
Copyright 1996 Architecture Projects Management Limited

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

Training

Distribution:

Supersedes :

Superseded by :

APM.1747.01 Approved 4th April 1996

Briefing Note

ANSAwise - CORBA Event Management and
Message Queuing

Chris Mayers

Abstract

Existing computer systems may already use an approach to distribution.

This module of the ANSAwise programme describes the Remote Data Access, Remote
Procedure Call, and Robust Queued Messaging approaches. It examines Robust Queued
Messaging, and concludes that although the technique may be valid, it is not inherently any more
robust than the others. However, it does provide a more asynchronous form of communications.

Remote Data Access and Remote Procedure Call are not examined in detail

This module then describes the CORBA Event Management service, and shows how it supports
queued messaging.

Events and Messaging 1
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

CORBA Event Management and Queued Messaging

Events and Messaging 2
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

In this session

• Review three basic techniques for communications in distributed
systems

• Explore one of these techniques in detail

• Look at standards for this technique

Events and Messaging 3
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Communications techniques for all kinds of services

Desktop
Services

Control
Services

Data Services

Events and Messaging 4
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

The three techniques of communication

• Remote Data Access (RDA)

- also known as remote database access

• Remote Procedure Call (RPC)

• Robust Queued Messaging (RQM)

- also known as reliable messaging (RM) or message-oriented middleware
(MOM)

Events and Messaging 5
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Remote Data Access (RDA)

• Local database access can be transformed into remote database
access

NetworkApp.

Driver

App

Driver

DBDB

ServerLibrary

Events and Messaging 6
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Applications for RDA

• Desktop front-ends to remote databases

- from spreadsheets

- from report writers

- from 4GLs

Events and Messaging 7
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Remote Data Access Is Not File Sharing

• Do not confuse RDA with database file sharing...

- ... where a database is placed on a file server

Network

App.

DB
Library

File server

DB files

Events and Messaging 8
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RDA and database file sharing

• Database file sharing merely transmits file reads, writes, and locks
over the network

- there is no database server, only a file server

• Remote data access transmits database queries and updates over the
network

Events and Messaging 9
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Remote Procedure Call (RPC)

• Local procedure call can be transformed into a remote procedure call

• The caller is the client, the callee is the server

Network

Callee

Caller

Stub

Caller

Stub

Callee

Events and Messaging 10
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Applications for RPC

• Most distributed computing applications

- typically, applications integration

• Particularly suited for building or integrating distributed object-
oriented applications

Events and Messaging 11
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Robust Queued Messaging (RQM)

• Requests and responses are queued

Client Server

Incoming queue

Outgoing queue

Events and Messaging 12
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Applications for RQM

• real-time systems

• command and control

• transaction processing

• financial trading

Events and Messaging 13
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

When is robustness important?

• High cost of failure

• Rapid recovery from failure

Events and Messaging 14
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Information flow in Robust Queued Messaging

• Client and server do not communicate directly, but via intermediate
queues

- client places request on queue

- server retrieves request from queue

- server places response on queue

- client retrieves response from queue

Events and Messaging 15
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Failure in Robust Queued Messaging

• Client and server can fail independently; queued messages not lost

Client Server

Incoming queue

Outgoing queue

Events and Messaging 16
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Client Failure and Recovery

• If a client fails and is restarted, it can receive pending messages from
the outgoing queue

- responses to a request from an earlier ‘incarnation’ of the client

• This is an unfamiliar challenge for most application designers

- how to handle these particular responses?

Events and Messaging 17
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Failure and Recovery in Robust Queued Messaging

• Client and server can recover messages from incoming and outgoing
queues

• What other potential points of failure are there?

-

-

• What can be done about them?

-

-

Events and Messaging 18
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RQM using RPC

Client Server

Incoming queue

Outgoing queue

RPC

RPC

Events and Messaging 19
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Handling queue overload

• Some commercial products simply discard messages on overload

- this is inconsistent with the aim of robustness

• Queue overload control requires either flow control or rate control

- this is more complex than in RPC, where flow control/rate control can be
part of the RPC protocol itself

• Do not confuse queuing with buffering

- large messages may be fragmented and require buffering for
defragmentation...

- ... but this is a communications issue, not a distributed systems issue

Events and Messaging 20
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Dependability - beyond robustness

• For many applications, robustness is not enough...

• ...they need dependability, including

- Atomicity (transactions)

- Fault tolerance

- Security

Events and Messaging 21
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Queue transparency

• Should the client even be aware of the queue?

Network

Callee

Caller

Stub

Caller

?

Events and Messaging 22
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RPC interface to RQM

• Caller just sees a simple RPC interface

Server

Incoming queue

Outgoing queue

RPC

RPC

Stub

Caller

Events and Messaging 23
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RPC interfacing to RQM

• The programming interface to RQM can be complex...

- most programming languages don’t support message queuing

- some programming languages are described as ‘message-passing’...

- ... but this is a different meaning of the word ‘message’

- ... they don’t support message queuing any better than ordinary
programming languages

• ...using a standard RPC simplifies RQM for the application designer

- whichever programming language you use

Events and Messaging 24
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RQM management

• Queues naturally support testing and debugging...

- message logging, filtering, and tracing

- message insertion and deletion

- load monitoring and balancing, flow control

- management

• ... these can be separate interfaces to the queue itself

Events and Messaging 25
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Other RQM possibilities

• RQM can be a good interface to legacy systems

- the two sides of the queue can use different protocols

• RQM allows complex message patterns (the response can come from
a third process, multiple responses, one-way messages,...)

- such designs do not scale well and can be difficult to maintain

• RQM can support off-line (e-mail style) messaging

- messages can remain in queues for long periods...

- ... servers can poll queues, or only run periodically

Events and Messaging 26
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

How effective is RQM?

• Efficiency

- mainframe transaction processing (TP) monitors gain efficiency from
queuing

• Managability

- queuing does offer an effective point of control

• Robustness - arguable!

- ... in practice RQM tends to be robust, but this is probably due to the care
and attention given to typical design and implementation

- ... plain RPC should be at least as robust under the same conditions; there
is less to go wrong

Events and Messaging 27
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

RQM in practice

• The queue manager can be made very simple

• The queue manager can be integrated with the system...

- giving high throughput

• ... or integrated into applications libraries

- leaving a more lightweight micro-kernel, and giving the application
control of queuing policies and mechanisms

• The latter is more likely in the future

Events and Messaging 28
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Selecting an RQM system

• If you believe RQM is appropriate technology, you need to be clear
about your specific needs

- Different systems offer different kinds of robustness (for example, in
overload)

- RQM systems may or may not offer transactional (atomic action)
capabilities

- Different RQM systems do not interoperate

- RQM systems may or may not offer real-time quality-of-service

- RQM systems support online reconfiguration differently

Events and Messaging 29
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Other issues for RQM

• Technical expertise can be hard to acquire

- it is spread across specialist markets

• Off-the-shelf products are available but can be expensive

- IBM MQSeries, DECrtr, Tandem Pathway, ISIS

Events and Messaging 30
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Why more than one technique is needed

• For interoperability with existing products and standards

- each has different availability implications

- each has different performance trade-offs

• Systems can use different techniques in different places

- interfacing between techniques is possible

Events and Messaging 31
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Will one technique predominate?

• Probably not...

- the need to interface with legacy systems will persist

- new products continue to refine each technique

• ...it is therefore important to understand the strengths and
weaknesses of each

Events and Messaging 32
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Standards for RQM

• Currently there are no generic standards for RQM

- the Message Oriented Middleware Association (MOMA) is attempting to
resolve this...

- ... by providing interoperability, at least

Events and Messaging 33
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Hybrid techniques - using RPC with RQM

• RPC can be implemented over RQM, (transparently or not)...

• ...RQM can be implemented over RPC

- as in Channels in the CORBA Event Service

Events and Messaging 34
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

The Event service

• Events are concerned with asynchronous communication between
objects

Events and Messaging 35
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Events

• Events support asynchronous notification

- ...‘alerts’, ‘change notification’

- for example, when disk space is getting low

• Suppliers and consumers of events are decoupled

- via an event channel

• There can be multiple suppliers and multiple consumers

• Events could be used to build an RQM (Robust Queued Messaging)
interface

- or to interface to an existing one

Events and Messaging 36
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Conspiracies - a ‘new’ object concept

• Channels have (at least) two interfaces

- one consumer, one supplier

• Currently in CORBA an object can only have one interface

• But a service can have multiple interfaces

- provided by a set of ‘conspiring’ objects

Events and Messaging 37
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Push and pull models for communicating event data

• Push model: suppliers push data to consumers

• Pull model: consumers pull data from suppliers

Supplier Consumer

Event data

Supplier Consumer

Event data

Events and Messaging 38
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Connecting and disconnecting channels •1

• Channel connections are made by separate channel administration
interfaces

• Channel connections are broken by either the supplier or consumer

- a reverse interface is optionally provided for this (as shown in the push
model here)

Supplier Consumer

Event data

Events and Messaging 39
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

The CosEventComm Module •2

module CosEventComm { exception Disconnected{};
interface PushConsumer {

void push (in any data) raises (Disconnected);
void disconnect_push_consumer();

};
interface PushSupplier {

void disconnect_push_supplier();
};
interface PullSupplier {

any pull() raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier;

};
interface PullConsumer {

void disconnect_pull_consumer();
};

};

Events and Messaging 40
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Push and pull with event channels

• Suppliers and consumers can use the same or opposite models...

• ... the models are decoupled by the event channel

event
channel

supplier

consumer

consumer

push

pull

pull

Events and Messaging 41
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Generic and typed channels

• Generic event channels allow communication of arbitrary (untyped)
data

• Typed event channels allow communicate via an IDL interface

- any IDL interface by mutual agreement between consumer and supplier

- ... operations in that interface are transformed into ‘pull’/’try_pull’
operations, with the same parameters

• Typed event channels also support generic events

• Push and pull models are supported for both generic and typed event
channels

Events and Messaging 42
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

The Event specification

• Module CosEventComm

- interfaces for the push and pull operations

• Module CosEventChannelAdmin

- interfaces for making connections between suppliers and consumers

• Module CosTypedEventComm

- as CosEventComm, but the push and pull operations are provided by
objects agreed by the suppliers and consumers themselves

• Module CosTypedEventChannelAdmin

- as CosEventChannelAdmin , but for typed event channels

Events and Messaging 43
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Using the Events service

• Use the Events service if you need

- queued messaging

- notifications

• Use the Events service with the Timer Event service if you need
periodic events

• Use a vendor-specific service if you need atomic delivery

- the Events service does not give the ordering or delivery guarantees of a
replication service

Events and Messaging 44
Approved © Copyright 1996 Architecture Projects Management LimitedAPM.1747.01

Summary

• Robust Queued Messaging (RQM) is a misnomer; the queuing is the
important aspect
- queuing improves performance, not robustness; it belongs in application

libraries, not in the system

• 100% reliability is impossible
- cost-effectiveness entails careful application design and system

engineering

• RDA, RPC, and RQM each have their place
- RPC is the most natural fit to most programming languages

• For more information on robust messaging
- see Transaction Processing Concepts and Techniques by Jim Gray and

Andreas Reuter (Morgan Kaufman)

