
Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (0223) 323010
INTERNATIONAL: +44 223 323010

FAX: +44 223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1139.00.03 Draft 17 August 1995

Request for Comments (confidential to ANSA consortium for 2 years)

Boundaries and domains

Yigal Hoffner & Gray Girling

Abstract

Surmounting the technical and administrative boundaries that separate domains are key
requirements when expanding or rationalising businesses. The ability to create such boundaries
may also be vital to the preservation of a businesses self interest.

The elimination of unwanted boundaries and creation of required ones can be achieved once the
nature of domains and boundaries is understood, the properties that may separate them are
categorized and mechanisms to integrate and separate domains are identified.

After developing the notions of boundaries, domains and services this document describes a
classification of boundaries applicable to large scale distributed systems. The problems in
creating or overcoming each of these types of boundary are then considered and means to deal
with those problems are proposed. Finally some of the elements of an infrastructure that would
support those solutions are given.

Boundaries and domains

Boundaries and domains

Yigal Hoffner & Gray Girling

APM.1139.00.03

17 August 1995

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by Architecture Projects Management Limited on behalf of the companies
sponsoring the ANSA Workprogramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

Architecture Projects Management Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 0RD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

Architecture Projects Management Limited takes no responsibility for the con-
sequences of errors or omissions in this Report, nor for any damages resulting
from the application of the ideas expressed herein.

APM.1139.00.03 Boundaries and domains i

Contents

1 1 Introduction
1 1.1 Boundary Problems
2 1.2 Organization of the document

4 2 Basic Concepts
4 2.1 Introduction
4 2.2 Services
6 2.2.1 Service Access
6 2.2.2 Objects
7 2.3 Domains of Homogeneity
8 2.3.1 Independent decomposition
9 2.3.2 Federation and separation of domains

11 3 Classification of Properties
11 3.1 Approach to using the distributed system properties
11 3.2 Large scale distributed system properties
13 3.3 Authority
13 3.4 Management and administration
15 3.5 Remuneration
16 3.6 Semantics
17 3.7 Service Access
17 3.7.1 Configuration
18 3.7.2 Interfaces
18 3.7.3 Infrastructure

20 4 Relationships across Different Types of Boundary
20 4.1 The relationships between distributed systems
21 4.2 The institutional relation (authority)
21 4.3 The administration relation (management)
21 4.3.1 Service management
22 4.3.2 Integration of different management agents
23 4.4 The remuneration relation
23 4.5 The naming and semantic relation (semantics)
23 4.5.1 Service functional semantics
24 4.5.2 Service non-functional semantics
24 4.5.3 Naming
24 4.5.4 Naming models
25 4.6 Service access relations
25 4.6.1 The configuration access relation (configuration)
25 4.6.2 The interface access relation (interface)
26 4.6.3 The engineering relation (infrastructure)

Contents ANSA Phase III

ii Boundaries and domains APM.1139.00.03

28 5 Conclusion

29 6 Dealing with Different Classes of Boundary
29 6.1 Distributed systems as domains
29 6.2 Authority boundaries
29 6.3 Management boundaries
29 6.4 Remuneration boundaries
29 6.5 Semantics boundaries
30 6.5.1 Common semantic subset
30 6.5.2 Extended common semantic subset
30 6.5.3 United semantics superset
31 6.6 Service access boundaries
31 6.6.1 Mechanism Level Differences
33 6.6.2 Quality of Service
33 6.7 Infrastructure boundaries

34 7 Interception Infrastructure
34 7.1 Wrappers
34 7.2 Interceptors
34 7.3 Dynamic configuration
34 7.4 Trading support
34 7.5 Summary

35 8 APPENDIX
35 8.1 Infrastructures and application boundaries
35 8.2 ----------------------- garbage line --------------------------------------

APM.1139.00.03 Boundaries and domains 1

1 Introduction

Note: The text in this document was assembled from Yigal’s notes, Yigal’s latest version of
“Boundaries and domains” (“RFA.001”), Gray’s latest version of “Dealing with
Boundaries” and the chapter “Boundaries in federated systems” in “The Federation
Manifesto” APM.1100.00.06.

Note: There was enough text to address some issues which may subsequently be considered
to be beyond the scope of this document. Hopefully these have been isolated and
partitioned in the latter chapters of the document.

Note: Editorial unification of this text has involved some changes: removal of semantically
duplicated text; replacing system “aspects” by system “properties”; amalgamating the
“peer-to-peer” (stream based) case in the term “object”; more uniform use of the phrase
“large scale distributed system”; settling on a standard set of names for the different
system aspects; removal of use of the first person;

Note: Further text has been added to: define a “service”, some alignment with APM.1164
(TC slides on this topic) has also taken place. Quite a lot of work has gone in to the
separation of issues associated with a service and those associated with the way in
which it is accessed. Some alignment with ODP has been added.

Note: This is an incomplete document. There are various editorial notes in this draft
document. Many of the references are not provided.

Surmounting the technical and administrative boundaries that separate
domains are key requirements when expanding or rationalising businesses.
The ability to create such boundaries may also be vital to the preservation of a
businesses self interest.

The elimination of unwanted boundaries and creation of required ones can be
achieved once the nature of domains and boundaries is understood.

This document develops an overview of the types of infrastructure that are
required to overcome the principal boundary-related problems in large scale
distributed systems. It does this by considering:

• what a boundary is;

• what problems boundaries pose;

• what types of boundaries should be analysed; and,

• an initial analysis of the problems that each kind of boundary presents.

1.1 Boundary Problems

The boundaries of interest are those that particularly focus on distributed
service provision and consumption1 during the development, implementation,
deployment, provision, use and maintenance of large scale distributed
systems. The primary goal is to control the co-operation that leads to service

1. Note that this implicitly includes the computer-based subset of business operation
and that the structure of a business organization will normally be reflected in the
structure of such services.

Introduction ANSA Phase III

2 Boundaries and domains APM.1139.00.03

consumption and provision between and within such systems. The most
important boundary problems considered in this document are:

1. federation, there is a wish to co-operate between sets of objects but a
boundary prevents this;

2. separation, there is a wish not to co-operate with other sets of objects but
no boundary prevents this; and,

3. monitoring, there is a need to discover what co-operation is taking place
with other sets of objects.

The first is the problem of creating one domain out of many and the second is
the problem of creating many domains out of one but these are the two
extremes of a spectrum of likely problems. In practice the requirement for
federation is likely to have some element of separation. For example a service
designer may require a large element of federation to increase its accessibility
but also insist that those who have not paid for it are unable to use it (a degree
of separation).

In terms of common business processes these problems occur as follows.

1. Federation

As businesses expand and coalesce federation is commonly required to
overcome the technological and administrative boundaries that may have
existed between its pre-united parts. Federation may enable a service
user to make use of a service in a different environment, or enable two
services separated by a boundary to appear as a single service.

Note: Should the latter scenario be called something other than federation? (e.g. integration)
should it be included in this document at all?

The principles required to safeguard the autonomy of federated
components are provided in [APM1005.1 93].

2. Separation

As businesses contract or are restructured separation is often required to
exercise separate control over parts of a domain that previously
interoperated more freely. This control may be required to enforce
security, safety, quality, or charging policies or to establish common
monitoring, auditing or administration procedures. In some of these cases
(security in particular) the threat of malicious (intelligent) attempts to
defeat separation mechanisms must be considered during their design,
whereas this additional level of complexity need not be associated with
federation mechanisms.

3. Monitoring

Monitoring the interaction between domains can enable the current
health, status and efficiency of a business to be derived. It may also enable
the assessment of any mechanisms put in place to achieve federation or
separation, or reveal a requirement for as yet unaddressed areas of
federation, separation or monitoring.

1.2 Organization of the document

A number of relevant general concepts (such as those of service, boundary,
domain) are established initially so that they can be used with a minimum of
ambiguity.

ANSA Phase III Introduction

APM.1139.00.03 Boundaries and domains 3

The way the document addresses the above boundary problems is:

• provide a classification of properties that potentially are different;

• then, for each property:

— define the types of co-operation that are required between systems
with respect to that property and,

— for each type of co-operation:

say what the difference problems are.

Further work in subsequent documents may address specific types of co-
operation, saying what mechanisms can be used to solve the relevant
difference problems, describing them in terms of which elements of the
mechanism can be supported by infrastructure/engineering components and
what parts of their information requirements should be provided by a central
repository (e.g. a trader).

Basic Concepts ANSA Phase III

4 Boundaries and domains APM.1139.00.03

2 Basic Concepts

2.1 Introduction

This chapter provides qualification of the terms “service”, “domain”,
“boundary” and “object”.

2.2 Services

“Boundary Problems” in the chapter above are described in terms of “co-
operation” . This co-operation may take place at any development phase,
including during system operation. In the latter case this document speaks in
terms of service provision and use. When federating “service” characterizes
something provided in an unfamiliar domain, so its definition should
preferably not be expressed in terms of the way it is provided in any particular
kind of domain.

• A service is a set of capabilities available to a population of clients, but is
conceptually distinct from whatever mechanism or configuration of parts
that is used to provide it.

In practice a service must be related to some mechanism in order to be
realized and it will be related to that mechanism by one (or more) points of
access at each of which some access method allows all (or some) of its
capabilities to be exercised.

Typically federation occurs when a service selected by a client’s designer is
required of a server providing environment over which the client’s designer
has had no influence. Because it is likely not to have been designed with the
client’s requirements in mind the alien environment may not provide
individual server interfaces that provide the functions that the client requires.
Nonetheless this environment may support those functions differently
packaged. For example, the client’s notion of a “file service” may include
functions to return the current time, whereas the alien environment may
provide file operations and a time service on separate servers. even though no
individual server interface does.

When using ANSA, designs can be anticipated in which services of relevance
are provided entirely by single interfaces to servers (although not universally).
More broadly however, in terms of a client-server model, a service could be
provided (for example):

• by all of its capabilities being available only at a single interface to a
single server;

• by partitions of its capabilities each being available only at single
interfaces to single servers;1

1. This replication may not be able to be rendered transparent in the domain.

ANSA Phase III Basic Concepts

APM.1139.00.03 Boundaries and domains 5

• by all of its capabilities being available (replicated) at each of a number of
single interfaces to servers; or,

• (maximum complexity?) by overlapping subsets of its capabilities each
being available at each of a number of interfaces to a number of servers in
which interfaces may also provide additional capabilities outside the
service.

Figure 2.1 illustrates some of these variations.

In general, however (particularly in the case of the federation of “legacy”
systems) the existing expression of a service may not be in terms of a client-
server model.

Table 2.1 provides some examples of services, plausible points of access and
required access methods.

Table 2.1: Example services

Service Points of access Access method

Trading service trader interface RPC
OSIa managed
object

CMIS application
service object

CMIP

POTSb telephones physical manipulation of
telephone “dial”, voice and
hearing

Object

Interface
Points of access

Service

Distributed
Service

Typical ANSA Distributed

Possible Distributed Service

Service

Figure 2.1: Example distributed service

Mechanism

Mechanism

Basic Concepts ANSA Phase III

6 Boundaries and domains APM.1139.00.03

2.2.1 Service Access

In an infrastructure-based client-server model the information required to
define an access method (for an arbitrary service) can be partitioned into:

1. (service level) identification of and server interfaces the function names
that provide the service;

2. (object level) for each server, identification of the server-specific platform-
supplied access options selected; and,

3. (infrastructure level) identification of the infrastructure implementation-
dependent access options used.

A similar service access profile can be developed for services whose
implementation does not follow an infrastructure-based client-server model by
performing an analysis of the service to identify functions and interfaces, and
some lower level of shared service analogous to that provided by a shared
object infrastructure.

The remainder of the document assumes that such an analysis has been
performed and talks separately of, for example, co-operation between objects
and between infrastructures.

2.2.2 Objects

Computational objects are described in [APM 1001], the ANSA computational
model, and [ISO ODP-3]. They support one or more interfaces (the number of
which may vary over time). They are implemented by a number of different
kinds of engineering object (e.g. as described in [ISO ODP-3]) one or more of
which encapsulate the functional aspects of a computational object (these are
called basic engineering objects) and others of which implement an
infrastructure for the basic engineering object to use. Alternative
arrangements of the latter result in qualitative (non-functional)
implementation differences that are transparently available to the basic
engineering objects.

Two styles of interface that computational objects can support are referred to
in this document (and in [ISO ODP]):

1. operational interface

in which functions are made available in a manner analogous to procedure
calls; and,

2. stream interface

a. Open Systems Interconnection
b. Plain Old Telephone Service.
c. Portable Operating System Interface for Computer environmentS
d. Windows, Icons, Menus and Pointers

OSI Transport local Transport
SAP

endsystem requests, indications,
responses and confirms,

POSIXc operating
system

libraries external procedure call

WIMPd program keyboard,
mouse, screen

WIMP interactions

Table 2.1: Example services

Service Points of access Access method

ANSA Phase III Basic Concepts

APM.1139.00.03 Boundaries and domains 7

Note: (Gray) I think this is what Yigal is referring to when he says peer-peer. “Peer-to-peer”,
however, would literally describe the relationship between a client and a server too.

in which the functions supported must involve one or more parallel
information-flows.

At an engineering level compatibility to these interfaces must be considered in
terms of:

• (object level) the basic engineering object interface that parallels the
computational object’s interface;

• (infrastructure level) the transparency mechanisms that are used; and,

• (infrastructure level) the end-to-end protocols that engineering protocol
objects support.

During construction, or dynamic reconfiguration the interfaces between the
engineering objects implementing a computational object are also of concern.
The processes involved in co-operation between computational objects
(including advertising services, trading and binding) can be applied (perhaps
on only a local basis) among engineering object to achieve this. The
reconfiguration implied by migration transparency requires non-local support
of these processes, potentially treating the service supplied by infrastructure
engineering objects to be treated as a separate computational object (to which
basic engineering objects are the clients).

2.3 Domains of Homogeneity

Boundaries delineate differences and thus define the limits of areas which are
uniform (homogeneous) in whatever properties differ at the boundary. These
areas are called domains of homogeneity, and they are characterized by the
properties in which they are uniform. Similarly boundaries can be
characterized by these properties (but they differ at a boundary). There are
many examples of such properties (e.g. as will be defined in the categorization
in Chapter 3).

In addition to a property the type of entity to which the property applies is also
an important element in the specification of a domain of homogeneity (the
property may be meaningless without this information).

It is now possible to provide more formal definitions.

• A domain of homogeneity is a set of entities of that share common
properties. It is characterized by the properties and the type of entities
involved.

• A boundary is a difference in the properties of domains of homogeneity. It
is also characterized by the properties and the type of entities involved.

Table 2.2 provides some example domains (or boundary) characterizations.

Table 2.2: Example properties and types defining domains

Domain property Entity type

Author Software specification
Owner Local area network
Export control applicable Cryptographic technology
OSI Transport-layer protocol class OSI Transport-entity
Colour Computer enclosure

Basic Concepts ANSA Phase III

8 Boundaries and domains APM.1139.00.03

This definition of a domain is less prescriptive than some and thus does not
have some otherwise common implications of the term as discussed below.

• Domains (of homogeneity) need not be geographical areas

Because an entity type and a property do not necessarily relate to
geographical location (or, indeed, to realized instances of objects at all)
domains of homogeneity do not necessarily occupy a geographical “area”,
and nor do the boundaries between them. However, when the type of
entity associated with a domain requires it to be located in a specific
computer network, or when the property is shared only by objects in such
a network then the domain is likely to cover an “area” defined by the
network.

• Domains (of homogeneity) need not be defined by an authority

Similarly the type and property do not necessarily define a common
authority (e.g. one that dictates behaviour relative to the property). An
authority is not a fundamental property of a domain. Boundaries do not
exist only where the scope of different authorities meet.

Authority domains are described in 3.3.

One set of objects may define a single domain under one property and many
under another (for example the same set may define a single domain under an
“owner” property but many domains under the “supplier” property. There is no
reason that the domains formed under one property should represent the
same division as the many domains formed under another (e.g. Figure 2.2).
The existence of one type of boundary between two objects does not therefore
necessarily imply the existence of an other. Boundaries of different types may
not be coincident.

2.3.1 Independent decomposition

It simplifies the analysis of boundary problems if the problems posed by one
kind of boundary can be considered in isolation from those posed by others. It
is important to establish the principle by which a set of entities can be
decomposed independently into domains according to different properties.

If the boundaries defined by one property are dependent on those defined by
other properties then (for example) mechanisms providing for federation over
one boundary may interfere with those providing federation over another and
it will not be possible to consider each type of boundary independently.

Without an independent decomposition principle it will be necessary to
assume that all boundaries potentially interfere with all others.

Note: (Gray) Further work is necessary here to describe this principle and to define the
circumstances in which the boundaries defined by one property can be considered in
isolation from those defined by other properties.

Note: (Gray, Jane) The relation of this to “feature interaction” should be investigated too.

Supplier Application
Authentication mechanism Operating system

Table 2.2: Example properties and types defining domains

Domain property Entity type

ANSA Phase III Basic Concepts

APM.1139.00.03 Boundaries and domains 9

2.3.2 Federation and separation of domains

These problems are relative not only to the property defining the boundary in
question but also by the type of co-operation addressed. (That is, each problem
is defined by a property making a difference and a type of co-operation
requiring a similarity). Some examples are shown in table 2.3. Not all forms of

Table 2.3: Example types of co-operation

Type of domains co-operating

Type of co-operationCommon property in
domain

Element type

Administrator ODP computational object Inter-management
Owner Object Payment
Function Object Use
Designer ODP Engineering platform Joint transparency provision
Author Software specification Mutual use of specifications
Author Software specification Conformance to common standard
Owner Local area network Permission to access LAN
Export controls applicable Cryptographic technology Specification of controls applicable

to joint products
OSI Transport-layer
protocol class

OSI Transport-entity Transport-layer communication

Administration
Boundary

Infrastructure
Boundary

DCE
Domain

Sales dept.
Domain

Figure 2.2: Different domains formed under infrastructure and administration
properties

Key:

Infrastructure: DCE based

Infrastructure: CORBA based

Administration: sales dept. Administration: R&D dept.

Basic Concepts ANSA Phase III

10 Boundaries and domains APM.1139.00.03

co-operation involve domains of the same type (e.g. in co-operation for the
purpose of payment the payee may come from one type of domain and the
payer from another).1

1. The involvement of more than one type of domain when specifying a type of co-
operation is not illustrated in the table of examples.

ANSA Phase III Classification of Properties

APM.1139.00.03 Boundaries and domains 11

3 Classification of Properties

To support and manage interoperation in federated systems, the first step is to
have a good understanding of the different kinds of boundaries that arise in
such systems. The next step is to analyse the different kinds of problems they
pose and following that to develop solutions to those problems.

There will be different types of domains and boundaries depending on the
properties that may differ between systems. This chapter outlines the main
properties of large scale distributed systems in which differences are likely.
Such properties form the basis for studying:

• the information necessary for the description and comparison of the
systems (relevant to trading); and,

• the information and processes necessary to enable, disable or detect the
crossing of these boundaries (relevant to federation, separation and
monitoring).

Note: (Jane) what about the processing part of trading?

Systems will have to incorporate mechanisms

• for crossing these boundaries, where this is feasible and permissible, and

• to prevent boundary crossing, where it would lead to failure or breach of
security.

3.1 Approach to using the distributed system properties

Two questions arise with regard to the differences between distributed
systems:

1. What is the operational impact of each type of difference when planning,
designing, implementing, installing or invoking services that span
different systems?

2. When is it possible to bridge these differences, and, where it is, what
mechanisms must be put in place between differing distributed systems?

3.2 Large scale distributed system properties

A number of areas where differences between systems are likely to occur have
emerged as a result of studying the relationships between components of
distributed systems (Figure 3.1):

• authority;

• management (administration);

• remuneration (i.e. accounting, billing, payment and receipt generation);

• service semantics (modelling and naming); and,

• service access (configuration, interface and infrastructure access).

Classification of Properties ANSA Phase III

12 Boundaries and domains APM.1139.00.03

Differences are anticipated in the information, procedures and mechanisms
used to support each of these properties.

The distributed system properties shown in Figure 3.1 are neither exhaustive
nor complete. Other classifications are possible. Nonetheless generating a list
of issues associated with these properties will enable not only the specification
of a number of relevant differences but also the identification of homogeneity.

Note: (Gray) I have placed remuneration and object interfaces on a par with the other
properties (a) for simplicity of presentation and (b) because the opportunity to address
these two areas with common text has not actually been taken.

Note: (Gray) I have also added “configuration” to interface and infrastructure and placed
them all under the same heading “service access”, as described in 2.2.1.

The object interfaces property encompasses both operational [Birrell?] and
stream-based [ISO ODP-3 94] interfaces. Increasingly, distributed systems are
the result of development processes that are themselves carried out in a
distributed fashion (i.e.distributed development processes are used). Such
processes may differ in terms of:

• the decisions made concerning all of the properties listed above;

• the way the decisions are made; and/or,

• the way the decisions are recorded.

The result of the possible divergence among systems is a list of the following
distributed system properties:

Table 3.1: Relationship between entities

Entity Relationship

Authority institutional framework – agreement
Management administration
Remuneration accounting, billing, payment, receipt

generation
Semantics models and naming
Configuration distributed service mapping on to

the object interfaces providing it

Distributed system properties

Authority RemunerationManagement

InfrastructureInterface

Semantics

Figure 3.1: Properties of distributed systems

Service
Access

Configuration

ANSA Phase III Classification of Properties

APM.1139.00.03 Boundaries and domains 13

Note: (Gray) I don’t think we need the list of bullets in 3.2, and table 3.1 and figure3.1 – they
all say the same thing. Suggestions for removal?

As an example of the use of this classification: if it is known that two systems
have a single authority and management structure/policy, it is reasonable to
concentrate on the other properties, where differences may lie. It is often
inferred that if the differences between the infrastructures could be
eliminated by using standardization, most of the problems associated with
distributed systems would disappear. Figure 3.1 indicates other properties,
such as authority and management for example, are likely to continue to
present obstacles to federation, as they reflect organizational and not technical
variety.

3.3 Authority

An authority is a decision making body that authorizes activities (such as
creation and control). Authorities of a distributed system will determine the
approach taken concerning all the issues where options are available. A
software entity, person, organization, legislative body, or country are all
examples of potential authorities.

An authority domain encompasses the range of objects and activities about
which a specific authority may validly make decisions.

An authority may employ a policy or philosophy as a systematic basis on
which to make decisions. These policies might address allocation and de-
allocation of resources, provision and availability of services, trading,
identification, authentication and authorization, accounting, billing and
payment, quality notions and quality control, etc. The properties of this
chapter represents one way to classify some of these issues.

Authorities will vary on the nature of the agreement with another authority
that they will regard as acceptable.

3.4 Management and administration

An administration is a body responsible for the enactment of an authority’s
decisions. A software entity, person, organization, legislative body, or country
are all examples of potential administrations. In a federated system there are
likely to be many administrations, responsible to many authorities.

Each administration has local autonomy, subject only to its authority and
agreements reached with other administrations. If object services are provided

Interfaces object service provision and
consumption

Infrastructure engineering and technical

Table 3.2: Process Relationship between processes

Process Relationship

Development object description agreement

Table 3.1: Relationship between entities

Entity Relationship

Classification of Properties ANSA Phase III

14 Boundaries and domains APM.1139.00.03

and consumed across administrative domain boundaries, the domain
administrations are responsible for ensuring that any guarantees given by the
clients and servers are kept.

An administration exercises its responsibilities by managing objects in an
authority domain.

There are several different types of management of concern in large scale
distributed systems (Figure 3.2) including the following.

• System management:

this is largely the monitoring and control of the infrastructure resources
that provide the basic as well as the extended distribution facilities.
System management includes:

— resource allocation and garbage collection;

— configuration management; and,

— object creation and destruction.

• QoS management:

this concerns the provision of end-to-end QoS guarantees when service
provision crosses between different domains. This requires the
appropriate policies, mechanisms and procedures addressing:

— security;

— dependability; and,

— performance.

• Application management:

this concerns the provision of application specific functionality:

— trading; and,

— application specific management.

• Development process management:

this concerns the monitoring and control of the distributed development
process.

• Specification configuration management

— conformance testing

— refinement checking

— specification access control

• Miscellaneous management functions:

— monitoring; and

— debugging.

ANSA Phase III Classification of Properties

APM.1139.00.03 Boundaries and domains 15

3.5 Remuneration

Remuneration includes four different processes (Figure 3.3):

• accounting – measuring the amount of work carried out by a server and
calculating the price of the service;

• billing – charging the user for services provided;

• paying – transferring some currency from the user to the provider of the
service; and,

• receipt generation – (optionally) producing evidence that payment and the
corresponding service provision have occurred.;

Remuneration is closely related to issues of trust and security.

Management properties

Application
management

System
management

QoS
management

Misc.
management

Development
process

management

Monitoring
Debugging
Remuneration

Security
Dependability
Performance

Resource
management

Configuration
management

Application
independent
management

Application
dependent

management
Trading

Allocation
Garbage
collection

Create
Maintain
Update

Figure 3.2: Management properties

Remuneration properties

Accounting Billing Paying

Figure 3.3: Remuneration properties

Receipt
Generating

Classification of Properties ANSA Phase III

16 Boundaries and domains APM.1139.00.03

3.6 Semantics

Semantic modelling concerns the way in which people and systems organize
the meanings they associate with the world around them. This includes the
way they represent the necessary information, its organization and the names
used to refer to it.

Mechanical systems such as computers can only deal with concrete
representations, such as bit patterns. Previous work on naming models
[APM1001.1 93] and the information model [APM1005.1 93] illustrate some of the
limitations with respect to the representation of concepts and subsequent
interpretation of representations (e.g. of service specifications).

A semantic description may be expressed at many different levels of
abstraction and may be either descriptive, intending to describe only what the
behaviour is (e.g. a behavioural specification provided in a formal language, or
as a set of semantic property names) or prescriptive, intending to describe how
the behaviour is to be achieved (e.g. an object’s behavioural representation in a
programming language).

Two areas of semantic description can be discerned: the semantics associated
with the functional aspect of a service; and the semantics associated with its
non-functional aspects (for example its security, performance, or
dependability).

• A functional semantic description of a service will describe the meaning
(e.g. in terms of cause and effect) of the capabilities it provides.

• A non-functional semantic description of a service (its Quality of Service,
QoS) will describe qualitative aspects of the way in which the service is
provided/delivered in terms of (for example) administrative, temporal,
confidentiality or accuracy guarantees.

The QoS associated with an interface perceived by a client is composed of the
QoS of the access method used (the Quality of Access, e.g. as provided by
ANSA transparencies) and the QoS associated with the object itself (the
Quality of Provision).

The functional and non-functional specifications of objects have to be available
in a form that allows the trading process to compare them and to find
compatible objects. The potential categories of information about semantics
are shown in figure 3.4.

Semantic properties

Functional semantics
(behaviour)

Non-functional semantics
(QoS)

Figure 3.4: Semantic properties

Quality of
access

Quality of
provision

ANSA Phase III Classification of Properties

APM.1139.00.03 Boundaries and domains 17

3.7 Service Access

As indicated in 2.2.1 service access can be split into three main areas, as
shown in figure 3.5.

3.7.1 Configuration

A service may be implemented by a configuration of objects interacting in a
predetermined fashion and perhaps constructed according to a specific
template. The user of such a service need not be aware of this when the service
is manifest at a single interface to a single service. However, factors that may
prevent this transparency include:

1. the capabilities of a service required by the client may be provided at no
single interface, only at a combination of them;

2. the nature of the service may require access points supporting different
access methods1 (such as the separate control and call interfaces to a
telecommunication service) and thus division in to separate interfaces;
and,

3. the unit of service availability may be regarded as that available from a
set of interfaces for the purposes of marketing.

Thus information describing this configuration (at least in terms of the
interfaces involved) is required for the general case of service.

Some of the same factors may also require the identification of a configuration
associated with the user of a service. For example a telecommunications
service may require a configuration of two objects, one the client of a control
(operational) interface and another the client of a call (stream) interface.

1. For example, [ISO ODP]] currently requires operational interfaces to be regarded
separately from stream interfaces.

Access properties

Configuration
properties

Interface
properties

Infrastructure

Figure 3.5: Access properties

properties

Configuration properties

Mapping to interfaces

Figure 3.6: Configuration properties

Service interface
properties

Classification of Properties ANSA Phase III

18 Boundaries and domains APM.1139.00.03

3.7.2 Interfaces

ANSA advocates a Remote Procedure Call (RPC) style of access to interfaces.
This object interaction paradigm is also advocated and used by a number of
relevant international standards (such as [ISO ODP], [ISO Management 91],[ITU-T
MHS 88],[ITU-T Directory 88] and [ISO RDA 90]). [ISO ODP] effectively promotes this
style of interaction (associated with operational interfaces) whilst associating
all other forms with “streams”. [ISO ODP] unifies stream interfaces and
operational interfaces as examples of signal interfaces.

The use of different object interaction paradigms by client and server is a
boundary issue. Whilst there is a preference for ANSA interfaces to be
operational interfaces, a federated object must be modelled as providing or
requiring the more inclusive range of signal interfaces.

Interface descriptions can be broken down, according to the interaction
paradigm associated with the interface, into a number of categories as follows
(see figure 3.7):

• operational interface signature: e.g. in terms of operations and data types;

• stream interface signature: e.g. in terms of information flows and data
types; and,

• signal interface signature: e.g. in terms of signals (e.g. client or server
events) and data types.

Type systems involve notions of equivalence and substitutability; types can be
represented by interface definition languages (IDL) and abstract data types
[APM1042.1 93].

3.7.3 Infrastructure

Distributed system infrastructures provide generic facilities which are
common to a wide range of distributed systems to be used by the distributed
application programmer.

The properties associated with distributed system infrastructures can be
broken down according to the categories of information necessary for setting
up the co-operation between them (Figure 3.8):

• transparency mechanisms that provide a required quality of access;

• communications protocols; and,

• location.

Interface properties

Figure 3.7: Interface properties

Signal interface signature

Operation interfaceStream interface
signature signature

ANSA Phase III Classification of Properties

APM.1139.00.03 Boundaries and domains 19

Note: (Jane) these appear arbitrary, is this list complete? I think there should be more, is it
representative or illustrative?

Transparency mechanisms and communications protocols are closely related
to the quality of service, insofar as they represent the principle means through
which a given quality of service is provided.

Infrastructure properties

Quality of access
mechanisms

Communications
protocol profile

Location

Figure 3.8: Infrastructure properties

Relationships across Different Types of Boundary ANSA Phase III

20 Boundaries and domains APM.1139.00.03

4 Relationships across Different Types of
Boundary

The following sections describe the boundary problems that each of the
properties of distributed systems (as shown in Figures 3.1-3.8) give rise to
when considered independently.

Note: (Gray) this chapter should describe problems not solutions.

Note: (Yigal) the following sections should be expanded.

4.1 The relationships between distributed systems

By using the list of properties described in Figure 3.1, it is possible to show the
relationship between the two distributed systems environments associated
with a client and a service (figure 4.1).

Note: (Yigal) Feature interaction??? – (Gray: i.e. issue of section 2.3.1?)

In order to ensure the co-operation between two objects it is necessary to have
agreement and compatibility regarding (at least) all the properties listed in
figure 3.1. This would require the specification of an object in terms of these
properties.

A distributed development process will have to communicate at some epoch(s)
and exchange these specifications in order to ensure co-operation between
objects. Thus the relationship between two development processes consists of
agreement and object description (Figure 4.2). The relationship between
development processes is based on the description of the objects being
developed.

Service Environment

Client Environment

Authority RemunerationManagement Semantics

Institutional
relation

Remuneration
relation

Administration
relation

Naming and
semantic
relation

Figure 4.1: The relations between properties of two distributed systems

Authority RemunerationManagement Semantics

InfrastructureInterface

Engineering
relation

Interface
access
relation

InfrastructureInterface

Configuration

Configuration
access
relation

Configuration

Access

Access

ANSA Phase III Relationships across Different Types of Boundary

APM.1139.00.03 Boundaries and domains 21

4.2 The institutional relation (authority)

Differences between authorities reflect organizational, judicial/legal,
economic, social, political, cultural as well as technical issues. For co-operation
to be possible between objects of different authorities, it is first necessary for
the authorities to reach an agreement concerning co-operation. Such an
agreement would entail:

• a specification of what is offered;

• a specification of what is required;

• an undertaking to provide the guarantees within an institutional
framework; and,

• a statement about the consequences of not being able to fulfil the
guarantees.

4.3 The administration relation (management)

There are different types of management which concern distributed systems
(as shown in figure 3.2). Differences between administrations reflect the many
ways of doing management

In each one of these areas the differences between administrations may
manifest itself in different:

• management policies;

Note: (Jane) examples here?

• management procedures (e.g. accounting, billing, monitoring or quality
control); or,

• management agents and interfaces.

4.3.1 Service management

Models of all the different properties of large scale distributed systems are
needed to compare these systems so that the differences can be dealt with in a
coherent way.

Client Environment

Development Process

Server Environment

Development Process

Figure 4.2: The relations between two development processes

object
specification

development
agreement

Relationships across Different Types of Boundary ANSA Phase III

22 Boundaries and domains APM.1139.00.03

Differences in these properties will make it difficult to cross boundaries. The
following examples demonstrate this.

• Monitoring across a management boundary:

Note: (Gray) further text needed here:

• Failure management across boundaries: what happens if a client and
server from two different systems co-operate whilst a failure occurs in one
of them. What if the idea of dealing with failure is contradictory?

Note: (Yigal) roll back versus transactions - (Jane) only two ways, not complete

Note: (Gray, Jane) Text needed to explain relevance of Figures 4.3 and 4.4.

In addition to the model of the actual X-service being performed, there is also
the way in which the management of X is done: for example, monitoring.

4.3.2 Integration of different management agents

Note: (Gray) Text required

X-Client X-Server

X-ManagementX-Management

Management Channel

Service Channel

Figure 4.3: A generic model of X-service provision and consumption and its
management

Management epochs

Pre-run-time environment Run-time environment

Design time Pre-processing
time

Link time Installation
time

Run time

Figure 4.4: Management epochs

ANSA Phase III Relationships across Different Types of Boundary

APM.1139.00.03 Boundaries and domains 23

4.4 The remuneration relation

The remuneration relationship can be extremely complex as it reflects the
variety of existing remuneration models, agents and procedures. Differences
in remuneration models may cause problems when an invocation crosses one
or more of these boundaries, as is likely in the case of large scale distributed
systems (such as telecommunication systems).

Different systems may have different views and implementations of each of
the processes identified in section 3.5. In particular, conflicts may arise
between systems that have different accounting and billing strategies. From
the trading point of view it is expedient to reach agreement on remuneration
issues before consuming and providing services. For negotiation to succeed it
is necessary to have the relevant information concerning remuneration.

4.5 The naming and semantic relation (semantics)

Part of the information needed to be able to access a service is the syntax in
which things of different types are to be represented. This includes the way in
which references to objects (names) are represented. These issues are
discussed in 4.6.2.

Differences in semantics, where two domains do not share the same concept,
result in fundamental barriers to interaction, that are quite distinct from the
issue of how a concept is represented for service access purposes.

4.5.1 Service functional semantics

Semantic differences between services will range

1. from services with entirely different purposes

2. through ones that deal with the same problems but may have a slightly
different model of the problem

3. to services that achieve an identical behaviour (but may do so in different
ways).

Bridging the semantic difference in case 1 is not appropriate and in case 3 is
not necessary. Consider two time services as an example of the remaining
case. The time services may provide different resolutions (1 second for one and
1 minute for another) and may vary in whether they include the date. They
have the same purpose: to report time, but they have slightly different
concepts of time in mind.

In such cases it is possible to imagine “semantic interceptors” that converts
invocations suitable to the semantics (and syntax) associated with one service
to a form suitable to the semantics (and syntax) of another.

A difficulty in bridging these differences is finding the specification of the
semantics of a service prior to evaluating its compatibility with the semantics
required by a client. This may be: because no sufficiently complete semantic
description is available to the client; or, because the semantic description
provided by the server is incomprehensible to the client.

One way to make information about semantics available is to make it part of
the service specification that traders maintain. A potentially difficult issue is
the form in which such information should be maintained so as to make it
understandable to people and/or computer systems.

Relationships across Different Types of Boundary ANSA Phase III

24 Boundaries and domains APM.1139.00.03

4.5.2 Service non-functional semantics

Quality of service is a measure of the quality attributed to or required of a
service or activity. Major areas concerned with quality are:

• security (including confidentiality, integrity and availability measures);

• dependability (including reliability and integrity measures); and,

• performance (including time and capacity measures).

Consideration must be given as to how to specify requirements in these area in
a declarative manner that can be translated to a variety of platforms and
mechanisms.

Quality of service specifications have to be translated into mechanisms which
support its achievement. The same quality of service requirement may be
provided by different mechanisms (i.e. there isn’t a simple 1:1 mapping
between them). Some of these mechanisms may be provided by a distributed
infrastructure (e.g. transparency mechanisms), which are addressed in section
4.6.3. However, the translation between quality of service requirement and
mechanism capable of providing it is part of the development process which is
expected to be automated by tools as much as possible.

4.5.3 Naming

Many concepts are represented in large scale distributed systems and among
them the representation of a reference (i.e. a name) is particularly important.
Differences in naming result in:

• (different semantics, same syntax) different things having the same
names in different contexts; or,

• (same semantics, different syntax) the same things having different
names in different contexts.

The former is a problem of crossing a semantics boundary, the latter is not.
The former can be avoided through the mapping of a name in naming domain
to one in another. The latter can be solved through the mapping of a name’s
representation.

The major problem with regard to naming and co-operation in large scale
systems is that the use of different naming schemes makes it difficult to
compare names to discover the compatibility or incompatibility of objects or
the properties denoted by those names.

4.5.4 Naming models

Note: (Mike) this section is verbose and unclear

The naming problem arises when referring to things. These might be:

• things external to the computer system; or,

• objects inside the computer system which have themselves to be named
(for example, where activities relate to internal names such as
management entities).

There are differences in the way naming models are set up in systems, and
also in the way in which things are named.

The use of different naming models to describe systems makes it difficult to
compare objects referred to by the names in these models and to discover the
compatibility or incompatibility of objects that wish to interact. Naming

ANSA Phase III Relationships across Different Types of Boundary

APM.1139.00.03 Boundaries and domains 25

models reflect the way in which people view the world around them. This
results in naming models differing in:

• what is being named;

• how it is named; and,

• in what context the naming take place.

Note: (Gray) “how it is named” is another example of a syntax or representation boundary,
see note above.

Note: (Yigal) this is related to notions of boundary.

4.6 Service access relations

4.6.1 The configuration access relation (configuration)

Differences in the distribution of a service’s functionality over a set of
interfaces assumed in the client and the server environment must be overcome
by access mechanisms that map what is provided onto what is expected.

The circumstances in which such mechanism can be provided vary. The ability
to use only a subset of the operations in an operational interface, for example
can be determined based on substitutability rules associated with the
operational interface’s definition. The use of many interfaces to provide the
functionality that a client associates with a single interface may depend, in
part, on the level of co-operation that exists between the objects that provide
the separate interfaces.

4.6.2 The interface access relation (interface)

An interface description can be broken down as shown in Figure 3.7. Semantic
differences are discussed in Section 4.5. Differences in the interaction
paradigms assumed and used by objects must be resolved.

The signature of an interface is described (in section 3.7.2) in terms of data
types and the structure of an operation [APM1001.1 93], flows or signal data [ISO
ODP] in the interface. A number of type systems that differ in the way data
types are defined and interrelated are likely. Each style of signature requires a
means of determining access compatibility (between what is provided and
what is required). Such interface access compatibility checks will normally be
based on a substitutability relation inherent in whatever type system is
chosen.

The combination of information describing the protocol associated with the
interaction and the information about the types to be used, constitutes the
abstract syntax of the interaction. An interface signature effectively defines
the abstract syntaxes of each of the interactions that may be chosen in an
interface. The language used to specify the abstract syntax in is called an
abstract syntax notation (for example, an interface definition language). It
must include constructs capable of describing the protocol implicit in the
chosen interaction paradigm and constructs capable of describing types in the
type system chosen.1

1. If the type system is defined in terms of interactions supported on the data typed (as
is the case in the type system described in [APM1001.1 93], [APM 1014.1 93] and [APM
1015.1 93]) these constructs may coincide.

Relationships across Different Types of Boundary ANSA Phase III

26 Boundaries and domains APM.1139.00.03

Since the main purpose of an abstract syntax notation is to prevent
interactions taking place in which the abstract syntax required is not
compatible with that supplied it is important that a substitutability check can
be made between two abstract syntax specifications. Differences in the
abstract syntax notations used to specify an interaction required and the one
provided must be overcome in such a way as to enable this substitutability
check.

4.6.3 The engineering relation (infrastructure)

The data used to represent a value of a given type may vary in different parts
of the infrastructure responsible for carrying out an interaction. The rules
determining how values of the types in an abstract syntax are represented in a
client or server (e.g. as determined by a computer language compiler) are
termed a local syntax whereas those applying to data transferred by
communication protocols are termed a transfer syntax. For example, an
implementation of DCE or CORBA will normally define a separate transfer
syntax domain.

On a fine grain (e.g. when client, communication medium and server are
considered as separate objects) the difference between local syntax and
transfer syntax is a boundary problem that itself requires solution.1

The use of a transfer syntax (at all) can be regarded as a partial solution to the
problem arising from a difference in local syntaxes used by a client and a
server.

Any difference between transfer syntaxes associated with client and server
must be overcome.

The representations of references to objects (names) needs particular care
during translation to maintain the semantic distinction between the naming
domain that created the reference, the naming context in which the reference
is used and, potentially, the domain that created the object [APM1003.1 93].

Note that, as discussed in 2.2.2, the infrastructure can sometimes be regarded
as an object in its own right, supplying a service to e.g. a migratable basic
engineering object. Most of the boundary related problems described in this
document apply to this pairing of objects including problems that arise when:

1. Access transparency addresses this problem.

Local Syntax S

Server

Transfer Syntax S

Abstract Syntax Notation S

Local Syntax C

Client

Transfer Syntax C

Abstract Syntax Notation C

Abstract Syntax

Figure 4.5: Local, transfer and abstract syntaxes

ANSA Phase III Relationships across Different Types of Boundary

APM.1139.00.03 Boundaries and domains 27

• the functional and/or non-functional semantics of different infrastructure
domains differ; and,

• access to the infrastructure functionality varies.

Note: (Yigal) link to Abstract and Automate [APM 1020.1 ?]

The differences between distributed system infrastructures that concern inter-
operability can be broken down according to figure 3.8.

• Transparency

declarative quality of access requirements translate into the information,
procedures and mechanisms necessary to provide the service with the
required quality guarantees. Different systems may use different and
incompatible mechanisms to achieve the same quality of access.

• Communications protocol profiles

Different hierarchies of protocols may be used, with different guarantees
and features.

• Location

Different ways of addressing may exist, depending on the kind of network
and communications protocols available.

One often neglected but particularly important form of interoperation
concerns exception reporting mechanisms to support, monitoring, auditing
and troubleshooting. If these mechanisms are incompatible, exception
generating interaction may incorrectly appear compatible.

Conclusion ANSA Phase III

28 Boundaries and domains APM.1139.00.03

5 Conclusion

This document has described the environment in which federation is assumed
to take place, identifying the relevance of service, objects, boundaries and
domains. A number of properties that potentially form separate boundaries
and domains have been isolated and the principle problems that need to be
overcome at each such boundary have been described.

ANSA Phase III Dealing with Different Classes of Boundary

APM.1139.00.03 Boundaries and domains 29

6 Dealing with Different Classes of Boundary

Note: (Gray) My feeling is that the following material should be exported to documents
focused on each of the boundaries identified in the previous chapter. This document
should end here.

Note: (Gray) This material is structured but unpopulated – even the structure, however
needs to be revisited once questions arising from the chapters above have been settled.

Interception mechanisms are those that support federation, separation or
monitoring across boundaries. Connecting systems which differ in any of the
properties discussed above will require the delineation of the differences by
boundaries and the provision of interception where activities cross these
boundaries.

To enable interoperation of clients and servers on opposite sides of a boundary,
it is necessary to bridge the differences in some way so that bindings can be
set up, and messages and information flows can be exchanged meaningfully.
One promising approach is to use the information used by the trading process
to support the automated generation of some sort of appropriate adapters, or
“interceptors”.

6.1 Distributed systems as domains

A physical ensemble of technology can represent a domain.

6.2 Authority boundaries

Note: Text needed

6.3 Management boundaries

Note: Text needed

6.4 Remuneration boundaries

Note: Text needed

6.5 Semantics boundaries

Differences at the semantic level need to be considered in terms of similarity
of purpose.

Two services intended to do completely different things (e.g. a weapons control
service and a holiday booking service) are not candidates for federation. This
is not a criticism of any methodology used in solving federation problems – in
some sense the requirement for federation is simply “wrong”.

Dealing with Different Classes of Boundary ANSA Phase III

30 Boundaries and domains APM.1139.00.03

Two services with overlapping goals are suitable for federation. If the goals are
not identical, but overlap, the common subset of the goal needs to be isolated.
Either service may address goals outside this common subset. The common
service that is to be presented in the joint environment can either address this
common subset or, potentially, an extension of it (e.g. the extension
represented by either of the component services). Services that do not meet an
extended service would need enhancement.

Note: (Mike) extensions complicates unnecessarily

For example two time services may provide different resolutions (1 second for
one and 1 minute for another) and may vary in whether they include the date.
Federation strategies include the following.

• Common semantic subset

A common subset of these two services is a time service that provides only
the time, not the date, to a 1 minute resolution. This could be chosen to be
the federated service provided in the joint environment.

• Extended common semantic subset

As an alternative to the above the federated service could be defined to be
the common service extended with the date. In this case the federation
strategy would require the extension of the date service that did not
provide the date.

Thus the semantics of the services to be federated and the resulting federated
service may all be different but are related.

6.5.1 Common semantic subset

A federated service is created with semantics that are common to both services
being federated. This service is implicitly realized by both services being
federated, however clients must treat the new service as a separate from those
federated (since it is likely to have reduced functionality).

6.5.2 Extended common semantic subset

A federated service is created incorporating semantics that are common to
both services being federated, but that also incorporate additional features.
This services is realized by mechanism implementing the additional features
and utilising the service the common semantic subset strategy yields. The
mechanism may be provided either at a central point, co-incident with the old
services, or distributed elsewhere. Again clients must treat the new service as
separate from those federated.

6.5.3 United semantics superset

A federated service is created as described in the extended common semantic
subset in which the extensions incorporate the semantics that each individual
services has outside their common subset. This is feasible only when the
extensions necessary to each service are not contradictory. When this is
possible the federated service can be provided to clients transparently (i.e. as a
substitute for the services federated).

ANSA Phase III Dealing with Different Classes of Boundary

APM.1139.00.03 Boundaries and domains 31

6.6 Service access boundaries

Two arbitrary services can differ on two different levels: a semantic (what)
level and a mechanism (how) level. The semantic level deals (above) with
difference in what the goal or mission of the service is or what it is supposed to
achieve, either in general or in detail. The mechanism level deals with how it
has been decided to fulfil that goal/mission/objective.

6.6.1 Mechanism Level Differences

Differences at the mechanism level fall into two different categories: access
differences and configuration differences.

• Access differences: are differences in the means through which access is
established, in the communication paradigm used, and in the
representation of information involved. (Much, but not all, of this is
standardized in an ODP/ANSA, platform based, environment. However
differences in the transparencies used and in other details of the
engineering of the platform/infrastructure will still need to be considered.)

• Configuration differences: are differences in the organization of
interacting components that provide the service and in their internal
accesses.

When a federated service is to be provided from existing services there are two
strategies that may be used:

1. Service interface composition:

construct the federated service exclusively out of accesses to the services
being federated (as though each were encapsulated);

2. Service mechanism composition:

construct the federated service by inter-mixing the components of the
services to be federated into a new configuration

Strategy 1 requires only access differences to be resolved (e.g. by insertion of
mechanism in the access path). Strategy 2 requires configuration differences
to be addressed too and, if there was no similarity in their design may not be
possible.

Note: Consideration of the available strategies, their development, and their automation
using tools needs to be considered in the following.

6.6.1.1 Service interface composition

This is illustrated in Figure 6.1;
Note: more text required

6.6.1.2 Service mechanism composition

 This is illustrated in Figure 6.2.

6.6.1.3 Abstract syntax supporting objects

An important class of access differences is the use of different representations
of things that carry the same information in different contexts, or
representation domains. Abstract syntax supporting objects enable the
information carried by a representation in one context to be correctly
represented in another.

Dealing with Different Classes of Boundary ANSA Phase III

32 Boundaries and domains APM.1139.00.03

Different representation domains occur both within systems, where the use of
different storage data structures or media (e.g. in memory, as a string or on a
database) may befit different representations, and among systems, where a
representation may be required for communications purposes that may be
different to a system’s local representation.

An abstract syntax supporting object can encapsulate a representation domain
in such a way that objects that require representation in that domain do not
then require different mechanisms to deal with different representation
domains.

Objects that export or import representations (e.g. of themselves) do so with
reference to a common abstract syntax notation that consists of:

• a set of base types (e.g. in the limit just the BIT type, but larger sets will
confer greater efficiency) that have representations, and the same
semantics, in all the representation domains of interest; and,

• a set of type structuring constructs (e.g. CHOICE, SEQUENCE, SET).

Service A Service B

Federated Service

Figure 6.1: Encapsulated Service Federation

Service A Components Service B Components

Federated Service

Figure 6.2: Amalgamated Service Federation

ANSA Phase III Dealing with Different Classes of Boundary

APM.1139.00.03 Boundaries and domains 33

For each representation domain an abstract syntax supporting object is
created with mechanisms that provides a means to export and recognize each
of the chosen base types and each of the chosen type constructs.

Each object that may be represented has an associated abstract syntax that
defines its representation, not in terms of a specific representation domain,
but in terms of the abstract syntax notation supported. This is realized by
mechanisms that represent its value; and construct its value through
interaction with an abstract syntax supporting object.1

Different representations of an object are then possible by interacting with
different abstract syntax supporting objects.

Translating one representation of an object to another is achieved by using the
an object’s construct mechanism in one representation domain and represent
mechanism in another.

A formal specification of an object’s abstract syntax enables representation
translating interceptors to be constructed mechanically by compiling the
object’s construct and represent mechanisms from it.

Communicating an object between a sender and receiver involves finding a(ny)
representation domain that the sender and receiver have in common (the
transfer syntax), the sender representing the object to the common
representation domain, transferring that representation to the receiver, and
the receiver finally constructing the object from that representation domain.

6.6.2 Quality of Service

In a federated system there may be few end-to-end quality of service
guarantees, because it is difficult to guarantee something which you don’t
control. To the extent that there are any, they may work something like this:
Services in domain A have particular QoS guarantees within domain A. There
is a translator or interceptor or gateway between domain A and domain B.
This gateway looks like a client in domain A and like a server in domain B. It
provides QoS guarantees to clients in domain B for services in domain A,
based on its internal overhead and the system in domains A and B and the
guarantees it is getting from the servers in domain A. Even within a domain,
there may be a guarantee on response time as measured at the server, but no
guarantee on response time as seen by a client, since the server may have no
control over network congestion. Thus, one may want to think of end-to-end
QoS guarantees as something which the client (or a third party QoS
computation service) pieces together from guarantees of individual
components.

6.7 Infrastructure boundaries

Note: Text needed

1. This interaction may be indirect since an object may be composed of other objects
each of whose represent and construct mechanisms may be utilized.

Interception Infrastructure ANSA Phase III

34 Boundaries and domains APM.1139.00.03

7 Interception Infrastructure

Both the creation of enhancements to address semantic level differences and
the creation of mechanism in the access path to address mechanism level
differences need to be positioned architecturally. Architectural positions
wrapping, or encapsulating, objects providing access to services and positions
intercepting service access are considered. Tools dealing with mechanism level
configuration differences are include those enabling dynamic re-configuration.

The information required in the federation process, at any phase during
development and operational use, for the automatic generation of such
mechanism needs to be investigated. Such information applicable to server
access is currently made available in a trader.

7.1 Wrappers

Note: Text needed

7.2 Interceptors

Note: Text needed

7.3 Dynamic configuration

Note: Text needed

7.4 Trading support

Note: Text needed

7.5 Summary

Federation and separation should be addressed both at a semantic level, at
which what something is must be addressed, and at a mechanism level, at
which how something is configured must be addressed.

Semantic level tools to support semantic level federation include both those
that subset and those that extend existing functionality.

Mechanism level tools to support mechanism level federation include both
those that address access differences and those that address configuration
differences.

The tools in the scope of this work are those that support federation or
separation during the development or operational use of distributed computer
based services.

ANSA Phase III APPENDIX

APM.1139.00.03 Boundaries and domains 35

8 APPENDIX

8.1 Infrastructures and application boundaries

It is interesting to compare the sub-classes in the infrastructure and
application with the classes of boundaries mentioned in [APM 1005].

8.2 ----------------------- garbage line --------------------------------------

CGT: Thus, one may have to deal with different authorities to get
authorization to use different services, and one may have multiple domains of
identity and authentication, requiring one to maintain multiple IDs and
passwords (or whatever) and present the appropriate ones for each service
invoked (ideally with transparency to the end user – but without
compromising security by writing passwords into files or over-using “trusted
hosts” approaches). The different philosophies may also require one to use
different approaches to getting authorization and establishing authentication.
That is, not only may there be different mechanisms (in the realm of
“system”), but the different mechanisms may be based on different
philosophies. For example, in some domains one may authenticate oneself
once a day and get a “key” which can be presented with each invocation, while
in other domains one may need to authenticate oneself with each invocation.
Or in some domains one may negotiate authorization which lasts indefinitely,
while in other domains one may have to go through some kind of software
process daily to renew authorization.

Note: dependability - where do different transaction models fit, i.e. what happens if an
invocation crosses transaction model boundaries.

Table 8.1: Information for co-operation and boundaries

Information Boundary type (APM 1005)

Semantics Properties
Type (signature) Type system
QoS Security, performance, dependability
Transparency
mechanisms

Engineering

Communications protocols Interconnection

APPENDIX ANSA Phase III

36 Boundaries and domains APM.1139.00.03

APM.1139.00.03 Boundaries and domains 37

References

[APM1001.1 93]

Rees, R.T.O.R., The ANSA Computational Model, APM Ltd, Cambridge, UK,
1993.

[APM1003.1 93]

Van der Linden R J, The ANSA Naming Model, APM Ltd, Cambridge, UK,
1993.

[APM1005.1 93]

Deschrevel J P, Herbert A J, The ANSA Model of Federation and Trading,
APM Ltd, Cambridge, UK, 1993.

[APM 1014.1 93]

DPL Programmers’ Manual, APM Ltd, Cambridge, UK, 1993.

[APM 1015.1 93]

DPL Reference Manual, APM Ltd, Cambridge, UK, 1993.

[APM1017.3 93]

Iggulden D, Rees R T O, Van der Linden, R J, Architecture and Frameworks,
APM Ltd, Cambridge, UK, 1993.

[APM1042.1 93]

Hoffner Y, Beasley M D R, Type Conformance and IDLs, APM Ltd, Cambridge,
UK, 1993.

[Birrell?]

?

[ISO ODP]

[ISO ODP-1 93], [ISO ODP-2 94], [ISO ODP-3 94] and [ISO ODP-4 93].

[ISO ODP-1 93]

ISO/IEC JTC1/SC21/WG7 and ITU-T SG VII Q.ODP, Information Technology
– Open Systems Interconnection, Data Management and Open Distributed
Processing – Basic Reference Model of Open Distributed Processing – Part 1:
Overview and Guide to the use of the Reference Model, ISO/IEC CD 10746-1
and Draft ITU-T Rec. X.901, Nov 1993

[ISO ODP-2 94]

ISO/IEC JTC1/SC21/WG7 and ITU-T SG VII Q.ODP, Information Technology
– Open Systems Interconnection, Data Management and Open Distributed
Processing – Basic Reference Model of Open Distributed Processing – Part 2:
Descriptive model, ISO/IEC DIS 10746-2 and Draft ITU-T X.902, Feb 1994

[ISO ODP-3 94]

ISO/IEC JTC1/SC21/WG7 and ITU-T SG VII Q.ODP, Information Technology
– Open Systems Interconnection, Data Management and Open Distributed

References ANSA Phase III

38 Boundaries and domains APM.1139.00.03

Processing – Basic Reference Model of Open Distributed Processing – Part 3:
Prescriptive model, ISO/IEC DIS 10746-3 and Draft ITU-T X.903, Feb 1994

[ISO ODP-4 93]

ISO/IEC JTC1/SC21/WG7 and ITU-T SG VII Q.ODP, Information Technology
– Open Systems Interconnection, Data Management and Open Distributed
Processing – Basic Reference Model of Open Distributed Processing – Part 4:
Architectural semantics, ISO/IEC WD 10746-4 and Draft ITU-T X.904, 1993

[ISO Management 91]

ISO/IEC JTC1/SC21/WG4 and ITU-T SG VII, Information Technology – Open
Systems Interconnection – Common Management Information Service
definition, ISO/IEC 9595 and ITU-T Rec. X.710, 1991

and,

ISO/IEC JTC1/SC21/WG4 and ITU-T SG VII, Information Technology – Open
Systems Interconnection – Common Management Information Protocol
specification, ISO/IEC 9596 and ITU-T Rec. X.711, 1990

[ISO RDA 90]

ISO/IEC JTC1/SC21/WG3, Information Technology - Database languages -
Remote Database Access - Part 1: Generic model, service and protocol, ISO/IEC
9579-1, 1990

and,

SO/IEC JTC1/SC21/WG3, Information Technology - Database languages -
Remote Database Access - Part 2: SQL Specialization, ISO/IEC 9579-2, 1990

[ITU-T MHS 88]

ITU-T SG VII Q.18 and ISO/IEC JTC1/SC18/WG4, Message Handling Systems,
ITU-T X.400 series Recommendations and ISO/IEC 10021 , 1988

[ITU-T Directory 88]

ITU-T SG VII Q.20 and ISO/IEC JTC1/SC21/WG4, Directory Systems, ITU-T
X.500 series Recommendations and ISO/IEC 9545, 1988

