261.00.01

Stub Memory Management
• when stubc compiles IDL files, generates stub code for each operation of

interface
- stubs contain marshalling and unmarshalling functions for all arguments

and results of the operation host/netwk byte-order -exaplain all this - all hidden from user

• if these args are of types of variable size (contain sequences, e.g. interface-
references) storage has to be allocated for marshalling arguments or
unmarshalling results

• if storage is never freed, a component that makes many invocations will
consume more and more memory each time makes invocations mem allocated & not freed

• ANSAware provides mechanisms for applications to control how this stub
memory is managed

i.e. when it should be released - app progr’r can decide on most suitable policy for partic appl’n

• default policy is to free memory quite aggressively; this can be easily
overridden can lead to unexpected results, in earlier examples, we turned off this policy for simplicity

274
23 June 1994Draft External PaperAPM.1261.00.01

Freeing Stub Memory
• server operation:

- args unmarshalled - results marshalled
- all memory freed on operation completion

i.e. when results have been successfully received by caller (retries, etc - infrastructure knows when finally done) or gives up
-could not be any further need for these, so this is fine

• client: stub_setFreeCltMem(ansa_FALSE) have done this so far in examples

- overrides default - causes results to not be automatically freed

• client default behaviour:
- results of invocation freed next time thread makes any invocation
- freed after args have been marshalled, and before results have been

unmarshalled

275
23 June 1994Draft External PaperAPM.1261.00.01

Default Stub Memory Management
! { res1, new_ir, res3 } <- ir$OneOp(args)

! { results } <- new_ir$Op(res1, res3) /* works fine */

! { results } <- new_ir$Op(res1, res3) /* this will fail */

• Override default policy in three ways: per-thread, -capsule, -all capsules

• stub_setFreeCltMem(ansa_TRUE / ansa_FALSE)
if false, no freeing, app must do explicitly if at all (via stub_free...)

- only affects current thread
- other threads in capsule not affected
- ansa_Boolean stub_freeCltMem() - inquires current setting

• Ansa_FreeClientStubMem global variable
- set to ansa_TRUE (default) or ansa_FALSE (override)

will change the policy for the entire capsule, but can be overridden on a per-thread basis by stub_FreeCltMem()

276
23 June 1994Draft External PaperAPM.1261.00.01

Stub Memory Management (cont’d)
• ANSA_FREERESULTS - environment variable

- YES (default) or NO (override)
- all capsules run from shell start up with this initial setting
- can be overridden for each capsule, and/or thread within capsule

• One exception to all this:
- results of a PREPC Import operation are always kept until the thread

finishes
- can be explicitly freed via Discard statement

• for getting started, may be easiest to set:
Ansa_FreeClientStubMem = ansa_FALSE;

or do this if run into problems, then if fixes them, know what was going on & can analyse a bit more carefully to see what
intention was, etc.

277
23 June 1994Draft External PaperAPM.1261.00.01

Summary

• Used nearly all of the ANSAware tools & services.

• Seen how to build distributed applications.

• Seen how to use the Factory service to dynamically create and destroy
services.

• Seen how to use the Node Manager to manage this.

278
23 June 1994Draft External PaperAPM.1261.00.01

Installing
and

Configuring
ANSAware 4.0

279
23 June 1994Draft External PaperAPM.1261.00.01

Installing
• ANSAware4.0 versions available for Unix, VAX/VMS, MS-DOS

• Unix release contains "master" copy - can build any version from it

• Others contain platform-specific code only

• Once you have read the files onto your system, you will have a master-tree

• All ANSAware source code is there, so you can look at it, modify it, etc

ANSAware4.0
master

src include ...
ansa

trader
capsule

factory
...

examples
Echo

SBank
...

...

280
23 June 1994Draft External PaperAPM.1261.00.01

Different Versions
• Use script ANSAware.sh to generate platform-specific distribution e.g.

sun4_sos_4.1, hp300_hpux_8.0, msdos_dist etc.

ANSAware4.0

sun4_sos_4.1 msdos_distmaster

281
23 June 1994Draft External PaperAPM.1261.00.01

Configuring

• For Unix systems, ANSAware.sh also builds all files automatically via series
of scripts & Imakefiles

• Must configure ANSAware system with info such as

- directory-paths

- machines to be running well-known services

• This allows ANSAware system to build TraderRef and into capsule-libraries,
so every capsule can automatically contact trader

282
23 June 1994Draft External PaperAPM.1261.00.01

Well Known Interfaces

• Trader.Trader interface is "well-known"

• Capsule library looks in 3 places for this info

- environment-variables

- files

- compiled-in definitions

• env’t vars: MASTER_ADDRESS, TRADER_ADDRESS

283
23 June 1994Draft External PaperAPM.1261.00.01

wkifref

• Strings for redefining these env’t vars can be created using the program
wkifref

If machine is called "burgess" and address is 192.5.254.30, then:
wkifref "" 192.5.254.30 11002 burgess 0 2 burgess 1 11002

will produce:

"[1: { ’c005fe1e2afac005fe1e2afa0000000000000000’,0,1, [1: 2 :
{ [2: 0, 0] [2: [10 : ’00066275726765737300’], [4 : ’0000000f’]] [] [] },
{ [2: 1, 0] [2: [6 : ’c005fe1e2afa’], [4 : ’0000000f’]] [] [] }]] }]"

setenv TRADER_ADDRESS "..."

• Files masterfile and traderfile can be used for this purpose as well

284
23 June 1994Draft External PaperAPM.1261.00.01

ANSA:

New
Developments

Speaker Notes

285
23 June 1994Draft External PaperAPM.1261.00.01

New Developments

• Activation / Passivation

• Storage of inactive objects/services

• Migration

• Location of services that have moved / become passive

• Groups

• also Security, Transactions, Types but I’m not going to talk about these

computational model shown earlier was just basic - work going on in architecture on all of these topics to
improve comp’l model to deal with a range of more complicated issues that arise in dist’d computing - this stuff
not in ANSAware yet, but may be in future releases - some of it has been prototyped, some just architectural so
far

286
23 June 1994Draft External PaperAPM.1261.00.01

Object persistance
• Capsules & objects that are not busy could be stored away until needed

- this way, save resources, but services can be called back into existance
when needed

• Only activation/passivation/migration/storage of objects has been
thoroughly designed leaving aside issues of storing info abt executables for capsules, etc

• Clearly, the capsules in which objects exist need to be dealt with as well
- future work will address this

287
23 June 1994Draft External PaperAPM.1261.00.01

Snapshots
• a Snapshot is a representation of object & its state

• Snapshot infrastructure provides machine- & O/S-independent means of
- producing a snapshot of an object
- installing a snapshot of an object (into a capsule that is capable of

supporting that type of object)

• Snapshot-base service stores snapshots, separately from service’s code

• Storage and management of capsules managed separately from that of
objects & their snapshots
- creation of appropriate capsule-types done via factory
- also creation of appropriate object-type within capsule
- object/service manager keeps track of appropriate capsule-executables

for various machines, O/S’s etc

288
23 June 1994Draft External PaperAPM.1261.00.01

Snapshots (cont’d)
• Snapshot consists of three components

- object type
- current state of object - bindings, references to interface-instances
- representation of interface-types & instances currently supported by

object

• Restrict snapshot to be of idle object onlybefore snapshot can be made or
installed:
- ongoing activities must finish
- new activities prevented

• Programmer declares (via PREPC declarations) which components of state
are to be put into snapshot
- components must be of IDL-defined types so un/marshalling stubs can be

generated for snapshot production / installation

289
23 June 1994Draft External PaperAPM.1261.00.01

Locators
• Locators keep track of old vs new locations of objects

• Object may have become passive, or moved to a new location

• When client’s infrastructure calls locator, locator will hand out new interface-
reference, replacing out-of-date one

290
23 June 1994Draft External PaperAPM.1261.00.01

Activation / Passivation
• Objects are moved (swapped) between secondary and in-memory locations

by passivation and activation functions similar to virtual memory
mechanisms objects could passivate selves according to various policies, eg. if inactive for certain time

• Object must hold reference to SnapshotBase to be able to passivate

• Passivation steps:
- decide to passivate or sanction external passivate request
- wait until current activities have completed and prevent new activities
- produce a snapshot
- store the snapshot in a SnapshotBase
- in appropriate Locators, register each interface instance as being mapped

to the stored snapshot
- terminate

291
23 June 1994Draft External PaperAPM.1261.00.01

Activation / Passivation (cont’d)
• When a client attempts to invoke a passivated object, it will time out

- client infrastructure handles the timeout by contacting Locator or series
of Locators until successful

- Locator will give out reference to a Snapshot in a SnapshotBase

• Activation steps:
- receive a reference to the Snapshot from a locator
- instantiate a new object via a factory of course something has to be done abt finding/creating

capsule to support object - big hand-wave

- pass new object the snapshot reference from the SnapshotBase as
args to Instantiate operation;

- new object installs snapshot, creates interfaces, and updates interface
mappings in the locator

- client infrastructure can now rebind the failed reference to its replacement

292
23 June 1994Draft External PaperAPM.1261.00.01

Migration
• Migration is the process of moving an active object from one location in a

distributed system to another migration managed & requested, does not spontaneously happen

• In case node has to be taken down for maintenance, etc

• Services of object temporarily unavailable during migration

• Migration also accomplished via snapshots

• Can migrate passive object by activating at new location

• Active object migrates by:
- activating clone of object at new location
- taking snapshot of existing object, and installing into new
- update locators
- terminate

293
23 June 1994Draft External PaperAPM.1261.00.01

Persistent Object Infrastructure

yes - it’s mostly all done in infrastructure

passivation
activation

ANSAware

Locator
ANSAware

Snapshot base
ANSAware

Trader

migration

snapshot

ANSAware

application object

Host Operating System Host Operating System

Host Operating System Host Operating System

passivation
activation

migration

snapshot

ANSAware

application object

passivation
activation

migration

snapshot

ANSAware

application object

Network

294
23 June 1994Draft External PaperAPM.1261.00.01

Groups

• What is an interface-group ?
- group of interfaces of the same type that act like a single interface
- replicated for fault-tolerance some members could crash, but invoc’n still processed by remaining

- reliability of results

• Distribution / existence of service as a group hidden from service user

• At application-level, membership of group hidden from group members

• All group members must conform to same interface-type

• Group management tool manages group membership
- population control
- initialise first group member

295
23 June 1994Draft External PaperAPM.1261.00.01

Groups (cont’d)
• Create a group (each member) via a Factory. Two interfaces will result

- group interface - for comms btwn group members (synch’n, verifying other members still there etc)

- management interface - for grp mgmt fns - start grp , change pop of grp

- By having two interfaces, make clear distinction between service of a
group, and management of group’s membership

• Logical components of a group:
- distributor - broadcasts invocations on group i/f to all members
- member agent - cooperate with other members to ensure

cooperation - make sure no invocations missed, all must have same set of invoc’ns

ordering - invoc’ns must be processed in same order in all mems

failure detection - of other members

- collator - collects each members result to produce single result for client

296
23 June 1994Draft External PaperAPM.1261.00.01

Logical Entities in a Group

client
membergroup

distributor
member

interface agents servers

collator membersmanagement
interface

client

297
23 June 1994Draft External PaperAPM.1261.00.01

Groups: Implementation

GEXclient

client

m

a

d
c

d
c

m

a

m

m

a

server

server

server

298
23 June 1994Draft External PaperAPM.1261.00.01

Groups: Details
• clients:

- after arguments marshalled by stubs, passed to dispatcher function
- dispatcher passes to distributor in non-group operation this would just RPC the server i/f

- distributor broadcasts invocation to each member (non-blocking RPC)
- control passes to collator which awaits response
- when all results received, one results returned to client invocation

• members:
- invocation collator -ensures all invocations arrive
- invocation sequencer - for agreeing order of processing
- timer - expiry indicates member failure

299
23 June 1994Draft External PaperAPM.1261.00.01

Groups: Client & Server Infrastructure

client client
agent

marshal

communication
infrastructure

to server group from client group

GEX

invocation
collator

timer unmarshal

member
server

sequencer

communication
infrastructure

