
Copyright  1996 Architecture Projects Management Limited

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

Training

Distribution:

Supersedes :

Superseded by :

APM.1746.02 Approved 9th July 1996

Briefing Note

ANSAwise - Remote Procedure Call in Distributed
Systems

Chris Mayers

Abstract

Distributed systems usually use remote procedure call (RPC) as a fundamental building block for
implementing remote operations.

However, these systems have detailed but important differences in the way RPC operates, and
applications programmers need to be aware of these differences.

This module of the ANSAwise training programme discusses simple and advanced use of RPC.
It covers RPC semantics, idempotence, failure handling policies, and asynchronous RPC. It
discusses the differences between RPC operation in CORBA and DCE.

[This variant of APM.1344 places more stress on CORBA and DCE RPC, and removes discussion
of ANSAware RPC. Adding a discussion of Sun’s ONC RPC might also be worthwhile, as this is
still in moderate use. This variant also describes RPC from its fundamentals, and is intended to
replace APM.1344]

RPC 1
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Remote Procedure Call in Distributed Systems

RPC 2
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

In this session

• Explain the function of remote procedure call (RPC) in distributed
systems

• Explain the importance of understanding RPC execution semantics

• Examine more sophisticated uses of RPC

• Explore the differences between RPC in various distributed
environments

RPC 3
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Remote Procedure Call (RPC)

• Local procedure call can be transformed into a remote procedure call

• The caller is the client, the callee is the server

Network

Callee

Caller

Stub

Caller

Stub

Callee

RPC 4
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Caller Waits for Callee

• Remote procedure calls are normally synchronous ...

• ... just as in a local procedure call

• The difference is how long you may have to wait

blocked

RPC 5
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Stubs in RPC

• The stubs in RPC are responsible for packing and unpacking the call
parameters, and the call results

- this is called marshalling (A,C) / unmarshalling (B,D):

• Stubs must allow for the fact that client and server may be machines
of different types

A B

CD

RPC 6
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Differing data representations

• For example, integers may be represented differently (byte-ordering)

• ... and there are also different representations for floating-point and
other types

CPU Ordering

Intel 80x86 b0 b1 b2 b3

Digital PDP-11 b2 b3 b0 b1

Digital VAX-11 b3 b2 b1 b0

Motorola M68K b3 b2 b1 b0

RPC 7
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

RPC and transparency

• Different data representations must be allowed for

• There are two basic possibilities

- ...a single canonical ‘on-the-wire’ representation

- ...‘receiver-makes-right’

• Stubs can handle the different data representations transparently

• It is worth considering whether RPC could be transparent...

- ...so that all remote procedure calls looked like local procedure calls

RPC 8
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Remote Procedure Call Isn’t Local Procedure Call

• In an ordinary local procedure call you need not be concerned about
independent failure of client and server

- ... in a remote procedure call you must be able to handle this

• Ultimately, it is impossible to hide failures

- ... therefore, remote procedure call cannot be made transparent

• There is no way of avoiding this issue. The conclusion is;

Make local procedure call look like remote procedure call
- not the other way round

RPC 9
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

RPC execution semantics

• This is reflected in the RPC semantics, which may be

- at-least-once

- at-most-once: the realistic case

- exactly-once: the ideal case

• An RPC product may offer a choice of the above

- different RPC products offer different choices with different defaults

- this affects portability between RPC products

RPC 10
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

At-least-once RPC semantics

• At-least-once semantics are appropriate for operations that have the
same effect when invoked more than once
- these are called idempotent

• For example
- “add 50 units to stock level” is not idempotent...

- ... “set stock level to 100 units” is idempotent

• DCE allows you to specify an operation as idempotent
- it will be executed more efficiently

- ... but DCE does not support at-least-once semantics at all!

• At-least-once has a straightforward implementation
- ‘retransmit until acknowledged’

RPC 11
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

At-most-once RPC semantics

• At-most-once RPC semantics are appropriate for non-idempotent
operations

• Clients must allow for operation not having occurred

• Sometimes described as best-effort

• Trivial implementation (‘fire and forget’)

- in practice, retransmit until acknowledged, with duplicate suppression

RPC 12
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Exactly-once RPC semantics

• At-least-once + At-most-once = Exactly-once

• Straightforward implementation under normal conditions...

- ‘wait for acknowledgment’

- ... in practice, periodic retransmission and duplicate suppression

• ... much harder under failure conditions

- requires server and message replication, and special group RPC
execution and recovery protocols to reduce failure probability

- still an active area of research; some commercial solutions are available

RPC 13
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

RPC semantics and failures

• There are two cases to consider

- successful case

- failure (exception) case

• In most systems the default is

- if successful, exactly-once

- if failure (exception), at-most-once

RPC 14
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Handling RPC failures - policy and transparency

• This is the application’s responsibility...

- ... which it may choose to delegate to the infrastructure in the form of
standard policies

- ... for example, to retry a certain number of times for certain failures

• Failures can be made almost transparent to the application
programmer

- for example, when contacting a service, ANSAware will automatically
invoke a relocator if the service cannot be found...

- ... but this default behaviour can always be overridden

• Failures can never be eliminated

RPC 15
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

The nested timeout problem

• Suppose there is a chain of invocations...

• ... A client, B client and server, C server

• The A->B timeout must be no less than the B->C timeout

- or A may incorrectly believe that B has failed

• B must also allow time to retry C, if that is its chosen policy

• This may force timeouts to be unduly large, so failure detection slow

C

B
A

RPC 16
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Transforming a non-idempotent operation

• Consider the non-idempotent operation...

- “Add 50 units to stock level”

• ...transform this into the pair of idempotent operations

- “Read old stock level”

- “Set stock level to old stock level plus 50 units”

• Why is such a transformation almost never practical?

-

-

-

-

RPC 17
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Invocation versus Initiate and Redeem

• There are two basic ways of using an operation

- invocation (synchronous)

- initiate and redeem (asynchronous)

RPC 18
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Invoking an operation

• Invoking an operation is synchronous ...

• ...the invoker blocks until the operation is complete, and the result is
available

• This mimics the behaviour of an ordinary local procedure call

blocked

RPC 19
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Initiating an operation

• Initiating an operation is asynchronous...

• ...the initiator continues concurrently

•

RPC 20
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Redeeming an initiate operation

• The initiator is given a voucher

• When the initiator is ready for the result of the operation, it redeems it

• If the operation is not yet complete, the redeem will block

- just as for an invocation

• Initiate/Redeem is also known as follow-up RPC (FRPC) or deferred
synchronous RPC

•

RPC 21
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Using follow-up RPC

• Use follow-up RPC only if the client can do useful work in the
meanwhile

- local I/O and computation

- invoking other remote operations in parallel

• Treat follow-up RPC as an engineering optimization

RPC 22
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Simple use of follow-up RPC

• Many operations are naturally implemented as a series of read
operations followed by a series of write operations

- sometimes, these write operations are independent of each other

• For example a customer change-of-address might involve updates to

- customer details

- account manager details

• These updates could be executed as separate follow-up RPCs

- in parallel with each other

RPC 23
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Difficulties with follow-up RPC

• Error handling is bound to be more complex

- suppose you have initiated 3 operations, and the first of them fails?

- you also need to be careful about race conditions and timeouts

• Some implementations do not preserve the order of follow-up RPC
correctly

RPC 24
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

One-way operations

• One-way operations are like an initiate with no redeem...

• ...obviously, no results can be returned

• Semantics may be restricted
- for example, at-most-once only

• Some infrastructure failures may still be detected on the client side
- for example, a local transmission failure
- the client application must still cope with these errors

RPC 25
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Specifying one-way operations

• One-way operations are specified in the interface definition

• In CORBA this is specified using the oneway operation attribute

- the semantics are at-most-once

• In DCE this is specified using the maybe IDL attribute

- the operation is implicitly idempotent

- the semantics are no-guarantee (0, 1 or more times)

RPC 26
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

One-way operations as building blocks

• One-way operations are best regarded as a communications
mechanism for building application-specific interaction types

- for example, a 3-phase data commit handshake, or bulk data transfer

• One-way operations give an application ‘raw’ one-way
communications

- ... with access and location transparency

- ... without the handshake overhead required by stricter RPC semantics

• One-way operations are for the systems programmer

- not the applications developer

• Streams fulfil the real need

RPC 27
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Follow-up RPC versus one-way operations

• Both offer potentially faster performance

• Both can be described as ‘asynchronous’

- but are quite different

•
•

RPC 28
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Follow-up RPC compared with one-way operations

• Follow-up RPC

- always gets a response (when you redeem)

- can have results

- can be used on any operation; it is an implementation choice for the client

• One-way operation

- never gets a response (although failure is still possible)

- cannot have results

- are specified for the operation; affects all clients

RPC 29
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

RPC in the communications protocol stack

• RPC is the lowest level building block of a distributed system

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Link

1 Physical

Upper Layers

Lower Layers

(Distribution)

(Networking)

RPC

Transparency

RPC 30
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

RPC and transport protocols

• RPC can be implemented over
- connection-oriented transport protocols (e.g TCP)

- connectionless transport protocols (e.g UDP)

• RPC is a more natural fit to connectionless protocols
- request/response maps onto a pair of outgoing/incoming datagrams

• But connectionless protocols often
- are “unreliable” (delivery not guaranteed)

- have a maximum size (determined by the underlying network)

• The RPC layer must then provide its own delivery guarantees, and
handle its own fragmentation
- even so, performance may well be better over a connectionless protocol

RPC 31
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Multiple transport protocols

• Systems can support multiple transport protocols simultaneously ...

• ... including a lightweight local RPC protocol (here, IPC)

Network hardware

Network driver

IP (Internet Protocol)

TCP UDP

ANSAware Service

ANSAware Nucleus

7 Application

6 Presentation

ANSAware RPC (REX, GEX) 5 Session

4 Transport

3 Network

2 Link

1 PhysicalHardware

Comms
Software

ANSAware

IPC

RPC 32
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Lightweight local RPC

• Calls between co-located objects (on the same machine) can be
optimized

• ... avoiding network traffic

- ... avoiding data copying

- ... avoiding marshalling overheads

RPC 33
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Trading and multiple transport protocols

• A service can state which transport protocols apply to an offer...

• ... allowing a common protocol to be selected (here, TCP)

Server

Trader

Client

(1) <IPC, TCP>

(2) < UDP, TCP>

(3) <TCP>

(4) TCP

RPC 34
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Multiple RPC protocols - interoperability

• Suppose you have both CORBA and DCE...

- ...how can a CORBA client access a DCE server and vice-versa?

• It would be necessary to federate their RPC protocols

- ... but RPC interoperability alone is not enough for service interoperability

- ... many other issues have to be resolved

RPC 35
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Performance of DCE RPC

• Roundtrip DCE RPC timings by University of Michigan group
(Khandker, Honeyman, Teorey) using IBM RS/6000 and direct system
calls:

- 1392 bytes request packet size

- NULL response

• ... this gives timings of

- 8.351 milliseconds

• ... or, put another way

- about 120 RPCs/second (single-threaded client and server)

- 167 kbytes/second (11% of Ethernet capacity)

RPC 36
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Performance of Orbix 1.3 RPC

• Request/response RPC with server on SparcClassic and client
running under HP-UX 9.0:
- 100 bytes request packet size

- 2 milliseconds server computation

- 100 bytes response packet size

• ... this gives timings of
- 4.686 milliseconds (passing primitive types)

- 4.658 milliseconds (passing a structure)

• ... or, put another way
- about 215 RPCs/second (single-threaded client and server)

- 43 kbytes/second (2.9% of Ethernet capacity)

RPC 37
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Basic performance of RPC

• With the configuration...

- Ethernet (10 Mbit/s)

- 10 MIPS CPU

• ... 1992 measurements indicate for a Null RPC (no arguments, no
results, no computation at server)

- 2 to 4 milliseconds (typical implementation)

- 0.3 milliseconds (best known implementation)

• ... this is how long it takes to ‘do nothing’!

RPC 38
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Realistic performance of RPC

• Instead of a null RPC, assume a more realistic...
- 100 bytes request packet size
- 2 milliseconds server computation
- 100 bytes response packet size

• ... this equates to
- 6 milliseconds (typical implementation)
- 2.5 milliseconds (best known implementation)

• ... or, put another way
- 150 RPCs/second (typical implementation, single-threaded client)
- 400 RPCs/second (best known implementation)
- 30 kbytes/second (2% of Ethernet) (typical)
- 80 kbytes/second (6% of Ethernet) (best)

RPC 39
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Comparison with file transfer

• The same machine on the same network performing file transfer of
the same packet size...

- using the standard Novell NetWare PERFORM3 benchmark program

- 200 kbytes/second (best)

• ... with bigger packet size (2 kbytes)

- 500 kbytes/second (best)

- two clients can (and do) saturate Ethernet (1000 kbytes/second)

RPC 40
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Why is RPC performance limited?

• File transfer is faster because it typically uses

- specific file-transfer protocols

- windowed network protocols

- larger packet size matching network packet size

- protocol stack optimized for LAN file transfer performance

- hand-optimized Ethernet drivers

• RPC is slower because it uses

- general-purpose RPC protocols

- call/response interactions

- packet sizes typically much smaller than optimal network packet sizes

RPC 41
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

How important is RPC performance?

• Look again at the figures for a typical implementation...

- 6 milliseconds for a remote procedure call

- 2 milliseconds for the equivalent local procedure call (pure computation)

• ... is a factor of 3 significant in your application?

RPC 42
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Real-life factors in RPC performance

• If you wish to make your own measurements, all these need to be
considered

- Size of request (marshalling and buffering overhead)

- Network bandwidth (unlikely to be a limiting factor for LANs)

- Network occupancy

- Speed of local and remote machines

- Concurrency and other load on remote machines

- Transport protocol selected

- Other overheads (e.g. authentication)

- Actually servicing the request!

RPC 43
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Engineering control for ordinary procedure calls

• Suppose you are writing an ordinary non-distributed program...

• ...for a conventional procedure call, your compiler may offer you

- a choice of calling conventions, for compatibility with other programming
languages

- the option of generating inline code

• Carefully used, valuable techniques for performance engineering

RPC 44
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Engineering control for remote procedure calls

• You may require engineering control over the stubs, for example

- to control marshalling of parameters and results

- to control implicit binding

- to control error handling policy

Network

Callee

Caller

Stub

Caller

Stub

Callee

RPC 45
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Engineering control over stubs

• In DCE, this is done using the Attribute Configuration Language

- for example, the nocode attribute eliminates client-side stub code for
operations that the client does not use

• In CORBA, this is implementation-dependent

RPC 46
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Other advanced RPC features

• Group RPC for replication

- often using multicast protocols

• Secure RPC for integrity and confidentiality

- supporting authentication and authorization...

- ... a particular strength of DCE

• Transactional RPC for dependability

• ...support for all these features is patchy

RPC 47
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

General guidance - specifying interfaces

• When specifying an operation, determine whether it is logically
idempotent or not

- but do not alter the interface to make it idempotent

• Avoid using one-way operations, unless you have a very clear reason

• Use the default RPC semantics (at-most-once under failure)

- and have a standard application policy for handling failures/exceptions

RPC 48
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

General guidance - configuration

• Choose one RPC protocol for all your applications

• Ensure that appropriate transport protocols are available

- including a transparent optimized local RPC for the co-located case

• Ensure that the programming language mappings you need are
available

- check both client and server machines

- also check compiler and operating system versions

• Beware of operating system-specific restrictions on RPC

- for example in non-multi-tasking systems such as DOS/Windows 3.x, or
MacOS

RPC 49
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

General guidance - performance

• Decide whether performance is an issue for your application

• Consider benchmarking a simple RPC-based application in your own
configuration

- holding constant as many factors as possible

• Do not expect RPC performance to match measured file transfer
performance in the same configuration

• Consider selective use of follow-up RPC

- once the application is working!

• Aim for fast-enough performance for successful invocations

- reliable-enough handling for failed invocations

RPC 50
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

General guidance - keeping it simple

• Choose one RPC protocol

• Confirm its performance is adequate

• Use its defaults

• Specify your interfaces allowing for failure conditions

RPC 51
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1746.02

Summary

• For more information on RPC

- see Chapter 5 of Distributed Systems Concepts and Design by Coulouris,
Dollimore, and Kindberg (Addison-Wesley)...

- ...also see Power Programming with RPC by John Bloomer (O’Reilly and
Associates)

