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Abstract

This slide set provides a short technical briefing on the salient features of Microsoft’s COM, and
compares it with the OMG’s OMA & CORBA specifications.

It is intended for a technically-aware audience with existing knowledge of CORBA.

The slides are in colour.
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What does COM stand for?
• Component Object Model

- Object Model and binary interface specification that underlies OLE2
Compound Document Architecture

• Common Object Model
- Something subtly different, apparently created in collaboration with DEC
- Aiming to be more of a System Object Model ?
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Where does it come from?
• Microsoft

- What though they speak of “ ... the Open Process fostering broad industry
participation ...”

• “OLE forms the basis for Microsoft’s strategy to evolve the Windows
family into object-based operating systems”

• Current manifestation is as the OLE2 DLLs
- OLE2 also currently available on Macintosh
- “In the future software components based on OLE will also be able to

interoperate across all major versions of Unix, VMS, and even MVS ...”

• Perceived to be in competition with:
- SOM/DSOM (underlies OpenDoc)
- CORBA/OMA ( pace efforts to formalise COM/CORBA interworking)
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What’s a Compound Document Architecture?
• In the past desktop applications have stood alone

- Inter-application communication restricted to file import/export, cut-and-
paste

• Suite (“Works”) applications have component document types that
can be embedded in each other
- e.g. place a spreadsheet or drawing frame in text column

• A CDA is effectively a suite application which permits adding new
component document types
- Inter-component communication protocol must be published
- “Messages” to which particular classes of component respond must be

standardised
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Technical highlights
• Essentially a “classical” object model

- Synchronous invocation (operation name + parameters) directed to single
object

• One major variation - objects may have multiple “interfaces”

• Storage management via a reference counting scheme

• No run-time inheritance structures of any kind
- “Object-based” in Wegner’s taxonomy

• Object creation via factory interfaces

• Binary specification

• Distribution transparency
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Interfaces
• Interface is collection of operations

- Named by UUID (“globally unique” 128 bit value)

• Interfaces conform to a binary specification
- There is also an IDL, derived from OSF IDL

Object

Interfaces

Client Pointer
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Why interfaces?
• COM’s designers concerned about version handling

- “Does my Windows 3.x application work with Windows 95?”

• Interfaces allow new applications to present the old application’s
interface as well

• By strict convention, every interface includes an operation
QueryInterface

- When invoked with UUID of interface, returns ifref if this object supports it

• Also by strict convention, every object carries a standard interface
IUnknown
- Includes QueryInterface

• Ambition is to handle “find-and-bind” in a few dozen cycles
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Inside interfaces
• At the binary level, an interface is a pointer to an array of function

pointers
- Array termed vtbl

• Local case:

IfRef Ptr to vtbl

Object
State
Data

Ptr to vtbl

Object
State
Data

Method
Code

Ptr to fn 1

Ptr to fn 2

Ptr to fn 5

Ptr to fn 3

Ptr to fn 4

vtbl

Ptr to vtblIfRef

Object
State
Data
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Inside Interfaces (cont.)
• In remote case, method code is set of proxies that marshal

parameters and transmits them
- Proxy “object state” is actually addressing information for remote object
- COM provides DLL of marshalling methods for standard interfaces
- Users can compile NDR stubs for their own interfaces ...
- ... or use completely home-brewed marshalling if they wish

• Receiving stub marshals and calls target object
- “Remote” object could be in another process (use shared memory)
- ... or another machine (MS propose to use DCE RPC)

• Truly distributed COM still lies in the future
- Currently only using ‘LRPC’ transmission
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Interface tables
• Interface function table is always contiguous

• Operations are identified at run time by offset in vtbl

• Hence no multiple supertypes:

x(1)
y(2)

x(1)

x(1)
z(2)

x(1)
y(?)
z(?)
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Interfaces vs subtyping
• One COM interface can be labelled with multiple UUIDs

- QueryInterface  can return same interface in response to many UUIDs

• Clients can treat interface as if it has fewer operations
- i.e. use interface as if it were a supertype

• But operations looked up by offset, not by name
- Makes ST-style polymorphism very impractical

• Intention: all attempts to “cast to supertype” done by passing UUID
for required interface (type) to QueryInterface
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Sidelight on multiple interfaces
• Every interface shares code with other interfaces of the same “type”

- State is localised by being kept with the ptr to the vtbl

• Why not allow one object to have multiple vtbl pointers for the same
set of method code?
- i.e. multiple instances of the same interface, with different state

• Only prevented by design of QueryInterface

• A useful technique that allows multiple clients to be distinguished by
what interface they invoke
- Example: abstraction of Unix file and file handles
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Invocation model
• Synchronous, blocking call [AFAIK]

• Relies on availability of threads in servers and clients
- Single-threaded client may block for extended periods during remote

invocations
- Single-threaded server could deadlock if it indirectly calls one of its own

methods

• COM spec includes API for generating server threads
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Storage management
• Done via reference counting

• Every interface carries the following operations:

AddRef
Release

• In general, AddRef  is called every time ifref is copied, Release  when
an ifref is destroyed

• Some recommended short-cuts
Time

Original
Copy

Original
Copy

Staggered

Nested
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Persistent storage
• COM defines an OO abstraction of structured, transactional storage

- Could be mapped onto a variety of media

• Objects use instances of this interface to read/write byte sequences
- Client can ask object to save its state to provided storage interface

• A related set of conventions for uniform data transfer
- Standard “clipboard format” for information interchange
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Re-use mechanisms
• In general, two sorts of re-use

- Re-use of common components
- Modifying code templates to produce new sorts of components

• COM says nothing about compile time re-use via code modification

• Spec mentions two enhancements to component re-use

• Containment - hide re-used object inside container object
- Leads to many almost-empty methods just to call contained object

• Aggregation - container passes off contained object methods as its
own
- COM has support for delegating admin. functions ( QueryInterface , ref.

counting) back to container
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Miscellany
• Multiple results via out and in/out parameters

- Just like CORBA

• Monikers
- Objects that provide location services
- Will track down and re-activate object to which they refer if it has moved

or been passivated

• IAdviseSink interface
- Implements asynchronous notification service

• Exceptions
- Handled via 32-bit result code and conventions
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Analysis
• No security mechanisms

- Is an object allowed to refuse to hand out one of it’s interfaces?

• Why no multiple interfaces of same “type”?

• Reference counting better than nothing
- But create/delete put load on object
- Weighted reference counts would have been better

• Objects do own management functions
- Doesn’t rule out repositories, though

• Very little tool support
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Some Conclusions
• It’s an object model and ORB, with some Object Services and

Common Facilities functions

• As long as it’s only inside OLE, no-one will use it
- How many of us write compound document parts?
- Lack of programmer support (leverage concept)
- Use will be indirect, via OLE automation

• It’s designed for a homogeneous world
- COM as “assembler” vs CORBA as “HLL” analogy
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COM vs OMA/CORBA
• COM is a single-vendor binary specification

- Advantages: Binary portability
Total compatibility

- Disadvantages: Single-platform (albeit the most pervasive)
Single-vendor
Difficult to code for (leverage)
Not distributed yet (call us back in October)

• OMA/CORBA is open, source-level standard
- Advantages: Source-code portability across platforms

Plenty of tool support for small-volume app. authors
Part of an architecture with wider set of services
No single-vendor lock-in

- Disadvantages: No binary portability
Specification ambiguities make portability less easy
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