
Copyright 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1407.00.01 Draft 20th February 1995

Request for Comments (confidential to ANSA consortium for 2 years)

COM - overview and analysis

Andrew Watson

Abstract

This slide set provides a short technical briefing on the salient features of Microsoft’s COM, and
compares it with the OMG’s OMA & CORBA specifications.

It is intended for a technically-aware audience with existing knowledge of CORBA.

The slides are in colour.

1
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

COM
Overview and analysis

Andrew Watson
APM

ajw@ansa.co.uk

2
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

What does COM stand for?
• Component Object Model

- Object Model and binary interface specification that underlies OLE2
Compound Document Architecture

• Common Object Model
- Something subtly different, apparently created in collaboration with DEC
- Aiming to be more of a System Object Model ?

3
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Where does it come from?
• Microsoft

- What though they speak of “ ... the Open Process fostering broad industry
participation ...”

• “OLE forms the basis for Microsoft’s strategy to evolve the Windows
family into object-based operating systems”

• Current manifestation is as the OLE2 DLLs
- OLE2 also currently available on Macintosh
- “In the future software components based on OLE will also be able to

interoperate across all major versions of Unix, VMS, and even MVS ...”

• Perceived to be in competition with:
- SOM/DSOM (underlies OpenDoc)
- CORBA/OMA (pace efforts to formalise COM/CORBA interworking)

4
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

What’s a Compound Document Architecture?
• In the past desktop applications have stood alone

- Inter-application communication restricted to file import/export, cut-and-
paste

• Suite (“Works”) applications have component document types that
can be embedded in each other
- e.g. place a spreadsheet or drawing frame in text column

• A CDA is effectively a suite application which permits adding new
component document types
- Inter-component communication protocol must be published
- “Messages” to which particular classes of component respond must be

standardised

5
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Technical highlights
• Essentially a “classical” object model

- Synchronous invocation (operation name + parameters) directed to single
object

• One major variation - objects may have multiple “interfaces”

• Storage management via a reference counting scheme

• No run-time inheritance structures of any kind
- “Object-based” in Wegner’s taxonomy

• Object creation via factory interfaces

• Binary specification

• Distribution transparency

6
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Interfaces
• Interface is collection of operations

- Named by UUID (“globally unique” 128 bit value)

• Interfaces conform to a binary specification
- There is also an IDL, derived from OSF IDL

Object

Interfaces

Client Pointer

7
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Why interfaces?
• COM’s designers concerned about version handling

- “Does my Windows 3.x application work with Windows 95?”

• Interfaces allow new applications to present the old application’s
interface as well

• By strict convention, every interface includes an operation
QueryInterface

- When invoked with UUID of interface, returns ifref if this object supports it

• Also by strict convention, every object carries a standard interface
IUnknown
- Includes QueryInterface

• Ambition is to handle “find-and-bind” in a few dozen cycles

8
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Inside interfaces
• At the binary level, an interface is a pointer to an array of function

pointers
- Array termed vtbl

• Local case:

IfRef Ptr to vtbl

Object
State
Data

Ptr to vtbl

Object
State
Data

Method
Code

Ptr to fn 1

Ptr to fn 2

Ptr to fn 5

Ptr to fn 3

Ptr to fn 4

vtbl

Ptr to vtblIfRef

Object
State
Data

9
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Inside Interfaces (cont.)
• In remote case, method code is set of proxies that marshal

parameters and transmits them
- Proxy “object state” is actually addressing information for remote object
- COM provides DLL of marshalling methods for standard interfaces
- Users can compile NDR stubs for their own interfaces ...
- ... or use completely home-brewed marshalling if they wish

• Receiving stub marshals and calls target object
- “Remote” object could be in another process (use shared memory)
- ... or another machine (MS propose to use DCE RPC)

• Truly distributed COM still lies in the future
- Currently only using ‘LRPC’ transmission

10
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Interface tables
• Interface function table is always contiguous

• Operations are identified at run time by offset in vtbl

• Hence no multiple supertypes:

x(1)
y(2)

x(1)

x(1)
z(2)

x(1)
y(?)
z(?)

11
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Interfaces vs subtyping
• One COM interface can be labelled with multiple UUIDs

- QueryInterface can return same interface in response to many UUIDs

• Clients can treat interface as if it has fewer operations
- i.e. use interface as if it were a supertype

• But operations looked up by offset, not by name
- Makes ST-style polymorphism very impractical

• Intention: all attempts to “cast to supertype” done by passing UUID
for required interface (type) to QueryInterface

12
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Sidelight on multiple interfaces
• Every interface shares code with other interfaces of the same “type”

- State is localised by being kept with the ptr to the vtbl

• Why not allow one object to have multiple vtbl pointers for the same
set of method code?
- i.e. multiple instances of the same interface, with different state

• Only prevented by design of QueryInterface

• A useful technique that allows multiple clients to be distinguished by
what interface they invoke
- Example: abstraction of Unix file and file handles

13
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Invocation model
• Synchronous, blocking call [AFAIK]

• Relies on availability of threads in servers and clients
- Single-threaded client may block for extended periods during remote

invocations
- Single-threaded server could deadlock if it indirectly calls one of its own

methods

• COM spec includes API for generating server threads

14
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Storage management
• Done via reference counting

• Every interface carries the following operations:

AddRef
Release

• In general, AddRef is called every time ifref is copied, Release when
an ifref is destroyed

• Some recommended short-cuts
Time

Original
Copy

Original
Copy

Staggered

Nested

15
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Persistent storage
• COM defines an OO abstraction of structured, transactional storage

- Could be mapped onto a variety of media

• Objects use instances of this interface to read/write byte sequences
- Client can ask object to save its state to provided storage interface

• A related set of conventions for uniform data transfer
- Standard “clipboard format” for information interchange

16
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Re-use mechanisms
• In general, two sorts of re-use

- Re-use of common components
- Modifying code templates to produce new sorts of components

• COM says nothing about compile time re-use via code modification

• Spec mentions two enhancements to component re-use

• Containment - hide re-used object inside container object
- Leads to many almost-empty methods just to call contained object

• Aggregation - container passes off contained object methods as its
own
- COM has support for delegating admin. functions (QueryInterface , ref.

counting) back to container

17
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Miscellany
• Multiple results via out and in/out parameters

- Just like CORBA

• Monikers
- Objects that provide location services
- Will track down and re-activate object to which they refer if it has moved

or been passivated

• IAdviseSink interface
- Implements asynchronous notification service

• Exceptions
- Handled via 32-bit result code and conventions

18
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Analysis
• No security mechanisms

- Is an object allowed to refuse to hand out one of it’s interfaces?

• Why no multiple interfaces of same “type”?

• Reference counting better than nothing
- But create/delete put load on object
- Weighted reference counts would have been better

• Objects do own management functions
- Doesn’t rule out repositories, though

• Very little tool support

19
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

Some Conclusions
• It’s an object model and ORB, with some Object Services and

Common Facilities functions

• As long as it’s only inside OLE, no-one will use it
- How many of us write compound document parts?
- Lack of programmer support (leverage concept)
- Use will be indirect, via OLE automation

• It’s designed for a homogeneous world
- COM as “assembler” vs CORBA as “HLL” analogy

20
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

COM vs OMA/CORBA
• COM is a single-vendor binary specification

- Advantages: Binary portability
Total compatibility

- Disadvantages: Single-platform (albeit the most pervasive)
Single-vendor
Difficult to code for (leverage)
Not distributed yet (call us back in October)

• OMA/CORBA is open, source-level standard
- Advantages: Source-code portability across platforms

Plenty of tool support for small-volume app. authors
Part of an architecture with wider set of services
No single-vendor lock-in

- Disadvantages: No binary portability
Specification ambiguities make portability less easy

21
20th February 1995© Copyright 1995 Architecture Projects Management LimitedAPM.1407.01

References
Microsoft Object Technology Strategy; Component Software
Strategic White Paper
098-55163, June 1994

Introduction to Common Object Model Specification
OMG Document 94-10-9

